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Abstract: As robotic arms become prevalent in industry,
it is crucial to improve levels of trust from human colla-
borators. Low levels of trust in human–robot interaction
can reduce overall performance and prevent full robot uti-
lization. We investigated the potential benefits of using
emotional musical prosody (EMP) to allow the robot to
respond emotionally to the user’s actions. We define EMP
as musical phrases inspired by speech-based prosody used
to display emotion. We tested participants’ responses to
interacting with a virtual robot arm and a virtual humanoid
that acted as a decision agent, helping participants select
the next number in a sequence. We compared results from
three versions of the application in a between-group experi-
ment, where the robot presented different emotional reac-
tions to the user’s input depending on whether the user
agreed with the robot and whether the user’s choice was
correct. One version used EMP audio phrases selected from
our dataset of singer improvisations, the second version
used audio consisting of a single pitch randomly assigned
to each emotion, and the final version used no audio, only
gestures. In each version, the robot reacted with emotional
gestures. Participants completed a trust survey following
the interaction, and we found that the reported trust ratings
of the EMP group were significantly higher than both the
single-pitch and no audio groups for the robotic arm. We
found that our audio system made no significant difference
in any metric when used on a humanoid robot implying
audio needs to be separately designed for each platform.
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1 Introduction

Industrial co-robotic arms are showing a significant expan-
sion in use, which is expected to continue and grow into
the foreseeable future [1]. While the use of such robotic
arms expands, they still lack a standard form of non-verbal
communication [2]. Many non-verbal methods to establish
communication between robot arms and humans, such as
haptics [3] or mixed reality [4], are costly to implement
from a technical and financial perspective, requiring custom
equipment and training. More recent research has shown
the importance of social and emotion communication for
robots [5]. For collaborative robots, displaying emotion has
been shown to increase key metrics, such as the likelihood
of humans to follow social norms [6], supporting better
engagement with disability [7] and improving the percep-
tion of the robot as an equal human collaborator [8].

In this article, we propose that emotional musical pro-
sody (EMP) – emotion-tagged, non-verbal audio phrases
based onmusical melodies – can enhance social interaction
and engagementwith human collaboratorswithout requiring
a change in core functionality. The ability of non-linguistic
sound to display information for robotic platforms beyond
trivial indicators is often underutilized, despite the use of
intentional sound to deliver information in almost every
device we encounter day to day [9]. Speech, however, is
very commonly used in audio-based communication in
robotics [10]. Here we propose that the expression of
EMP by robots can have a few advantages over speech.
First, linguistic speech adds a significant cognitive load
to systems [11], which is often not required in human–robot
interactions. Additionally, linguistic streams can easily
become unintelligible [12] and detract from the interaction.
And lastly, many voice systems aim to sound as human-like
as possible, however, studies have shown that effort to
sound like a human can negatively affect the expectations
set by the end user and can decrease usage [13].

It has also been shown that displaying emotion is key for
creating believable agents that humans enjoy collaborating
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with ref. [14] and that prosody is effective in displaying emo-
tions for humans and robots [10]. We propose that robotic
arms are especially well positioned to improve interactions
through emotion, as they are non-anthropomorphic yet are
also required to act as a direct collaborator with humans.
Affective non-verbal behaviour has been shown to affect
HRI metrics like humans’ emotional state, self-disclosure,
and perceived animacy of the robot [15]. But while gestures
have often been studied [16], non-linguistic forms of audio
feedback are under-explored [17]. Prosody has the potential
to allow the robot to communicate in a manner relatable to
that of humans, but different enough from human speech
to avoid the uncanny valley [17]. EMP is therefore uniquely
positioned to enable better robotic communication and col-
laboration, capturing the advantages of sonic interaction,
emotion conveyance, and avoiding the uncanny valley.

In this article, we describe our approach to gener-
ating EMP using a custom dataset of musical phrases
for robotic arm interaction with humans. We evaluate
these interactions firstly to confirm that there is no impact
through potential distraction in collaboration with a robotic
arm. We then compare EMP to single-pitch audio and no
audio conditions for establishing trust, trust recovery, like-
ability, and the perception of intelligence and safety. Finally,
we analyse the same EMP on a humanoid robot to under-
stand if, and how, our generative system can be transferred
across systems and generalized.

2 Background

2.1 Robotic arm forms of communication

The research in this article primarily focuses on how
changing methods of communication can improve the
perception of and interaction with robots. There is cur-
rently no standardized set of approaches for allowing
robotic arms to communicate and signal their intent
[18]. Gesture and gaze, which are commonly used for
communication in social robotics, are not readily avail-
able to robotic arms [19]. Additionally, when these forms
of communication are added to arms they require signifi-
cant expense, such as extra visual displays [20], and can
challenge and reducing the core functionality of the arm
in the case of adding extra gestures. In robotic research,
forms of non-verbal communication can generally be split
into six categories: kinesics, proxemics, haptics, chrone-
mics, vocalics, and presentation [2]. Kinesics includes com-
munication through body movement, such as gestures [21]
or facial expressions, while proxemics focuses on the robotic
positioning in space, such as the distance from a human

collaborator [22]. Haptics refers to touch-based methods
[23], while chronemics includes subtle traits such as hesita-
tion [24]. Presentation includes the way the robot appears,
such as changes based on different behaviour [25]. The
category, vocalics, includes methods such as prosody [10].
While varying movement to show intent has led to suc-
cessful results [26], changes to path planning and move-
ment dynamics are often not feasible. Another effective
method for robotic arms to display their intent is through
projection of the robot’s future trajectory [27], however, this
requires a significant investment and potential distraction
to the user.

2.2 Robotics and emotion

The communication of emotion in robotics has seen a
significant rise in robotics over the last 30 years, pri-
marily in social robotics but also for robotic arms [28].
Emotion can be categorized in different ways, such as
a discrete categorical manner (happiness, sadness, fear,
etc.) [29], as well as continuous dimensions such as
valence and arousal [30]. Emotion in robot platforms
can take the role of either an input, output, or be used
for internal system processing [31]. In this article, we focus
on the role of emotion display or emotion as a system
output and how an arm can communicate an emotion.
In social robotics this has been widely researched, with
outputs including facial expression [32] or head and arm
movement [33]. Emotion has beenmore commonly used as
an input to robotic arms, such as facial emotion recogni-
tion to control and change the behaviour of robotic arms
[34–36]. Likewise, galvanic skin response emotional eva-
luation on humans has been used to impact a robot’s
control pattern [37]. Nevertheless, robotic arm displays
of emotion beyond showing intent are widely overlooked
in robotics literature.

2.3 Communication for trust and trust
recovery

The display of emotion is critical for trust and increases
the willingness for collaboration [38]. The lack of human
trust in robotic arms can lead to underutilized interaction
[39]. Trust is largely developed in the first phase of a rela-
tionship between humans and robots [40,41]. First impres-
sions from audio and visual stimuli can also damage the
ability to develop trust later on in the interaction [42]. In
this work, we focus on affective trust, which is developed
through emotional bonds and personal relationship, as
opposed to cognitive trust which is more task focused [43].
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Importantly, relationships based on affective trust are also
more resilient to mistakes by either party [44].

3 Motivation

We propose the use of EMP to establish trust for robotic
arms, as it has been shown as a powerful medium to
convey emotions [45]. While some recent efforts to gen-
erate and manipulate robotic emotions through prosody
focused on linguistic robotic communication [46], we focus
on music as a driving force for generating EMP [47,48].
EMP has key use cases in situations such as where full
language is not needed, or in group situations where
multiple speaking voices can create linguistic confusion.

EMP as a feedback mechanism for human–robot
interactions avoids the uncanny valley [17] and has the
potential to allow the robot to communicate in a manner
relatable to that of humans, but still different from day to
day human speech. While robotic arms themselves do not
generally approach the uncanny valley, we believe that
independent modalities (such as a human voice) can
cause the same impact on an interaction. This extends
the notion of the habitability gap [49], where issues with
interaction occur when a robot’s functionality does not
match its capability. In a robotic arm this could occur
when a simple task, such as repeatedly moving an object,
is accompanied by rich language-based communication
method. Additionally, affective non-verbal behaviour has
been shown to alter humans’ emotional state and self-
disclosure when interacting with a robot, as well as their
perceived animacy of the robot [15]. Sonification (turning
data into sound) and non-speech audio feedback have
been used to improve user performance in a variety of
tasks [50], implying that non-linguistic audio has a vastly
underutilized potential for robotic applications.

4 Method

We conducted two different studies, one using a robotic
arm and the other using a humanoid robot, in an effort to
address the following research questions.

4.1 Research questions and hypotheses

Our first research question focuses on understanding
the role of EMP and trust in robotic interaction.

RQ1: How does EMP alter trust and trust recovery from mis-
takes, compared to no audio and single-pitch audio?

For this question our hypothesis is that the overall trust
at the end of the interaction will be significantly higher
for EMP over single-pitch and higher for single-pitch audio
over no audio. Our second research question compares
common HRI metrics such as the perceived intelligence,
perceived safety, and likeability, for each robotic system.

RQ2: How does EMP alter perceived safety, perceived
intelligence and likeability?

For the first two research questions, we believe that
participants will develop an internal model of the robot
as an interactive emotional collaborator for the EMP model.
This will lead to higher levels of trust and improved percep-
tion of safety and intelligence. The third question explores
the relation between users’ self-reported metrics, gathered
through surveys and their actual responses collected
through a performance-based task. We are interested in
comparing whether the system that is self-reported with
higher trust ratings is actually utilized more in perfor-
mance-based tasks.

RQ3: When a user indirectly self-reports higher levels of
trust in a robot, does this in turn lead to higher uti-
lization and trust in a robotic arm’s suggestions?

For these questions we hypothesize that users’ self-
reported trust ratings will correspond to their actual use
and trust levels, as implied by choice to follow the deci-
sions of the robotic system. We also hypothesize that by
utilizing EMP, human collaborators will be more likely to
trust the robotic arm’s suggestions directly after a mistake.

4.2 Measures

We chose to use two existing measures for our study;
Schaefer’s survey for robotic trust [51], and the Godspeed
measurement for Anthropomorphism, Animacy, Likeability,
Perceived Intelligence, and the Perceived Safety of Robots
[52]. We used the complete Godspeed survey as described in
the original article, with 24 questions to cover eachmetric, and
eachmetric using a bipolar 5 point scale. For Schaefer’s survey
we used the 14-point version, with each question involving
the participant ranking the question between 0 and 100%,
which then are averaged to give a complete trust percentage.

While the Godspeed metrics have recently shown to
be problematic, we chose to use them for several reasons.
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One issue is the use of a bipolar-scale rating instead of
a Likert scale [53]. We believe that having a high rating
for Cronbach’s alpha somewhat alleviates the concern
that each rating is not truly opposite, as that implies that
at least each rating is internally reliable. In comparison to
other alternate metrics that build on the Godspeedmetrics,
such as the Robotic Social Attributes Scale [54], the God-
speed survey was chosen as it allows easy comparison
between both our own existing studies and many previous
studies that address the qualities from Godspeed [55].

4.3 Experimental design

Our experiment requires participants to perform a pattern
learning and prediction task collaboratively with a robot.
This is followed by the Godspeed metrics and Schaefer’s
survey. The study process followed the following five
steps for each participant:
(1) Consent form and introduction to online form;
(2) Description of the pattern recognition task;
(3) 20 Trial Pattern Recognition Tasks;
(4) 80 Pattern Recognition Tasks, recorded for data;
(5) Godspeed and Schaefer Trust Survey (order rando-

mized per participant);
(6) General comments and demographic information.

The pattern learning method was originally created
by Van Dongen and VanMaanen to understand the reliance
on decision agents and develop a framework for testing
different agents [56]. Since then it has been re-purposed
many times, including for comparing the dichotomy of
human–human and human–automation trust [57], as well
as the use of audio by cognitive agents [58].

After collecting the consent form, participants went
through a description of the task, followed by 20 trial
questions to teach them the process. This was followed
by the recorded and analysed 80 questions. We finally
allowed participants to add any general comments about
the study or robot.

We modified the original pattern recognition task,
asking participants to correctly predict the next number
in a sequence advised by an animated model of a robot
on a computer screen. Participants were told beforehand
that humans and the pattern recognition software tend
to be about 70% accurate on average, which has been
shown to cause humans to alternate between relying on
themselves and a decision agent. No further information
was provided to the participants about the sequence’s
structure. The sequence was made up of a repeated sub-

sequence that was five numbers long, containing only
1, 2, or 3 (such as 3, 1, 1, 2, 3). To prevent participants
from quickly identify the pattern, 10% of the numbers
in the sequence were randomly altered. Participants first
completed a training exercise to learn the interface, in
which a sub-sequence was repeated four times (20 total
numbers). Then participants were informed a new sequence
had been generated for the final task. This was generated in
the sameway, using a new sub-sequencewith 16 repetitions
(80 total numbers). Before the user chose which number
they believed came next in the sequence, the robot would
suggest an answer, with the robot being correct 70% of
the time. This process mirrors the process from the original
paper [56].

The previous timestep’s correct answer was displayed
for the user at decision time to help them better keep track
of the pattern during the animated robotic movements. We
required participants to submit their answer after the robot
finished pointing to its prediction, which took between 2.5
and 4.5 s. This also forced participants to spend time con-
sidering their decision given the robot’s recommendation.
The robot would respond to the user’s choice depending
on the outcome and the version of the experiment. The
emotional response to a user’s action with the emotion
was determined by the process shown in Figure 1.

4.4 Experimental groups and robot
reactions

This study was designed as a between-group experiment,
where participants were randomly allocated to one of the

Figure 1: Robot Arm Emotional Response (bottom row indicates
robot response).
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three groups. These groups were an EMP audio group,
a single-pitch audio group (notes), and a control with
no audio (gesture). In all three versions of the experiment,
the robot respondedwith the emotional gestures described
in Section 4.8.

In the EMP group, the gestural response was accom-
panied by playing a prosody-based audio sample, ran-
domly selected each time from the five phrases matching
the response emotion. These phrases were obtained using
the process described in Section 4.6. In the notes group,
the gestural response was accompanied by playing one
musical note. Each emotion was randomly assigned one
pitch from the midi pitches 62, 65, 69, and 72. The notes
were chosen as they are in both the male and female
vocal range and a similar pitch range to the EMP. We
chose not to alternate timbre (the audio features outside
pitch) for this group, as the EMP group already contained
significant timbre variety. This assignment remained con-
sistent throughout the experiment to maintain a relation
between the sounds and the outcome. For each pitch, five
different audio files were available to be selected, each
with a different instrument timbre and length (varying
from 2 to 5 s), to provide variety similar to that of the
five different EMP phrases available for each emotion.
Finally, in the gesture group, the gesture was performed
in silence.

4.5 Participants

For each of the studies, we recruited 46 participants
through the online survey platform Prolific for a total of
92 participants. The participants, ages ranged from 19 to
49, while the mean age was 25, with a standard deviation
of 7. Participants were randomly sorted into one of the
categories – audio with EMP (15 participants), single-pitch
audio (16 participants), and no audio (15 participants).
Each experiment took approximately 30 min to complete.
Participants were paid $4.75 USD.

4.6 Dataset

In previous study, we created a deep learning generative
system for EMP [47,48]. For this article and experiment,
we chose to use our recently created dataset of a human
singing emotional phrases, to avoid any potential noise
added by a generative system. The recorded dataset con-
tains 4.22 h of musical material recorded by Mary Carter,
divided into 1–15 s phrases each corresponding to one of
the 20 different emotions in the Geneva Emotion Wheel
[59] shown in Figure 2.

Forty-five participants from Prolific and Amazon
Mechanical Turk (MTurk) validated our generative system,

Figure 2: Geneva emotion wheel.
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by selecting an emotion and intensity when listening to
each provided phrase. For quality assurance, participants
were randomly given test questions throughout the experi-
ment asking them to select a certain answer. Each partici-
pant was given 6.5 on average, and responses which had
more than one incorrect attention question were ignored,
leaving a total of 45 participants for data analysis. In order
to minimize the length of the survey, questions were ran-
domly allocated, with 12 participants on average evalu-
ating each individual phrase. Answers of “None” or “Other”
were ignored in the analysis, resulting in an average of 11.3
valid evaluations for each phrase.

Our analysis of the phrases used the metrics defined
by Coyne et al. [60]. We calculated the rated emotion’s
mean and variance in units of emotion (converted from
degrees on the wheel), weighted by user-rated intensity.

In the experiment, we used phrases for the four emo-
tions: joy, shame, sadness, and anger. These emotions
were chosen to best match the outcomes in Figure 1 using
gesture descriptions specified in ref. [61]. Five phrases for
each emotion were chosen to add variety to the robot’s
response in an effort to prevent tiring the user with the
same sounds, and to control for any preference for indi-
vidual phrases. In selecting the phrases for each of the
four emotions, phrases from the closest two other emotions
on the wheel within the same quadrant were also consid-
ered for selection. The sets were {joy, pride, pleasure},
{shame, disappointment, regret}, {sadness, guilt, regret},
and {anger, hate, contempt}. We selected 5 of the 15 poten-
tial phrases for each trial by limiting length to be between
4 and 10 s. This restricted the variance to be less than 2,
requiring theweightedmean emotion rating to fall within
the correct quadrant of the wheel. The selected phrases
were the ones with the smallest difference between the
actual emotion and mean-rated emotion.

4.7 Interaction

Participants interacted with a virtual 3D model of the
robot in an application designed in Unity. This allowed
us to have interactions and responses vary based on user
choices, while leveraging the quantity of participants
available for an online study. Each time a participant was
asked to answer a question, the robot acted as a deci-
sion agent, pointing to an answer that may be correct or
incorrect. The user would then type their answer using
their computer keyboard. We used three versions of inter-
action, varying the way the robot reacted to the user’s
answer, as described in Section 4.4. An example image
of the robotic arm interface is shown in Figure 3.

4.8 Gestures

We created a gesture for each of the emotions joy, shame,
sadness, and anger. The gestures were designed according
to the table of emotion-specific non-verbal behaviours pro-
vided in ref. [61] as well as our own post hoc overview of
discriminative body movements and poses. This approach
has been used before in designing emotional robot ges-
tures [62]. For the humanoid embodiment, we were able to
incorporate more specific body language such as forming
hands into fists and simulating crying.

Our Joy gesture has the arm lift up high, making three
quick upwards movements alternating which side it faces.
The humanoid lifts both of its arms up and waves them
back and forth, repeats this motion with its arms higher,
and finally jumps into the air. For Shame the arm slowly
bends down and away from the camera to one side, while
the humanoid looks to one side and moves its hand to
cover its face. For Sadness, the arm slowly bends down
while still centred with respect to the camera, while the
humanoid falls to its knees and covers its face with both
hands. The Anger gesture has the arm first lean down-
wards and make two fast lateral movements, and then
lean upwards to make two more fast lateral movements.
The humanoid raises its fists into the air and push its torso
forward. Examples of poses encountered during each ges-
ture are shown in Figure 4.

5 Results

To answer our research questions we used metrics from the
trust survey, Godspeed measure, and the amount of times
participants accepted the robot’s suggestion. Research
question 1 analyses the results from the trust survey, while
research question 2 focuses on the Godspeed metrics.

Figure 3: Example image from the robot interaction application.
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Research question 3 compares the results from the trust
survey with participant choices throughout the experiment.

5.1 RQ1: Trust recovery

Research question 1 analysed how trust varies by audio
type for each robotic platform. We hypothesized that trust
would improve on both platforms with the use of EMP.

5.1.1 RQ1: Arm

We first calculated Cronbach’s alpha for each metric in
the trust survey, which gave a high reliability of 0.92. We
then calculated the overall trust score by inverting categories
when appropriate and then generating the mean for each
individual. The mean trust of each group was EMP 71%,
notes 57%, and gesture 62% (Figure 5). After running a one-
way ANOVA the p-value was significant, p = 0.041, f = 3.4.
Pair-wise t-tests between groups’ trust rating gave the
results: notes-gestures p = 0.46, notes-EMP p = 0.025, and
gesture-EMP p = 0.025. This supports our hypothesis that
trust would be higher from the arm using EMP.

We also evaluated trust based on participants’ actual
use of the system. The percentage of answers for which
users agreed with the robot for each group is plotted in
Figure 6a. We performed a one-way ANOVA test to test
whether there was a significant difference in this metric
between groups, =p 0.68, which was not significant.

To compare trust recovery after mistakes between
groups, we analysed the percentage of times each user
agreed with the robot immediately after an instance of
following the robot’s incorrect suggestion. The results are
plotted in Figure 6a. The one-way ANOVA test yielded

=p 0.87, which was not significant.

5.1.2 RQ1: Humanoid

Cronbach’s alpha for the humanoid trust survey was
0.89, showing a high internal consistency. We followed
the same procedure to calculate the trust scores, with the
means 63% for notes, 64% for gesture, and 66% for EMP
(Figure 5). Running a one-way ANOVA and pair-wise
t-tests showed no significance ( >p 0.05).

Figure 4: Example poses passed through during emotional gestures:
(a) arm and (b) humanoid.

Figure 5: Box plot of Trust metrics. White dot indicates mean, middle
line is median, and black dots are outliers.
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Figure 6b shows the results for percent agreement
with the robot, and percent agreement with the robot
after it made a mistake. A one-way ANOVA between
groups for percentage of answers in which users agreed
with the robot yielded p = 0.0039, which was significant.
A two-tailed t-test between each pair of groups had sig-
nificant results for gestures versus EMP at p = 0.0021 and
gestures versus notes at p = 0.018. The one-way ANOVA
for percent agreement after the robot’s mistake was not
significant, with p = 0.13. We note that we did not remove
outliers for these statistical tests due to the number of
participants in each group.

5.2 RQ2: Anthropomorphism, safety,
intelligence, and likeability

Research question 2 identified how EMP, notes, or gesture
alone varied each Godspeed metric for the arm and
humanoid robot. Cronbach’s alpha for the robotic arm
result in Anthropomorphism (0.85), Intelligence (0.89),

and Likeability (0.92), and all showed high reliability
values above 0.85. Safety’s coefficient was slightly lower
at 0.75. For the humanoid calculating Cronbach’s alpha
for anthropomorphism, intelligence, and likeability gave
0.80, 0.90, and 0.88, respectively, demonstrating high
reliability. Safety’s Cronbach alpha however resulted
in 0.50, indicating the survey did not present internal
validity. Due to the low internal reliability we chose not
to analyse the safety results. This is discussed further in
Section 6.4.

5.2.1 RQ2: Arm

We first performed a one-way ANOVA for each category,
which showed no significant results. Performing paired
t-tests with Holm–Bonferroni corrections showed signifi-
cance for anthropomorphism between EMP and gesture
( =p 0.048) and EMP and notes ( =p 0.003). Likeability
was also significant between notes and EMP ( =p 0.048).
Figures 7–9 show box plots for anthropomorphism, intel-
ligence, and likeability. This did not support our hypoth-
esis as we were unable to show difference between audio
types for safety or likeability across all categories.

5.2.2 RQ2: Humanoid

Across each audio category the humanoid achieved
very similar results between the audio and gesture vari-
ables, with no significant difference. For example, like-
ability received ratings of 3.5, 3.52, and 3.61 for notes,
gesture, and EMP. These results indicated that the audio
used made no difference to the perception of the robot.
Figures 7–9 show the results for each metric.

Figure 6: Box plots showing percentage of answers agreeing with
the robot overall and after the robot made a mistake (means indi-
cated by white squares): (a) arm, (b) humanoid.

Figure 7: Box plot of anthropomorphism, comparing humanoid and
arm across audio types. White dot indicates mean, middle line is
median, and black dots are outliers.
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5.3 RQ3: Trust survey and participant
choices

Research question 3 explored the relationship between
the trust survey and participants, actual choices throughout
the experiment. We calculated the Pearson correlation coef-
ficient between the final trust scores for the robotic arm,
and the percentage of answers users agreed with the robot.
The result was =r 0.12, which indicates a weak correlation
between the two metrics.

5.4 User comments

5.4.1 Arm

The free input textual comments provided by participants
indicate that it was possible, in all groups, to perceive the
emotions the robot was trying to convey. In the EMP
group, one user said, “The arm seems quite emotional!
When it’s right it is quite happy, but when it is wrong
it gets particularly sad.” In the notes group, a user
said “When we got the right answer the robot seemed
cheerful, as opposed to when we selected the wrong
answer (based on the robot’s recommendation) it seemed
as if he was sorry for giving wrong suggestions. If I chose
an option different than the robot’s suggestion and its
answer was correct, it seemed as if he gave the look of I
told you the right answer!” And in the gesture group, one
comment was “the emotions were very easily perceivable.”
Two participants in the notes group had negative com-
ments on the audio response, describing it as “horrible”
and “annoying,” while one participant in the EMP group
said the “humming was annoying.” Several participants

mentioned that the robot moved too slowly. Some com-
mentsmentioned having a hard time detecting any pattern
in the sequence, while in others, users discussed their
strategies.

5.4.2 Humanoid

In the EMP group, one user said, “It was clearly a robot
(the cartoon), but the audio queues made it seem more
humanlike,” with another user describing the robot as
“friendly.” However, another user in this group described
the robot as “irritating,” and another explained that it
was pleasant at first but became annoying over time. In
the notes group, two users used the phrase “over the top”
when describing the robot’s reactions. Two other users
mentioned that the robot seemed excited or like it was
having a good time. One user said “I feel like the sound
effects aren’t really necessary.” In the gestures group, one
user said “the robot seemed really happy when i got
things right, but when i kept failing consistently i felt i
was embarrassing it/letting it down, which added more
pressure to me to get it [sic] right.” Two other users
described a similar interpretation of the reactions. Two
different users in this group mentioned that the robot
seemed rigid or mechanic. Users’ discussions of their
strategies varied from trusting the robot most of the
time to trusting their own instincts more than the robot.

5.5 Summary

Our results indicated significant results for multiple areas
for the robotic arm, however, showed no significance for

Figure 8: Box plot of perceived Intelligence, comparing humanoid
and arm across audio types. White dot indicates mean, middle line
is median, and black dots are outliers.

Figure 9: Box plot of likeability, comparing humanoid and arm
across audio types. White dot indicates mean, middle line is
median, and black dots are outliers.
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the humanoid robot. Considering trust we found EMP had
significant results over the notes condition and gesture
alone, when considering the responses from the user
survey. For research question 2 we found significant
results only for anthropomorphism on the arm between
audio types.

6 Discussion

Building from our findings that EMP was able to improve
trust for the robotic arm but not the humanoid, we devel-
oped multiple discussion points. Firstly, we believe the
contrasting results between the humanoid and robotic
arm points to the need for further research into specific
audio design aimed at individual platforms. Secondly,
despite the improvement in trust, we did not find varia-
tions in the likeability rating of the robot. Finally, the link
between our survey response for trust and the users
choice to follow a robots suggestion was not clear and
requires further investigation into what is being mea-
sured by the trust scale.

6.1 Platform-specific audio design

Our goal for embedding EMP in robots was to develop
and evaluate a non-language-based form of audio com-
munication, which could help avoid the uncanny valley.
While we were successful in improving trust through
embedding EMP in robotic arms, in humanoid robots
we found no significant improvement in any category.
This could be generally interpreted as meaning that
audio does not alter humanoid perception as much as
for a lower degree of freedom, non-anthropomorphic,
robotic arms. It can also be claimed that our particular
audio synthesis implementation did not lead to the desired
results in humanoid robots, but that other future imple-
mentations might. The category humanoid robot is also
very broad, with potential that the humanoid model we
used was not able to be modified with audio, or that a
feature such as the eyes dominated user perception.

The most surprising result was that the pitch audio
fell well below the median of gestures-only in every cate-
gory. This may indicate that while EMP can lead to posi-
tive outcomes, audio when implemented ineffectively has
the capability of drastically reducing HRI metrics. The
reason for this is likely due to the fact that the notes’
sound was not related to the emotion being displayed

by the gesture beyond remaining consistent throughout
the experiment.

In any case, these results reiterated that audio must
be carefully considered for every platform, without only
reusing existing speech systems. More broadly, we believe
this work indicates the importance of audio design in
robotics, and the impact that robotic audio can have on
human perception. Through changing audio alone and not
relying on default audio methods such as speech, we were
able to drastically change the perception of a robotic
system, but have no impact on a different system. While
we have shown EMP as particularly effective at improving
a range of metrics, this is just one of the many possible
approaches that could be developed within more careful
future audio design for human–robot interaction.

6.2 Anthropomorphism, likeability, and
trust

Comparing the Godspeed metrics, it was unsurprising to
find that the addition of human vocalizations increased
the anthropomorphism of the arm. We had expected like-
ability to become higher, and while it was not a signifi-
cant result, it would still be worth investigating further
withmore subjects. The relationship between each of these
metrics is complex, with no clear relation between like-
ability and trust, or how EMP alters a human collaborators,
perspective on these metrics. In our past research we have
also found a complicated relationship between which fea-
tures can be improved by EMP, such as an improved rating
of the functionality of a robot in creative settings [63], but
not functionality in industrial tasks [64].

6.3 Measuring trust

Users’ ratings of trust in the survey did not strongly cor-
relate with their actual behaviour during the task in terms
of how often they agreed with the robot’s suggestions.
This is consistent with the fact that while users reported
significantly higher trust for audio with musical prosody,
no significant differences were found in their actual choices
during the interactions. A similar conflict between these
types of metrics was found in the original decision frame-
work article [56], where higher reported trust in the arm did
not always result in higher percent agreement with the arm.

We believe the primary reason for the contrasting
rating for trust and how often participants agreed with
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the robot, is due to the multifaceted nature of trust itself.
We contend that EMP is most impactful for changing
ratings for affective trust, a type of trust that develops
through emotion and social relationships. This contrasts
with cognitive trust, which is based on a user’s actual
willingness to trust or rely on a collaborator to perform
a task [65]. In robotics, trust has similarly been broken
into performance trust and moral trust [66]. Performance
trust occurs where a human collaborator believes the
system is capable of performing the required action.
The counter, moral trust, is a rating of the collaborators
belief the robot desires to perform the morally correct
task. While we make no claim that either measure we
utilized to gauge trust directly correlates with a type of
trust, we believe the trust survey is more likely to lead
towards high ratings for affective or moral trust.

6.4 Measuring perceived safety

While the Godspeed survey has been extensively used in
HRI with 1,306 citations by December 2020, we believe an
online study with animations may not have effectively
capture the metrics used for perceived safety. We found
participants often described themselves as calm on the
Godspeed scale, but also surprised, likely due to the
online setting where surprising gestures did not change
a participant’s self-perception as calm.

6.5 Limitations

This study was performed using virtual interactions with
a robot and 46 participants. It would be useful to inves-
tigate this further with a larger sample size, and to have
participants interact with a physical robot for comparison.
Additionally, more variations of robot responses could be
compared and analysed beyond the three that we investi-
gated. For example, prosodic audio of a human voice
could be compared with that of musical instruments.

7 Conclusion

This research demonstrates that when the robot arm
model responded with EMP users reported higher trust
metrics than when the robot responded with single-
pitched notes or no audio. This supports our hypothesis

that EMP has a positive effect on humans’ trust of a
robotic arm. Our additional findings and discussion points
support the complex relationship between trust metrics
and how users interact with robots, as well as the chal-
lenges in measuring trust itself. We did not find significant
results for likeability, anthropomorphism, or perceived
intelligence through prosody, although the arm with pro-
sody did achieve higher means across both categories. In
studies with a humanoid robot we found no significant
changes in metrics, with audio seemingly have no impact
on ratings. This indicates that audio design is a crucial step
for human–robot interaction and can not simply be trans-
ferred between platforms without consideration of the
broader impact.
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