DE GRUYTER

Paladyn, Journal of Behavioral Robotics 2021; 12: 481-502

Research Article

Yosef S. Razin* and Karen M. Feigh

Committing to interdependence: Implications
from game theory for human-robot trust

https://doi.org/10.1515/pjbr-2021-0031
received March 31, 2021; accepted September 18, 2021

Abstract: Human-robot interaction (HRI) and game theory
have developed distinct theories of trust for over three dec-
ades in relative isolation from one another. HRI has focused
on the underlying dimensions, layers, correlates, and ante-
cedents of trust models, while game theory has concen-
trated on the psychology and strategies behind singular
trust decisions. Both fields have grappled to understand
over-trust and trust calibration, as well as how to measure
trust expectations, risk, and vulnerability. This article pre-
sents initial steps in closing the gap between these fields.
By using insights and experimental findings from inter-
dependence theory and social psychology, this work starts
by analyzing a large game theory competition data set to
demonstrate that the strongest predictors for a wide variety
of human-human trust interactions are the interdepen-
dence-derived variables for commitment and trust that
we have developed. It then presents a second study with
human subject results for more realistic trust scenarios,
involving both human-human and human-machine trust.
In both the competition data and our experimental data,
we demonstrate that the interdependence metrics better
capture social “overtrust” than either rational or normative
psychological reasoning, as proposed by game theory.
This work further explores how interdependence theory —
with its focus on commitment, coercion, and cooperation —
addresses many of the proposed underlying constructs and
antecedents within human-robot trust, shedding new light
on key similarities and differences that arise when robots
replace humans in trust interactions.
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1 Introduction

Human-robot interaction (HRI) and game theory have
had little interaction in the development of their respec-
tive theories of trust and collaboration. Game theory has
long utilized a singular concept of trust, defined as the
payoff structure of typically one-shot interactions. It thereby
attempted to figure out not what trust looked like behavio-
rally, but what psychological motivations led to its fulfill-
ment [1,2]. Conversely, HRI focused primarily on deconstruct-
ing the idea of trust, its underlying dimensions, antecedents,
and corollaries [3,4]. This attempt to understand trust more
holistically, as a system of attitudes, expectations, decisions,
and behaviors, led to many insights at the cost of construct
proliferation. Beyond this conceptual rift between the disci-
plines, HRI often viewed the eponymous “games” of game
theory as reductive toy problems that did not translate well
into the field; this was despite HRI’s own trust research being
often limited to simulations or 2D interfaces with accompa-
nying posttask questionnaires.! These divisions and appro-
aches can be traced back to the origins of these parallel paths
of exploring trust.

Trust in HRI has been strongly influenced by social
psychology, human factors, and teamwork, whereas trust
in game theory has been more strongly influenced by
philosophy, economics, and political science. While both
fields have drawn liberally from others and have indepen-
dently developed their own unique insights, they have
yet to cross-germinate fruitfully. This article will begin to
bridge that gap, starting a new conversation on what HRI
(and human-machine interaction more generally) can
learn from the primarily human-human interactions stu-
died in game theory and looking at how the underlying
constructs of trust from HRI relate to game-theoretic trust.

In this article, we will first present an overview of trust
as it is been approached by HRI and game theory, as well
as the current tenuous connections between the two fields.
We will then give a brief introduction to interdependence

1 For more on this divide and its general implications, see ref. [5].
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theory, focusing on how it contributes to our under-
standing of trust by deriving a testable definition of trust
games and developing equations for commitment and a
new trust index (TI). We then present two experiments:
the first testing interdependence theory-based algorithms
on a game theory competition data set followed by our
own human subject testing, showing the power of inter-
dependence theory over previously proposed approaches
to trust prediction. Finally, we will discuss the power as
well as the limits of our approach, especially with regard
to human-human vs human-machine trust.

1.1 Trust and control in HRI

Early work focusing on trust in automation mainly grew
out of social psychology [6-11]. It was also influenced
by sociology, primarily Luhmann’s Trust and Power [12]
and Barber’s The Logic and Limits of Trust [13] proved to
be hugely influential, firmly establishing trust as multi-
dimensional, and explicating its relation with complexity
and communication. Luhmann’s influence can still be
identified in two major disputes within HRI trust, as far
as the roles of norms and control [14]. Briefly, does the
modern world and its complex technologies, such as
robotics, with their inherent uncertainties and risks, pre-
clude familiarity and norm-based trust? Furthermore, are
systems of control replacements for trust in such a world
instead of an integral part of trust itself? While Luhmann
answered both of these in the affirmative, these questions
are currently coming to the fore of debates in HRI trust.
How we answer these questions will have profound impli-
cations, especially for how HRI trust is conceived in con-
trast to human—human trust.

While generic trust had been historically captured
by a single item on survey instruments, once trust was
understood as multidimensional and distinct from con-
fidence and familiarity, early researchers of trust in auto-
mation started trying to capture these new dimensions
[15,16]. Eventually, some of these axes converged around
a slightly shortened form of Mayer’s seminal definition of
trust, as follows:

The willingness of a party to be vulnerable to the actions of
another party based on the expectation that the other will
perform a particular action important to the trustor.

This is rooted in the constructs of “Ability,” “Integrity,” and
“Benevolence” [17]. Later works created more fully fleshed
out trust models, antecedents, and co-factors, incorporating
concepts such as interface design, understandability, trans-
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parency, ease of use, effectiveness, accessibility, and famil-
iarity [4,18-22]. Further developments included expanding
Mayer’s “Benevolence” into more general expectations
concerning affective trust (e.g., cooperation vs competi-
tiveness) [3,21,23] and re-casting Mayer’s “Integrity” into
structural assurance [18,20]. Finally, in order to discern
whether expectations of trustworthiness truly transformed
into trust, considerations of intended and actual use were
considered (based on ref. [18]).

Mayer’s original definition had included the final
clause, “irrespective of the ability to monitor or control
that party,” in which Luhmann’s dichotomy of external
control in opposition to trust can be discerned. This clause
has often been dropped in later HRI trust definitions (e.g.,
ref. [24]); however, more recent works have expanded and
explicated what such control means. Castelfranchi and
Falcone [23] have argued that while narrow, “strict” trust
is antagonistic to control, a broader notion of trust that
includes confidence in social systems and norms, such
as laws, contracts, and ethics, actually completes and com-
pliments trust, increasing it above what strict trust alone
would suggest. Similarly, Law and Scheutz [25] understand
trust as two distinct categories: performance based and rela-
tion based. Performance-based trust is relying on compe-
tence sans monitoring (“strict”), whereas relation-based
trust expands beyond the specific situation. This latter cate-
gory hews closely to Luhmann’s confidence in social sys-
tems of trust as well as Castelfranchi and Falcone’s con-
cept of “broader” trust. A similar treatment of this “new,”
abstracted, social/normative “category” of trust is termed
“structural trust” and found to be a well-defined, indepen-
dent, and internally consistent dimension of HMI trust
by McKnight et al. [20], Gefen et al. [18], and Malle and
Ullman [26].

Thus, while the topology of trust is still contended,
a consensus has emerged regarding the role of broader
control via trust in social structures such as ethics and
laws in HRI. This may be somewhat surprising, applying
expectations of norms to robots. However, norms are a cru-
cial part of familiarity and expectation building [12], even
for non-human agents. One clear example is autonomous
vehicles. For instance, Razin and Feigh [27] demonstrated
that while drivers rated human and autonomous vehicles
differently based on perceived performance-based trust,
they had the same expectations and perceptions of both
agents when it came to social expectations around driving.
In other words, they believed that self-driving cars would
follow the same laws and norms as humans on the road.
Similar results on the importance of norms to trust around
household interactions have also been identified [28,29].
The human trustor may also abstractly place structural
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trust in a company that sells them robotic products, the
engineers that design those products, and the laws that
regulate the products and businesses involved [18,20].
Structural trust devolves upon an entire social network
of actors of which the actual robot is only one node, albeit
the fact at which the direct trust interaction occurs.

Beyond control, cooperation in the form of teamwork
is receiving increased attention in HRI [3,30] as is coer-
cion (both through incentives and sanctions), especially
in the form of inappropriate compliance and reliance
[31,32]. While this work focuses on these larger ques-
tions of control, cooperation, coercion, and commitment,
we will return to discussing how performance-based and
affective-based trust fit into the interdependence model
(Section 5.2). In the following, we will also differentiate
“rational” trust from performance-based “strict” trust
given the specific meaning of rationality in game theory;
indeed, the bulk of this work is aimed at explaining that
both performance-based and affective-based trust are
based on rational beliefs.

1.2 Interdependence theory:
deconstructing control

In order to further explore the relationship of trust with
control, cooperation, and coercion, we propose reviving
an off-shoot of game theory, proposed by Thibaut and
Kelley over a half-century ago [33]. Their interdepen-
dence theory was reintroduced into HRI trust by Wagner
[34] and Robinette [35] and re-framed classical games
by breaking down the relative levels of control afforded
to each agent. The theory of interdependence is also
broader than classical game theory as it does not assume
rationality or even the attempt to maximize monetary or
even concrete outcomes. Thus, it considers symbolic out-
comes, such as the reputational payoff of following social
norms or the pleasure of fulfilling another’s needs [36].
Thibaut and Kelley also recognized that even within a
single interaction, the “game” is not limited to simply
the structure of the outcomes prescribed by the situation,
but that actors may further process and mentally trans-
form such situations by framing them in various temporal
or social ways. These include attempting to maximize
the joint outcomes of all actors or minimizing the differ-
ence between some outcomes to ensure equity. They also
explored transformations instantiated by making certain
externally motivated behavioral commitments (playing
by the rules, turn-taking), preempting partner’s choices, and
accounting for future interactions [33]. These transforma-
tions act in well-characterized and prescribed ways upon
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Figure 1: Payoff matrix for the trustor (red) and trustee (blue) in

a trust-trustworthiness interaction. Regret here is specific to not
trusting/being trusted when trust would have been fulfilled and is
distinct from any emotion linked to betrayal.

outcome matrices similar to those used in game theory,
such as the 2 x 2 matrix in Figure 1. Many of these steps to
expand game theory would be retread starting in the late
1980s within mainstream game theory research by Geanako-
plos et al. [37], when they founded psychological game
theory. However, the focus on the decomposition of games
by control “modes” remains a unique and crucial contribu-
tion of interdependence theory alone.

1.3 Trust in game theory

Before turning to the method of deconstructing control

within a game or interaction, it is worthwhile under-

standing how trust is even framed in game theory, which

is so often focused on competitive scenarios. Unlike trust

in HRI, in game theory, trust is not seen as multidimen-

sional and there is little debate over its definition. What

defines a trust game in game theory, first and foremost,

is the payoff structure (Figure 1). The oft-cited require-

ments (e.g., refs [1,38,39]) for a trust game according to

game theory are as follows:

(1) Exposure: The trustor is risking more by betrayal than
if they do not trust (A, < {4y, A»n}).

(2) Improvement: The trustor stands to gain more by ful-
filled trust than by not trusting (4y; > {4, An}).

(3) Temptation: The trustee at least is tempted to betray
trust when proffered (By; > By).

(4) Mutual Gain:? That the payoff for being trustworthy
when trusted is higher than not being trustworthy at
all (By; > {Bx, B»}).

all while assuming that Ay = A, and By = Bp.

2 Not universally accepted.
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A very similar, though expanded, set of trust condi-
tions for the trustor alone was independently derived by
Wagner [34] as follows:

(1) The act of trust must occur in the face of uncertainty;
the trustee cannot act before the trustor.

(2) Only if the trustor chooses to trust does the trustee’s
action matter, such that the payoff for successful
trust is higher than the potential loss if the trustee
is untrustworthy. Quantitatively, this means the dif-
ference between the payoffs for successful vs unsuc-
cessful trust must be at some minimum (&) depen-
dent, reflecting some risk (4;; — Ap > &) (Exposure)

(3) The trustor’s payoffs for not trusting are independent
of the trustee, such that the amount unrisked by not
trusting is bounded by &,, such that |4y — Ayp| < &.

(4) Successful trust is the highest outcome and betrayal
is the lowest, with the non-trusting options bound
by these two levels, such that Ay > {4y, A»n} > Ap
(Improvement).

(5) The trustor must believe that the probability of the
trustee acting trustworthy is greater than some trust
threshold (pA(TW) > C).

Note that the inequalities presented by game theory
only define a trust game and not how the binary decision
to trust or act trustworthy is made. However, Wagner
attempts to provide, at least abstractly, such a criterion
in (5). One such solution for calculating that decision
threshold could be the game’s mixed Nash equilibrium.
However, game theory generally has suggested that the
“rational” solution here is the subgame perfect equili-
brium (SPE), which unfortunately and unrealistically
predicts that trust should rarely occur, as being untrust-
worthy is the trustee’s weakly dominant rational strategy.
This is clearly not how trust plays out in the real world,
where trust is frequently given and fulfilled. Thus, beha-
vioral and psychological insights are sought to fill this gap.

It is a well-known phenomenon that, even in the “toy
problems” presented in game theory experiments, people
choose to trust and be trustworthy more than they seemingly
“should” based on payoffs and risk aversion alone [2]. The-
ories as to why people “over-trust” range the gamut from
long-term reputation keeping, conformity to moral norms,
expecting and reciprocating kindness, guilt, and inequality
aversion to name but a few, with varying supporting find-
ings in the game-theoretic trust literature [2,38-41]. Note
that these theories all fall under the “broader” notions of
structural or relation-based trust, as discussed in Section 1.1.

The gap between game theory’s and HRI’s approaches
to trust and how they are articulated, framed, motivated,
and modeled is wide indeed. In fact, the only common
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foundation to both approaches is that trust occurs when
one is made vulnerable by exposure to risk and that it is
premised on a “particular action of importance to the
trustor” [17]. Game theory focuses on the binary trust deci-
sion, and, more often than not, HRI focuses on the con-
tinuously valued belief in or expectation of trust and trust-
worthiness. Furthermore, the very design of the game-
theoretic implementation removes questions of capability,
much less understandability and familiarity, and comple-
tely violates the evaluation of trust under situational nor-
mality, which are all stressed in HRI. On the other hand,
one could argue that by removing these correlates, game
theory examines a “purer” form of trust that goes beyond
instrumentality [2]. This “pure” trust though is also strongly
understood to be rooted in exclusive elements of human—
human interaction, focusing on equity, kindness, and moral
normativity. This approach completely disregards how trust
operates when a non-human is involved (beyond anthro-
pomorphism) or even when trust is strongly premised on
performance as opposed to relational concerns. Further-
more, HRI trust rarely concerns itself with the trustee’s
alternative payoffs, with the exception of ref. [34], directly
challenging the temptation criteria of trust games as for-
mally defined by game theory.

1.4 A declaration of interdependence

Interdependence theory proposes decomposing games by
determining which actor has power over which part of the
total payoff structure [33]. We will illustrate each aspect
of this powerful approach and its insights through the
following game, as shown in Figure 2.

Imagine a human must decide whether to trust an
autonomous vehicle or switch to manual mode. The pay-
off structure here is not only the real costs or payoffs
but also incorporates emotional, reputational, and other
psychological utilities. If the human does trust and the
autonomous vehicle works perfectly, the human is rea-
sonably happy especially given the cost of the car (50).
If they do not trust the autonomous mode, even though
they believe it generally works, and get into an accident
by driving manually, they will kick themselves for not
trusting and regret it (-50). However, if the human trusts
the autonomous vehicle and it fails, it is catastrophic and
they may never use the car again (-100). Finally, if they
decide not to trust it and then hear that it actually does
not work, they will feel satisfied with their justified choice
(30). Note that due to psychological factors such as regret
and satisfaction, typically Ay # Ax.
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Figure 2: An illustrative example of the payoffs in a human-robot trust interaction. The human trustor’s payoffs are in red and the robot’s are
in blue, with the game represented in two forms. (a) Example normal-form representation of the trust game, best suited for enabling
calculations. (b) Extensive-form representation of the game, highlighting the sequential nature of the game, with the trustor making the

first “move.”

The payoffs for the robot can be seen as the utility either
for it as an agent directly or for its owners, manufacturers,
designers, or insurers. The robot anticipates being rewarded
and used more (or perhaps its manufacturer anticipates
increased share prices) for properly fulfilling trust (30) but
penalized even more if it betrays the human’s trust, as
failure may result in discontinued use, not to speak of repu-
tational and commercial loss (—50). While often such games
assume that the trustee receives or losses nothing by being
not trusted (B, = By = 0) [2,34], that is clearly not the
case, as can be illustrated. Generally, not being trusted
will hurt the brand (-10) but as people get into accidents
driving manually while the robot actually is demonstrably
a more reliable driver than humans, then the safer autono-
mous vehicle will appear a better option and people will
seek it out (let us say a net gain of 20).

Traditional game theory would predict that the two
agents will act rationally and play the SPE. What this
means is that by working backward through the example
in Figure 2, the autonomous car’s payoff for regret dom-
inates satisfaction (20 > —10) and successfully fulfilling
trust dominates betrayal (30 > —50). The human trustor
is then left deciding between successful trust vs regret
(50 > -50), and thus in this case, the SPE predicts that
the human will indeed successfully trust. However, in
cases when satisfaction dominates regret, such as when
the trustee is seen as less as a tool and more as a potential
teammate, the SPE indicates that one should not trust.
In practice, the SPE seems to account for approximately
60-80% of trustor’s decision to trust in human-human
interaction [1,2,40].

Note that payoffs in game theory are known to be
invariant under positive affine transformation, and thus,

it does not matter if we multiply all the payoffs of the
human by 1,000 or add 50 to each of those of robot. It
also makes it tricky (if not impossible) to compare payoffs
between the agents. However, normalizing all payoffs by
each player’s most extreme outcome can prove useful for
understanding interdependence, as will be shown shortly.

Interdependence theory suggests that we can under-
stand the interaction better by deconstructing the payoffs
in terms of three types of control, those of each individual
as well as that which arises from cooperation. Reflexive
or actor control (RC) is how much unilateral power the
actor has over their own outcomes, i.e. the expected dif-
ference between their choosing one action over the other.
For the trustor (Player A), it is the average difference
between the row-sums and for the trustee (Player B)
this is transposed as the average difference between
column-sums, such that

RC4 = 0.5((Ayy + Ap) — (Ax + Ap))

1
RCg = 0.5((By1 + By) — (Biz + By)) @

In the human-robot game illustrated in Figure 2, the
normalized reflexive control is RC4 = —0.15 for the human
trustor (Player A) and RCg = 0.7 for the car trustee (Player
B). Thus, along this component of the payoff, the human is
weakly inclined to choose not to trust and the autonomous
vehicle (and its manufacturer) has a much stronger incen-
tive to prove trustworthy.

Fate or partner control (FC) is how much unilateral
power each actor has over the other’s outcomes, i.e. the
expected difference in one actor’s outcomes when the
other chooses between their actions. For Actor A, it is
the average difference between their payoff’s column-
sums, and again this is transposed for Actor B:
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Table 1: Summary of Interdependence control modes from the
human-robot interaction example based on normalized payoffs

Control Mode | Human (A) | Car (B)

Reflexive Control (RC) -.15 0.7
Fate Control (FC) 0.35 0.1
Bilateral Control (BC) 1.15 0.9

FCy=0.5((4A1 + Axn) - (A + Ap))

2
FCp = 0.5((B11 + B1z) — (Bxn + B»)) @

To reiterate, FC4 is Actor A’s estimation of Actor B’s uni-
lateral power over A’s own outcomes. Per our example,
FC4 = 0.35 and FCg = 0.1, which means that the vehicle’s
trustworthiness has a much stronger impact on the human,
than the human’s choice to trust the car (RC4 = —0.15),
while the driver/consumer provides a mild positive car/
manufacturer for the vehicle to be trustworthy.

Finally, bilateral or joint control (BC) is how much
one actor’s choice further facilitates or inhibits the other’s
outcomes. This set of weights is fully contingent on the
partner’s choice and, thus, is the result of coordination or
its lack thereof. It is calculated for both partners as the
average of the difference of the sums of the diagonal
outcomes.

BCx = 0.5((X11 + X)) — (X2 + X51)) (3

where X can be either A or B. Again in our interaction
example, BC, = 1.15 and BCg = 0.9. Both the human and
the car have a strong incentive to coordinate, fulfilling
trust when trusted or not trusting the untrustworthy.
Here control over payoffs via coordination is significantly
stronger than any via unilateral control (Table 1).

If the signs of BC4 and BCy are the same, as in the
example, they are said to correspond, signaling that
both actors share a preference for coordinated behavior.
If the sign of BC matches that of RC or FC, they are said to
be concordant, and if not, they are discordant. Concor-
dance (discordance) is a measure of reinforcement (inter-
ference) between one mode of control and another. As the
autonomous vehicle’s interdependence weights in our
example are all positive, FCg, RCg, and BCg are all con-
cordant, whereas for the human, FC, and BC4 are con-
cordant, but RC, is discordant with both, signifying that
the human is being coerced (in this case through incen-
tivization). Both BC, and BCg are positive and thus corre-
spond, indicating that the human and car share a pre-
ference for coordination.

In this way, interdependence theory and its associated
weights can be used for a variety of analyses that illumi-
nate many aspects of trust. This is clearly illustrated when
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we translate the game-theoretic trust conditions of Exposure
and Improvement (or equivalently Wagner’s trust condi-
tions) into interdependence terms? as follows:

FCA >0 FCA > |RCA|

4
BC,>0 BCy > [RCy| “)

This transformation yields the following interpretation:

The expected additional gains of trusting that the trustee con-
trols for the trustor, both unilaterally and through coordina-
tion, must be positive and greater in magnitude than the trus-
tor’s power over their own payoffs.

Note how this accords with our commonsense under-
standing of trust: if the trustor can accomplish the goal
for themselves, there is no need for trust. Furthermore,
the trustee exerts control over the trustor’s success — and
this arises from a mixture of coordination and magnani-
mity. This does not, however, imply altruism, as these
conditions say nothing concerning the payoffs for the
trustee. If we accept game theory’s conditions for the
trustee, Temptation can be expressed as follows:

FCB > BCB
FCB > RCB (5)
If the Mutual Gain condition is also accepted,
FCp > |BC
5 > |BCg| ©)
FCB > |RCB|

Recall that often in game theory, trust games are
designed such that B,; = By, & Ay = Ay, which leads to

FC, = BCy 7)
FCs = BCp (8)

however, neither of these two equivalence conditions are
held to be actual requirements of trust games.

Note that the Temptation condition implies a some-
what cynical approach. Under it, a trust game is not
simple when the trustor might consider trust as a viable
strategy but when they would do so at the same time as
when the trustee is tempted to betray them! From inter-
dependence theory, we see that this essentially means
that the only time they will act trustworthy in such a
scenario is when the trustor’s unilateral control provides
an overwhelming incentive. While this may make for a
“good” game, is it true that trust can only be said to occur
in the presence of temptation/when it is coerced?

Leaving that question to be addressed later, observe
how the interdependence analysis has allowed us to go

3 For proofs, see Appendix A.2: Theorems 1-4.
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beyond the basics of the game-theoretic conditions, high-
lighting the cooperative aspect, as well as the power
inequality between the two agents [42].

There is another gain to note from this new framing
of the trust conditions. As mentioned earlier, payoffs in
game theory cannot be compared between agents because
they are invariant under positive affine transformations.
These trust conditions contain the additional benefit of
permitting normalized ranges for the interdependence
weights, such that RC, = (-1, 1), FC4 = (0, 1), BC, = (0, 2),
RCg = (-2,1), FCg =(-2,2), and BCg = (-2,1). Thus,
various trustors and their valuations can be fruitfully
compared, and likewise for trustees.

Finally, we recognize that in this section, we have
introduced a number of key terms and acronyms and
we will be introducing more in the following sections.
Thus, for ease of reference, a glossary of terms is provided
in Appendix A.1.

2 From interdependence weights
to measures to trust

Armed with these re-framed theoretical constraints, it is
time to forge a new path to show how trust is actually
decided upon within such interactions. The initial starting
points offered by game theory would be the SPE and mixed
Nash equilibrium. As previously mentioned, the SPE has
proven insufficient at capturing actual trust behavior for
the trustor, leading to what appears to be over-trust. One
solution may be the Nash equilibrium, which broadens our
view from a discrete decision to the continuous domain of
probabilities.

The Nash equilibrium is the point of indifference
between the trustee’s actions given the trustor’s payoffs
and vice versa. The probability of the trustee acting trust-
worthy (15), which yields a Nash equilibrium if the trustee
is to use a mixed strategy, is derived* as follows:

AL + (1 - 3)A1 = BAx + (1 - T3)An

I Ay - Ap _1
Ay +Ap —Ap —Ay 2

RCG 9
2BCy

If the trustor is willing to assume that the trustee is
rational, they can use 13 as a best-response threshold to
make decisions based on the trustee’s trustworthiness
(pA(TW) > 13, where 13 = C in Wagner’s fifth condition).

4 For proof, see Appendix, Theorem B.1.
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While the basic result is well known [43], we can still
glean a few key insights. First, the Nash equilibrium
only holds if the trustee is assumed to be “rational.”
Of course, if one suspects the other as being “nasty” or
a direct competitor, then the assumption of rationality
does not hold [44]. Second, this approach highlights
that a single act of untrustworthiness or trustworthiness
may not be meaningful, but that trustworthiness is to be
assessed dynamically over the relationship’s span or at
least from some previous expectation or likelihood, shed-
ding light on the roles of familiarity and learning in trust.
However, it does not address “thin,” one-shot trust inter-
actions, though a Bayesian prior over the trustor’s belief
may be considered as a potential alternative.

2.1 In Gottman’s index, trust

Unhappy with the poor accuracy of the Nash equilibrium
to predict trust and its limitation to rational actors,
Gottman proposed a TI based on his findings from experi-
mental psychology [44]. This index was based on an idea
from the Nash equilibrium that we want to maximize the
payoffs such that no player can unilaterally choose a
move that does better, but drops the rationality assump-
tion and is neither predicated on interaction history nor
predicated on the probability of trust. While Gottman’s
original TI was based on three potential actions per actor,
we present a modified version of it here limited to the
binary trust decision and translated into interdependence
terms.> The TI is thus given by:

_ Ay - Ap
Ay + Ay - Ap - Ap

RC,
2FC,

TI

1
=3 + (10)
where we recall that RC4 is the unilateral control the
trustor has over their own outcomes and FC, is the uni-
lateral control the trustee has over the trustor’s outcomes.
Gottman describes this as “without regard for the trustee’s
gains, the trustee can be counted on to look out for the
trustor’s interests by changing their behavior to improve
the trustor’s outcomes” [44]. We can also understand this
index as the equilibrium achieved between the trustor’s
choices given the probability, TI, that the actors will not
match behaviors: trust will meet untrustworthiness and
distrust with trustworthiness, as it can be derived from

(1 - TDHA; + TlAp = (1 - TDAy, + TIAy (11)

5 For proofs, see Appendix, Theorem A.3.
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Given our derived constraint FC4 > |RCy4| in equation
(3), the index is no longer arbitrary, as presented by
Gottman, but becomes a proper metric, such that a trust
interaction can be said to not exist if TI < 0 or TI > 1.
Furthermore, when 0.5 < TI < 1, trust can be said to be
freely given, and when 0 < TI < 0.5, trust is forced or
coerced. The latter could occur if RC4 and FC, are discor-
dant and since FCy >0 (see equation (3)), trust must be
being incentivized by the trustee against the trustor’s
negative inclination (RC4 < 0, FC4 > 0) [42], as in the
aforementioned example with the autonomous car where
TI = 0.29. One question explored further later is whether
this incentivization/coercion is enough to convince the
trustor to go ahead despite their misgivings. Gottman vali-
dated his TI through its positive correlation with the trus-
tor’s higher emotional attunement and lower physiological
arousal and the trustee’s reduced negativity and greater
openness during oral relationship history interviews.
Thus, he concluded, his TI does indeed reflect trust within
intimate relationships [44]. As we will show, the index will
also prove to be a powerful tool for predicting trust in both
human-human and human-machine interactions.

2.2 Committing trust

Is the TI alone sufficient to predict trust? It seems to
capture much of the interplay in the one-on-one interac-
tion. However, it does not seem to address a central ques-
tion of trust researchers from both HRI [16] and psy-
chology [45] on how one decides to interact in the first
place. Often we think of trust as a choice between doing
something ourselves versus delegating to another; this
has been studied in HRI classically as the self-confidence
vs human-machine trust going back to Lee and Moray
[16]. However, as others have pointed out [23], we often
have more than one potential trustee — whether we are
choosing among apps, a new car, lab partners, potential
business opportunities, or people to date. How do we
choose which of these avenues are worth pursuing?

In their initial work on interdependence theory, Thibaut
and Kelly introduced the idea of the comparison level for
the alternative, CL,; [33]. This is a set point from which we
compare our lowest acceptable payoffs for each interac-
tion. The lower the CL,);, the more the interaction is worth
pursuing among the set of all interactions; CL,;; connotes
the anticipated worth of the current interaction and the
likelihood that it will be pursued further (i.e. the interac-
tion’s stahility).

Rusbult and Buunk developed this idea further with
Kelley [45], successfully validating the idea that CLgy
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can be understood psychologically as one’s commitment
to the interaction. She found in her Investment Model
of Commitment that as people discount or reject other
CLq4y’s in favor of the current relationship, they become
more invested in and dependent on the relationship.
Likewise, increasing the worth of CL,; by comparing
other potential partners to one’s current partner, for
instance, leads to a cascade not just of distrust but ulti-
mately betrayal. Gottman continued to build on and test
this idea [44], concluding that conflict avoidance exacer-
bates CL,;, which is reflected in further detachment.
He also differentiated between commitment and trust,
whereby “turning away erodes trust” but “turning away
and increasing CL,;; erodes trust and fuels betrayal” [44].

Based on the functional requirements for CL.; as
described in the aforementioned works, we proposed
a new transformation process [42], like those in ref.
[46], to apply CLy to an interaction and understand it
via interdependence, as shown in Figure 3. The CLy;
transformation does not affect FC4 or BC4 and thus does
not directly affect the trustor’s interdependence. However,
increasing CL,;; decreases RC4 by an equivalent amount
(i.e. RC)y = RCy4 — CLyy). This transformation explains the
erosion of Gottman’s TI as the trustor’s commitment lessens
and the ratio of RC/, : FC', decreases.

As the trustor’s commitment wanes, the percentage
of the time the trustee must act trustworthy to “prove
themselves” increases, as shown in equation (9). The
idea of “neediness” in psychological game theory [1] is
mathematically equivalent to increasing RC4 and com-
mitment through consideration of a negative CL,; but is
only mentioned in passing and is less developed therein.

As explained initially by Kelley and Thibaut, the
higher one actor’s CL, relative to the other’s, the more
power they are said to have in the relationship, though
this is not necessarily true for any single interaction.
This is because one may choose to make themselves
vulnerable (or needy as seen through the lens of game
theory) in the short term, either through sacrifice or accom-

THE CL,;: TRANSFORMATION

O4 | TW | - TW ™ -TW

T A11 A12 g A11 A12
ST | A2r | A2z A21+CLa1t | A22+CLgyt
Given Matrix (O4) Effective Matrix (O)
FCo =FC), = BCa=BC) RCa-CLuy = RC),

Figure 3: The CL, transformation. CL, only reduces RC4 and
therefore commitment.



DE GRUYTER

modation, in order to signal trustworthiness, without com-
promising their overall power. In the long term, however,
doing so abdicates power and deepens one’s dependence,
commitment, and, indeed, “neediness.” In considering
alternatives, there are two further effects that we have
previously derived [42], which are worth summarizing
here. Given that the payoff/cost of the alternative, CLyy,
is inversely proportional to BC,4 in the Nash equilibrium
and FC, in the TIL
(1) As the cost of alternatives grows very high (=CLy; <
-2FC,), the commitment, RC/;, increases to the point
such that the TI, =TI > 1 increases above and beyond
what Player B’s trustworthiness indicates. This can
lead to a coerced over-trust by Player A through
“sunk cost” or over-commitment.
(2) Strong alternatives (CL,; > 0) decrease commitment,
RC/,, to the interaction at hand, lowering the expectation
of trustworthiness, 13, such that it may no longer meet

the required threshold C to trust, where Atg = ZCBLC“;

Note that the first point provides a psychological,
interdependence-based explanation of the sunk cost “fal-
lacy.” Here though it is perfectly rational and not a fal-
lacy, per se. Commitment is a sunk cost as other oppor-
tunities are foregone and more personal power is ceded
so that the other must be increasingly trusted.

The last point is related to a concept that Gottman
entitles “turning toward/away.” Recall that BC is the
payoff for cooperation. It turns out that, at least theore-
tically, the higher the payoff for “turning toward” the
other, the lower the effect of alternatives should be. In
other words, “turning away” from the other decreases the
robustness of relationships to alternatives, and “turning
toward” the other increases its robustness, precisely
the effect found in Gottman’s studies [44].

3 Experiment 1:
capturing human-human trust

While less fully developed, other works had previously
noted the importance of coordination, commitment, and
the TI in theory and experimentation, both from human-
human interaction [44] as well as, to a more limited
extent, from human-robot trust [34]. However, these
concepts still lacked direct validation based upon quan-
titative data. Therefore, this is the first experimental goal
of this work. The second goal is to look at the implications
of our findings and indicate further directions that such
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game-theoretic analysis may apply to HRI and in what
ways it is expected to differ from human-human trust.

3.1 Experimental procedure 1

To test and validate our work, we turned to a competition
data set [40] that contained 240 unique, non-trivial games
generated from 10 “classical” non-trivial game types, such
as “trust,” “near dictator,” “costly punishment,” and “safe
shot.” Each of the 240 generated games was played between
116 students that were paired off, but blind to each other’s
choices, with pairings changed for each game. Students
were drawn from a business school subject pool and com-
pensated based on the payoffs and choices made in one of
the played games, chosen at random. The games were
divided into 120 for training the estimation algorithms and
120 to be used to validate prediction accuracy. Results from
the top 15 performing algorithms in both the estimation and
prediction components of the competition were publicly
reported as well as baseline results and a coding template
for implementation [40].

To this data set, which included over a dozen strate-
gies of gameplay, we added our various interdependence
theory-derived variables as well as the TI previously men-
tioned. The full list of algorithms and variables can be
found in Tables 2 and 3, respectively. We normalized all
payoffs by their most extreme value, as discussed earlier,
to counter issues that could arise given game theory’s
utility invariance under strictly positive affine transfor-
mations. After validating the baseline code, all games
that did not fit our minimal criteria for defining trust
games (e.g., exposure and improvement, equation (3))
were removed, resulting in a reduced set of 47 estimation
games and 59 prediction games. The data sets were not
re-equalized by size, so that comparisons could be made
against the baseline results from the competition. Games
that did not fulfill the Temptation criteria were retained,
in part due to previous HRI work not including that
requirement in trust interactions [34,42] and furthermore
because temptation is directly related to the trustee’s
commitment, a condition that we wished to test and not
simply exclude. All parameter values in the baseline
algorithms were reoptimized with the goal of minimizing
the mean squared error. Our models did not make the
strong presumption of ref. [40] to remove the intercept
a priori, since there was no reason to believe that the
mean of trust on the y-axis should be 0. In fact, if trust
is examined independently of any antecedents such as



490 —— YosefS. Razin and Karen M. Feigh

DE GRUYTER

Table 2: Previously proposed strategies of trusting and trust fulfillment

Algorithm Strategy

SPE
Inequality aversion [40]
Equality reciprocity (ERC) [47]

Players follow “rational” strategies
Players avoid inequality but weight disadvantageous and advantegous inequality differently
Mixing SPE, gains from co-ordination (trustor), and tit-for-tat (trustee). All material payoffs being

equal, players prefer equal distribution

Charness—Rabin (CR) [40,48]
“Seven Strategies” [40]

Combining SPE with the idea of fairness/kindness (tit for tat)
Regression analysis of strategies that one or both players may employ. See Table 3 for full list.

familiarity and faith in society, then it must account
somewhere for potential background bias, which is at
least expected on the part of the trustor. All regression
algorithms were tenfold cross-validated.

An important caveat of this data set (and in fact all
game-theoretic and interdependence-based games in the
literature) is that Ay = Ay and By = By, which implies,
for those still following, that FC4 = BC4 and RCg = BCp.
Thus, the trustee’s commitment is equal to their addi-
tional incentive to cooperate, and the control the trustee
has over the trustee’s payoffs is an even mixture of uni-
lateral and joint control.

3.2 Results

Due to concerns of multicollinearity among the 16 vari-
ables the variance inflation factors (VIF) for the data set
were checked (Table 3). Gottman’s TI and the commitment

of the trustor (RC4) showed a correlation of 97% and the
trustee’s SPE (b1) and the trustee’s strategy of maximizing
“niceness” (mn1) were heavily correlated at 93%. The trus-
tor’s SPE (ri) had medium strength correlations with both
the trustor assuming a malicious trustee (maxmin) and the
trustee’s commitment (RCg) (51 and 55%, respectively).
Given the importance of SPE and our hypothesis, we
dropped maxmin and tested both dropping RC, and TI,
settling on TI as it showed stronger results, which brought
all VIF below 3 except for ri (VIF = 3.65).

After our data were checked for various statistical
assumptions, all of the game play strategies of ref. [40]
and several machine learning regressions led to the results
shown in Table 4. As in ref. [40], playing the SPE alone
still accounted for 75.3% of the variance in the trustor’s
trusting response and 97.6% of the variance for the trus-
tee’s fulfillment of trust in the reduced data set.

Interestingly even with reoptimizing parameters, many
of the methods tested by ref. [40] did not perform as well as
or only slightly better than the SPE for prediction when only

Table 3: Seven strategies and interdependence variables and their initial and final VIF, after strong multicollinear variables were dropped

Variable Meaning VIF init. VIF final
“Seven Strategy” variables [40]

ri SPE for trustor 4.48 3.65

levl Trustor maximizing self-payoffs given total uncertainty 4.07 2.78

mm1l Trustor maximizing payoffs of weakest player (kindness) 2.04 1.84

maxmin Trustor maximizing payoff assuming Player 2 is malicious 3.60 Dropped

jm1 Maximizing joint payoffs 2.97 2.10

ial Minimizing payoff differences (equality) 1.97 1.54

b1 SPE for trustee 10.58 1.71

mn1 Trustee maximizing trustor’s payoff if rational choice is indifferent 11.07 Dropped

mm?2 Trustee maximizing payoffs of weakest player (kindness) 2.20 1.88

ia2 Minimizing payoff differences (equality) 2.02 1.57
Interdependence variables

RCx Trustor’s commitment 25.75 Dropped

FC4/BCa Trustee’s unilateral and joint control over trustor 2.47 2.46

RCz/BCg Trustee’s commitment and joint control 1.68 1.36

FCs Trustor’s control over trustee 2.21 1.95

Tl Gottman’s Tl 27.59 2.26

Note: A VIF over 3 is indicative of high multicollinearity. Values above this are indicated in bold.
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Table 4: Mean squared error for trust and trust fulfillment: All
regressions were run at least initially with all Seven Strategy and
interdependence variables. The three best performers along each
category are highlighted

Estimation Prediction

Method Trustor | Trustee | Trustor | Trustee
Subgame Perfect 0.1288 | 0.0184 | 0.0432 | 0.0065
Equilibrium (SPE)

Inequality Aversion 0.0336 | 0.0249 0.0229 0.0071
(Es;?:';ty Reciprocity | 00378 | 0.0176 | 0.0509 | 0.0057
Charness-Rabin 0.0729 | 0.0036 | 0.0626 | 0.0263
Seven Strategies 0.0802 0.0035 0.0373 0.0077
Linear Reg. 0.0183 0.0098 0.0218 | 0.0069
Reg. SVM 0.0075 | 0.0020 | 0.0263  0.0051
Reg. Tree 0.0144 | 0.0035 0.0210 | 0.0124
Gaussian Proc. Reg. | 0.0065 | 0.0021 | 0.0219 | 0.0057
Ensemble Reg. 0.0052 | 0.0021 | 0.0141 ‘ 0.0077

trust games were analyzed. This was despite their some-
times significant improvement over the estimation set. In
addition, when the full set of seven strategies and interde-
pendence variables were fitted and tested in various regres-
sion schemes, the seven strategy variables were almost
always discarded by the models as insignificant with regard
to the trustor. All of the best performing algorithms (linear
regression, support vector machine [SVM], Gaussian pro-
cess regression [GPR], and ensemble regression) showed

Linear regression model:
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that the interdependence terms better captured the likeli-
hood of trust, both in terms of lowest error rates and fewest
terms. While SVM and GPR prevent us from examining
which variables were most impactful, we can use linear
regression and the tree-based methods (regression tree
and the boosted ensemble) to draw some meaningful
conclusions.

3.3 When to trust

Starting with the dropping of terms, as recommended
by VIF, and then performing stepwise improvement, the
final linear regression model (shown in Figure 4) found
that there was a significant bias toward trusting (0.423)
and that the most important variables were Gottman’s
TI and the trustee’s commitment/cooperation (RCz/BCg).
Both FC terms were of borderline significance (p = 0.057
and 0.050). Marginal improvement in the mean squared
error occurred if FC4 /BC, was dropped (0.0244 to 0.0218),
but there were no gains if FCgy was removed. Since all
variables are normalized, the regression weights can be
compared against each other, indicating that while FCg
may have borderline significance, its effect is an order of
magnitude weaker than the other terms.

The best performer, the least-squares boosted ensemble,
showed similar results to the linear regression analysis,
with the trustee’s commitment/cooperation gains (RCg/BCg)
playing the largest role followed by the TI, as shown in
Figure 5. Note that as long as the trustee seems at least
indifferent tocommitment/cooperation (RCz /BCp > —0.12),
TI is sufficient for indicating whether trust is bestowed.

pr ~1 + nFC_A_BC_A + TI + nRC_B_BC_B + nFC_B

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept) 0.42318 0.082217 5.1471 6.5952e-06
nFC_A_BC_A -0.20955 0.10726 -1.9536 0.057428
TI 0.35616 0.075656 4.7077 2.7343e-05
nRC_B_BC_B 0.45106 0.04027 11.201 3.4146e-14
nFC_B 0.046051 0.022839 2.0164 0.050186

Number of observations: 47, Error degrees of freedom: 42

Root Mean Squared Error: 0.144

R-squared: 0.789, Adjusted R-Squared: 0.768

F-statistic vs. constant model: 39.2, p-value = 1.18e-13

Figure 4: Final tenfold cross-validated and stepwise-improved linear regression for the trustor. nFC_A_BC_A is FC4/BC4, nRC_B_BC_B is

RC4/BCg, nFC_B is FCg, and pr is the probability that trust was given.
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nRC_B_BC_B<-0.119048 /A nRC_B_BC_B>=-0.119048

Tl<0.316667 /

TI>=0.316667

0.46938 0.78273

Figure 5: Boosted ensemble tree for trustor-the two retained vari-
ables are the trustee’s commitment/joint control, RCg/BCg, and
the TI.

Of further interest is that trust is bestowed even if the TI
is below 0.5. In that regime, RC, and FC4 have opposite
signs, indicating that trust is being forced; in the case of
this data set, FC, is always positive, which means that
when TI < 0.5, RC4 must be negative and trust is being
incentivized. Since neither term can be greater than one,
we also see that the trustor’s negative commitment is
no more than 0.37 (RC4 > -0.37), so the trustor’s lack
of commitment in such cases may be understood as bor-
dering on indifference. To summarize, the trustee’s con-
trol over the trustor’s outcome greatly overrides lack of
commitment as long as the incentive to trust/cooperate
is about 2.7 times greater. Furthermore, the trustor is
likely to strongly trust the trustee when their own com-
mitment aligns with that of the trustee’s incentivization/
cooperation. Thus, for the trustee, not only does incor-
porating the interdependence results better predict the
probability of trusting but also it appears that just a small
subset of the interdependence variables alone gives a
more accurate, simpler, and common-sense model of trust,
than the “seven strategies” or models of trust based on
(in)equality or fairness.

3.4 On being trusted

The results for the trustee display a rather different pat-
tern. The various regression methods, including the inter-
dependence variables, generally performed much better
than the baselines [40], especially on the estimation set,
but only carefully optimized equality-reciprocity (ERC),
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Linear regression model:
pb ~ 1 + bl + mm2

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 0.048775 0.026568 1.8359 0.073137
bl 0.84148 0.034138 24.649 2.193e-27
mm2 0.14264 0.03348 4.2604 0.00010583

Number of observations: 47, Error degrees of freedom: 44
Root Mean Squared Error: 0.102

R-squared: 0.946, Adjusted R-Squared: 0.943
F-statistic vs. constant model: 382, p-value = 1.58e-28

Figure 6: Final tenfold cross-validated and stepwise-improved linear
regression for the trustee. bl is the trustee’s SPE and mm2 is the
trustee’s strategy to help the weakest player.

SVM, and GPR algorithms could outperform the subgame
equilibrium during prediction. All methods are domi-
nated by the SPE but the linear regression analysis
(Figure 6) and tree-based methods (Figure 7) revealed
that the next most important variable is mm2, when
the trustee maximizes the payoffs of the weakest player.
The tree-based methods showed that this is especially
important when they are already inclined to fulfill trust
(b1 > 0.75). This may also explain why ERC or Rabin’s
kindness algorithms prove so strong on the estimation
set- equality/fairness is incorporated into the trustworthi-
ness decision but only after narrow self-interest is con-
sidered. While the interdependence parameters are not
invoked in these models, the regression tree (not shown)
does suggest that the trustor’s control over the trustee
(FCg) may play some small role in encouraging coopera-
tion when the SPE tends toward defection.

b1<0.25 A b1>=0.25

b1>=0.75

mm2<0.25

mm2<0.25 2 mm2>=0.25

0.032727

0.9/867

0.90286

Figure 7: Regression tree for the trustee on deciding when to fulfill
trust. bl is the trustee’s SPE and mm2 is the trustee’s choosing to
help the weakest player (kindness).
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3.5 Discussion

Based on these results, it appears that the interdepen-
dence-based models best capture the response of the
trustor compared to all other strategies and methods
from a purely modeling perspective. This result further
validates the theoretical development of the TI in field
experiments [44]. It also lends credence to our commit-
ment model [42]; initially derived from field experiments
[44,45], the commitment model is replicating well in the
lab. We also see some strong support for common-sense
theories that often get less play in the game theory or HRI
trust literature. This is especially true of the unilateral
control each agent has in incentivizing or penalizing
the other (FC), not only as a strategy but also as a
second-order consideration for both players [41].

These second-order beliefs, that is the beliefs the
trustor has of what the trustee believes of them, and vice
versa, have been considered by game theory for many
years, but understandably have garnered less attention
from HRI. Yet it is precisely these “auxiliary” beliefs that
trustors must consider. The trustee reveals them in their
extraneous use of fairness, helping the weaker player/reci-
procating equality when it is already in their best interest
to fulfill trust. Furthermore, the trustor seems to place the
commitment of the trustee before any other considerations
(RCp being the root of their regression tree and the highest
weighted term in the linear regression). This is only furth-
ered by the trustee’s beliefs concerning the power of
the trustee in sanctioning or incentivizing the trustor.

If games had been excluded based on the Temptation
condition, then the role of the TI and the trustee’s kind-
ness would have been completely obscured, as then
RCp < 0 and bl = 0. This scenario would likely be extre-
mely rare in human-machine trust but its further impli-
cations are left to future work.

One weakness of this data set, and game-theoretic
trust in general, as well as much HRI work on trust, is
the assumption that the trustor’s and trustee’s payoffs are
equal if the trustor chooses not to trust in the first place
(Ay = Ay and By = By). From a technical perspective,
this prevents us from determining whether it is RCg or
BCp that matter for the trustor and confounds whether
BC4 does have a significant effect due to its somewhat
synthetic “perfect correlation” with FC,, and thus with
TI. As discussed in ref. [42], in psychological game theory
and interdependence theory, where psychological costs
such as regret and satisfaction are included, these values
are rarely equal. New potential relationships generally
mean regret is more costly (lowering A, ), whereas one-
off interactions with strangers and team projects generally
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value satisfaction with coordination more highly (raising
Ay). Both of these situations lead to BC4 > FCy [42]. In
comparison, one’s overall optimism or brand trust can
increase A,;, and conversely, pessimism can decrease Ay,
such that Ay > Ay. This conclusion is reasonable, as com-
mitment is relative to the specific relationship and would
thus be moderated by one’s overall sense of other potential
trust relationships [42].

An illustrative example further validating these points
can be found in Dunning et al. [2]. That series of experiments
looked at trustor’s risk tolerance, whether they wanted to
trust, felt like they should trust, and the guilt and agitation
they anticipated feeling at not trusting (when the other may
be trustworthy). As in many other studies, they found that
people “over-trusted” based on rationality (SPE) and risk
tolerance alone. In general, the choice to trust was closer
to what people felt like they should do vs what they wanted
to do. This choice was therefore understood to be partially
motivated by anticipated agitation at not trusting, as well as
perceived approval of normative behavior from authority.
From our results, we can understand both of these unilat-
erally as increasing the trustor’s commitment. Familiarity
increased repayment expectations, seemingly through the
improved calibration of the threshold for FC4. Further-
more, they found that when the trustee is seen as making
a thoughtful decision to trust instead of just choosing at
random, they are more likely to be trusted, illustrating the
importance of second-order considerations. However, parti-
cipants also preferred to give others the opportunity to be
trustworthy, which they perceived as a sign of respect for
autonomy. In our experiment, this may point to the small
effect of equality/fairness in amplifying the trustee’s SPE.
Once trustworthiness is called for, it pays to more strongly
signal one’s commitment to fairness/equality as the trustee.
Further, evidence from Dunning et al.’s trials pointed to
trusting above rationality to be predicated on self-perceived
moral norms of fulfilling one’s social duty and to avoid
casting aspersions on another’s character. However, taken
together these last points posit an alternative account
that would suggest a key testable difference in modeling
human-human vs human-robot trust interactions as
norm fulfillment.

4 Experiment 2:
breaking down trust

This experiment looked to rectify the shortcomings of
the previously tested data set by (a) considering trust
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between humans as well as between humans and various
technologies, (b) employing more realistic scenarios, (c)
taking into account various types and quantities of risk,
and (d) breaking the FC4 = BC4 and RCg = BCg assump-
tion of previous game theory and HRI trust research.

4.1 Experimental procedure 2

In this experiment, 34 different scenarios were composed
across 9 different types of risks: physical, psychological,
social, time loss, performance, financial, ethical, privacy,
and security, based on ref. [49]. We assigned each parti-
cipant 8 scenarios, drawn from 2 of the 9 risk types, with
an equal balance of human-machine and human-human
scenarios, leading to a 2 x 2 x 2 within- and between-sub-
jects design. Examples of human—human trust included
taking a friend’s suggested route to avoid traffic, having
a stranger watch luggage briefly, dividing up work with
classmates, and participating in pharmaceutical trials.
Examples of human-machine trust included following
GPS guidance, using a dating app, driving an autonomous
vehicle, taking emergency guidance from a robot during
a fire, and trusting enemy classification from a military
drone.

Each scenario was composed of two elements: a pay-
off table and a scenario written out in prose. Payoffs were
created randomly but some scenarios dictated certain
constraints, beyond those of equation (3), that we coded
for. The general nature of these constraints will be dis-
cussed later. Scenarios were also designed to reflect a
wide range of scales (10°-107). To maintain consistency,
participants only acted as trustors. Given the high level of
convergence in human trustee behavior in Experiment 1
to the SPE, trustee behavior for both human and machine
scenarios was algorithmically determined with some noise
injected.

Sixty participants took part in this experiment (55%
male, 43% female, 2% non-identified), ranging from 18-50+
(85% between 18 and 39), and 78% having at least some
post-secondary education. Before the experiment, partici-
pants underwent training including a practice round to
become familiarized with the layout, expectations, and
most importantly, how to read and understand the payoff
table. Their understanding of gameplay was assessed both
after training and at the end of the experiment. After the
experiment, general feedback was solicited and a number of
insights into carrying out such experiments in the future
were collected. Given our desire that participants under-
stand each task, there was no time limit, and most spent
2-4 min per scenario.
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The experiment was carried out using the Gorilla
Experiment Builder (www.gorilla.sc) to create and host
our experiment [50]. All research performed with human
participants was done in compliance with all relevant
national regulations, institutional policies, and in accor-
dance with the tenets of the Helsinki Declaration, and
was approved by the Georgia Institute of Technology’s
IRB. Participants were recruited through Prolific, and
the data were collected between March 22 and March
23, 2021.

All the same algorithms deployed in Experiment 1
were tested again here, with the exception of GPR which
was replaced with binomial regression. All algorithms
were modified to accommodate Ay # Ay and By # By,
Furthermore, although earlier we had a regression pro-
blem to solve, now with every participant having dif-
ferent payoffs, we approached the experiment as a clas-
sification problem. While this will affect the meaning of
the error rate, the overall patterns of performance and
variable importance should remain clear.

4.2 Results

In this experiment, we only modeled the trustor and not
the trustee. Thus, we did not have to consider the final
three of the “Seven Strategies” from Table 3. VIF was once
again performed, resulting in maxmin, levl, and RC4 being
dropped, keeping the remaining VIFs <3.5). Inequality
Aversion, ERC, CR, and the SPE were all strongly corre-
lated with each other (corr = 0.65-0.83) and exhibit multi-
collinearity, so only the SPE was retained.

The total variance that could be explained by the SPE
alone was 55.6%. Like in Experiment 1, the strategies
from game theory only performed slightly better than
the SPE, at best. The linear and binomial regressions
worked somewhat better than these strategies, reaching
75% accuracy. However, the machine learning classifiers
performed estimation significantly better, all achieving over
85%. These classifiers were tested on the Interdependence
terms and indices as well as a set combining the Seven
Strategies with the Interdependence terms. Once again,
the classifiers all performed as well or better with the
Interdependence terms alone, with the SVM reaching
a maximum of 92% accuracy and the ensemble KNN
100% for estimating the decision to trust based on the
Interdependence terms alone over the whole data set.
The estimations for human—human vs human-machine
were extremely similar across the board, with the more
traditional game-theoretic strategies and regressions per-
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Table 5: Mean squared error for trust and trust fulfillment: All
classifications were run at least initially with all Seven Strategies
and interdependence variables. H—H are human-human trust sce-
narios and H-M are human-machine. The three best performers
along each category are highlighted

Estimation

Method Total H-H H-M
Subgame Perfect 0.446 | 0.396 | 0.489
Equilibrium (SPE)

Inequality Aversion 0.435 | 0.454 | 0.421
(EEF:‘Z';W Reciprocity 0.435 | 0.394 | 0.470
Charness-Rabin (CR) 0.442 | 0.394 | 0.481
Seven Strategies 0.410 | 0.361 | 0.421
Linear Reg. 0.348 | 0.306 | 0.333
Binomial Reg. 0.348 | 0.310 | 0.307
Clas. SVM 0.079 | 0.093 | 0.095
Clas. Tree 0.117 | 0.134 | 0.102
Clas. KNN Ensemble 0 0 0

forming somewhat better for human—human. This pattern
did not replicate for the classifiers using interdepen-
dence-only terms. All of these results are summarized in
Table 5.

We calculated other performance measures, such as
the receiver operating characteristic area-under-the-curve

— 495

An interdependence model of human-robot trust

Table 6: Performance measures: the receiver operating character-
istic’s area-under-the-curve (AUC), the Matthew’s correlation
coefficient (MCC), and the k-fold loss

Method ROC-AUC | MCC | k-Fold Loss
SPE 0.51 0.085 0.446
1A 0.53 0.121 0.492
ERC 0.53 0.111 0.442
CR 0.60 0.093 0.417
Binomial Reg.* 0.70 0.356 0.348
Clas. SVM* 0.66 0.258 0.387
Clas. Tree | 058 | o0.104 0.419
Clas. Tree Ensemble* 0.70 0.293 0.395
Clas. KNN Ensemble | 0.62 [ 0.205 0.379

The * indicates these classifiers were optimized to minimize k-fold
loss using the estimator as a baseline. The three best performers
along each category are highlighted

(ROC-AOC), Mathew’s correlation coefficient (MCC), and
k-fold loss, to assess model fit and ability to predict trust
(Table 6). They indicate the same general pattern of inter-
dependence dominating the more traditional measures;
however, it is clear, though not surprising, that prediction
errors are significantly higher than estimation errors. Most
of the game-theoretic approaches did not do much better
than random chance at prediction (estimated through
k-fold loss), whereas the interdependence approaches
all improved upon that. Surprisingly, binomial regression
edged out the Classification Tree as the third-best performer.
The binomial regression (Figure 9) and SVM were further
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Figure 8: Full classification tree for when the trustor decides to trust from Experiment 2. Pruning was performed during optimization. Leaf
nodes marked with 0’s indicate lack of trust and those with 1’s indicate trust.
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optimized to minimize k-fold loss and the classification tree
was improved upon by leveraging an ensemble learner.

4.3 Discussion
4.3.1 When to trust: Part Il

Once again the interdependence variables were retained
and dominated across the board throughout the machine
learning methods, especially the KNN ensemble and SVM.
As in Experiment 1, the SVM did not allow us to “see
inside” and understand which variables mattered most.
However, we can turn to the classification tree to under-
stand not only the significant variables but also the under-
lying logic (Figure 8). Except for the root, this tree resem-
bles that of Experiment 1, with a slightly negative RCp
ranking above TI. While the split values differ somewhat
they approximate the pattern we saw before. The differ-
ences here are that we have now disentangled FC, and
BC4, as well as RCg and BCg. While before BC4 was sub-
sumed into TI through its forced equivalence to RC,4, now
we can see that BC, is important enough to become the
root of this tree. BCg and FCp also serve as interesting
additions as they were seemingly absent from the tree in
Experiment 1 despite being indicated as playing a role in
the linear regression there.

The power of the classification tree is the explainability
it enables. Working through it, we see that the trustor’s
primary consideration is BC, or what they stand to gain
from cooperation, followed by the trustee’s commitment

Generalized linear regression model:
logit(trust) ~ 1 + BC_B + SPEXRC_B + FC_A%RC_B + RC_B*FC_B + BC_AXTI
Distribution = Binomial

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) -0.92514 0.7972 -1.1605 0.24585
SPE -0.52673 0.44234 -1.1908 0.23374
FC_A -1.5168 0.70698 -2.1454 0.03192
BC_A 2.9979 0.87599 3.4222 0.00062107
RC_B -2.3936 1.2375 -1.9341 0.0531
FC_B -0.23589 0.22535 -1.0468 0.29521
BC_B 0.82598 0.30035 2.7501 0.0059583
TI 3.3946 1.1323 2.9981 0.0027165
SPE:RC_B -2.134 0.80131 -2.6631 0.007742
FC_A:RC_B 4.9535 1.6077 3.081 0.0020627
RC_B:FC_B 1.5508 0.55551 2.7917 0.0052428
BC_A:TI -3.5877 1.5166 -2.3656 0.017999

480 observations, 468 error degrees of freedom
Dispersion: 1
Chi~2-statistic vs. constant model: 59.4, p-value = 1.17e-08

Figure 9: Step-optimized binomial regression. Optimization led to
all non-interdependence variables to be dropped except the SPE.
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(RCp), followed by the TI. This alone gets us to 70% accu-
racy, well above the other methods. Further refinements
also account for FCg and BCg, while the whole tree taking
on a finer and finer grain. FC4 by itself is by far is the least
important variable of the interdependence terms for deter-
mining when the trustor trusts. However, it has a pivotal
role in TI and it is clear that the main roles of FC, (and even
RC,) is through its interaction in TI.

4.3.2 The limits of realism

In this experiment, subjects were presented with a text-
based scenario as well as a payoff table and asked if they
would choose to trust or not, whereas when the first data
set was built and tested only payoff tables were provided
without much grounding in reality. However, a number
of valid concerns arose in our more realistic approach
to trust problems. The amount of time and focus people
placed on the table vs the text was a serious concern as
was the legibility of the table. The first experiment used
participants in a university game theory class who were
used to reading payoff tables, whereas the participants in
the second experiment were drawn from a general pool,
over a wide age range (18-50+) and with varying degrees
of education. After the experiment, participants were
asked to assess their experience. All said that the amount
of training was sufficient, but some felt it was overly
wordy. Others indicated that the table could be con-
fusing, as it simply presented so much information, and
that a redesign would help. We expected this issue and
thought it would lead many to focus on the text-based
scenarios. However, the majority of respondents said that
they focused more on the table, as it provided and sum-
marized key information, especially the more scenarios
they went through. This indicates that a longer training
period may be appropriate.

The need for a longer training period, the split focus
brought by increasing realism, and the shift from a regres-
sion problem to a classification problem all increased noise
in the data. This, in turn, may help shed light on why
the accuracy of all approaches fell significantly between
Experiment 1 and Experiment 2. Even so, the overall pat-
tern of the findings remained the same.

Given the level of understanding we aimed to achieve
and the novelty of the scenario format, no time limit was
instantiated, as mentioned earlier. Thus, while many
types of risk were tested, this experiment did not test trust
under time pressure. Time pressure acts not only as
another category of risk but also that directly impacts
cognitive workload. This is left for future research,
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though whether it can be realistically tested within this
framework is an open challenge.

Another key takeaway from increasing realism revealed
itself when we were designing the scenarios. Some sce-
narios indicated implicit payoff constraints that we had to
account for when generating the payoff matrices. The most
common of these were A,, > Ay (11/34 scenarios), By, > By
(10/34 scenarios), and By; > By, (7/34 scenarios). Generally,
this meant that often in trust interactions, satisfaction for
not trusting the untrustworthy outweighed the regret for not
trusting the trustworthy (as discussed in Section 3.5), that
suspicion hurts potential trustees, and that the Temptation
condition does not always even apply in real life (see
Section 1.3).

A final concern regarding realism is while machine
type was specified to some degree in each scenario
(autonomous vehicle, emergency guidance robot), much
was left to the participants’ imagination including the
extent of anthropomorphism. While this avoided anchoring
bias that showing pictures or more detailed descriptions
may have introduced, it leaves open questions regarding
the influence of design on perceived risk and situation
normality.

5 General discussion

5.1 A declaration of interdependence

Together, our two studies revealed the power of the inter-
dependent approach to understanding what defines trust
games and when trust actually occurs. Game theory
played a crucial role in helping define and refine this
approach. Both interdependence theory and game theory
converged on how they defined what constitutes a trust
game. The requirements of exposure and improvement are
accepted across the board, and interdependence theory
allowed us to understand those requirements more deeply,
as a set of constraints on commitment, cooperation, and
coercion.

However, once it came to how people actually play trust
games, the game theory strategies proved insufficient, espe-
cially once applied to real-life scenarios. It remains clear that
people depart significantly from “rational” gameplay of
the SPE, a fact that both HRI and psychological game theory
have long struggled to explain. Part of the problem may
be in the more narrow definition of a trust game in game
theory, specifically the Temptation condition (By; > Byy).
In fact, in the second experiment, we tested Temptation
explicitly against our other variables and found that it has
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a near-perfect negative correlation (-0.96) with the SPE,
clearly demonstrating that the standard game theory set up
has a deep internal contradiction, requiring Temptation
while hypothesizing the importance of SPE simultaneously.
It is little wonder that “rationally” one should never trust.

Thus, while it is tempting to understand Temptation
at what makes trust games actual “games,” it is crucial
that here we confirmed that it is neither a necessary nor
sufficient condition as such. Once we broke the B,; = By
equality, Temptation could be re-framed as either RCg < 0
or BCp < 0, that is the relative power/lack of commitment
of the trustee or their gains from being competitive. While
trust is harder when RCg < 0 or BCp < 0, it is not impos-
sible, nor do RCg > 0, BCg > O guarantee that trust will be
given or reciprocated. The game is still afoot.

Beyond justifying the dropping of this constraint, the
interdependence approach provides a better explanation
of trust, in terms of both accuracy and parsimony. Crucially,
interdependence allows us to have a conversation about
HRI trust without having to resort to reciprocity, altruism,
and fairness backed by convoluted explanations of anthro-
pomorphism. By using commitment, coercion, and coopera-
tion to explain trust our model allows us to bridge the
divide between human—human and human-machine trust.
Furthermore, this approach couches trust in familiar terms,
those that we use regularly to describe when and why
humans trust.

5.2 Implications for HRI

If trusting is about perceived commitment and coopera-
tive gains as opposed to strict rationality, fairness, equality,
or respect, then very different conclusions may be drawn
regarding trust as it relates to humans vs robots. Robots are
already perceived by humans as being more fair, just, and
even reliable [51,52], though this effect is moderated by
anthropomorphization. Thus, per Experiment 1, robots con-
form nicely to the notion of the rational trustee, following
the SPE, even if they do not have exhibit extra marginal
gains from reciprocity or fairness (mm2). On the other
hand, it then falls to the trustor (or modeler) to capture
how much benefit the robot can bring the trusting human
either unilaterally (FC4) or through cooperation (BC,),
as well as how much they should commit (RC,) to the
interaction or consider alternatives (CL,y). Furthermore,
it appears that the “over-trust” of robots and humans
may really come down to perceived gains, power, and
need. In the motivating example of the human and the
self-driving car, the relative assessments of commitment,
safety (via coercion), and reputation (via cooperation)
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seemed to explain the interaction more effectively than
kindness or fairness.

Several major dimensions of HRI trust can be under-
stood through the lens of interdependence. First and fore-
most, there are close parallels between reflexive, fate, and
bilateral control and the recently proposed and aptly named
autonomy dimensions of Commitment, Specification, and
Control of ref. [30]. More specifically, interdependence can
be seen as another set of insights into the antecedents, cor-
relates, and underlying dimensions of human-robot trust.
Affective trust (often called benevolence), assessing whether
the other agent is competitive or wishes to cooperate (as in
refs [3,18,21]), is foundational to determining whether a trust
game even exists [42] and underlies bilateral control (BC).
Social [3,53] and structural trust [18,20] are keys to deter-
mining levels of commitment (RC) and the norms at play
(e.g., equity or kindness). Familiarity [18,19] helps establish
thresholds and refines calibrations of anticipated payoffs.
While anthropomorphism may shift strategy choice (espe-
cially for trust repair) by triggering psychological norms
[22,54], it is likely to also play a key role in establishing
familiarity and situation normality [18,55,56], and thus
feeds into trust calibration. This effect, however, may be
confounded by the uncanny valley at some limit [52,57].
While more mechanical robots may be seen as fairer and
more efficient, more humanoid ones may be accorded
more respect and forgiveness during trust repair. In the
middle of the “uncanny trust valley,” robots may be
seen as having qualities of both ends, either for better [52]
or for worse [57].

However, if ref. [2] is correct in that humans are moti-
vated to trust via norm fulfillment out of respect, a com-
pletely independent theory of trust would be necessary
for humans vs robot trustees. This possibility is made all
the more interesting for HRI if that respect is predicated
on individual moral autonomy vs a personal autonomy
based on agency [58,59]. On the other hand, previous
work [53,60,61] on trust in social psychology and HRI
has suggested that the underlying dimensions, antece-
dents, and correlates of trust for human-human and HRI
heavily overlap and function in similar ways. Our work
strongly comes out on the side of the latter and leaves
a major testable contention for future work.

Finally, we have primarily focused on the human
being the trustor and the robot being the trustee. The
modeling approach we have taken above, though, further
opens the door to allowing robots to decide whether to
trust the humans with whom they interact. Perhaps, more
importantly, such models would allow robots to be more
self-aware of higher-order self-reflection, being able to
assess the likelihood that they will be trusted by humans
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and whether this trust is well calibrated, an assessment
they can use to give feedback in aiding the human to
calibrate their own trust even further.

6 Conclusion

HRI and game theory have each been slowly working
towards more complete theories, models, and metrics of
trust for the last 35 years. Both have gone beyond cap-
ability and pure rationality and started to incorporate
psychological and social factors. However, these two
fields have yet to fully recognize each other’s potential
for cross-calibration. Interdependence theory, with its
focus on cooperation, control, and commitment, is a key
to bridging this gap. Crucially, this work further validated
previous research on interdependence theory from social
psychology by testing it on a wide range of games and
a large subject pool. These variables, especially as they
relate to trusting, are shown to be powerfully predictive
and are equally amenable to being integrated with pre-
vious game-theoretic trust work, as well as expand on an
emerging holistic approach to trust in HRI and beyond.
Interdependence-based approaches, unlike previous game
theory strategies for assessing trust, are equally under-
standable for human and non-human agents and imply
a strong general neuro-psychological model of trust,
furthering our goal of illustrating a more complete theory
of interactional trust for humans and automation.

Conflict of interest: The authors state no conflict of
interest.

Data availability statement: The data that support the
findings of this study are available from the corresponding
author, YSR, upon reasonable request.

References

[1] M. Bacharach, G. Guerra, and D. ). Zizzo, “The self-fulfilling
property of trust: An experimental study,” Theory Decision,
vol. 63, no. 4, pp. 349-388, 2007, DOI: https://doi.org/
10.1007/511238-007-9043-5.

[2] D. Dunning, ). E. Anderson, T. Schlosser, D. Ehlebracht, and
D. Fetchenhauer, “Trust at zero acquaintance: More a matter
of respect than expectation of reward,” J. Pers. Soc. Psychol.,
vol. 107, no. 1, pp. 122-141, 2014, DOI: https://doi.org/
10.1037/a0036673.


https://doi.org/10.1007/s11238-007-9043-5
https://doi.org/10.1007/s11238-007-9043-5
https://doi.org/10.1037/a0036673
https://doi.org/10.1037/a0036673

DE GRUYTER

(3]

(4]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(21]

K. Schaefer, “The perception and measurement of human-
robot trust,” Ph.D. dissertation, University of Central

Florida, 2013.

M. Madsen and S. Gregor, “Measuring human-computer trust,
in Proceedings of 11th Australasian Conference on Information
Systems, 2000, pp. 6-8.

G. Harrison and ). List, “Field experiments,” J. Econ. Lit.,

vol. 42, no. 4, pp. 1009-1055, 2004, DOI: https://doi.org/
10.1257/0022051043004577.

M. Deutsch, “Trust and suspicion,” J. Conflict Resolut., vol. 2,
no. 4, pp. 265-279, 1958.

M. Deutsch, “The effect of motivational orientation upon
trust and suspicion,” Human Relat., vol. 13, no. 2,

pp. 123-139, 1960.

M. Deutsch, The Resolution of Conflict: Constructive and
Destructive Processes, New Haven, USA: Yale University
Press, 1977.

J. Rotter, “A new scale for the measurement of interpersonal
trust,” J. Pers., vol. 35, no. 4, pp. 651-655, 1967.

J. Rotter, “Interpersonal trust, trustworthiness, and gullibi-
lity,” Amer. Psychol., vol. 35, no. 1, pp. 1-7, 1980,

DOI: https://doi.org/10.1037/0003-066X.35.1.1.

J. Rempel, J. Holmes, and M. Zanna, “Trust in close relation-
ships scale,” J. Pers. Soc. Psych., vol. 49, no. 1,

pp. 95-112, 1985.

N. Luhmann, Trust and Power, Chichester, UK: John Wiley &
Sons, 1979.

B. Barber, The Logic and Limits of Trust, New Brunswick, NJ:
Rutgers University Press, 1983.

J. Jalava, “From norms to trust: The luhmannian connections
between trust and system,” Europ. J. Soc. Theory, vol. 6, no. 2,
pp. 173-190, 2003, DOI: https://doi.org/10.1177/
1368431003006002002.

B. M. Muir, “Trust between humans and machines, and the
design of decision aids, /nt. J. Man—Machine Stud., vol. 27,
no. 5-6. pp. 527-539, 1987, DOI: https://doi.org/10.1016/
S0020-7373(87)80013-5.

J. D. Lee and N. Moray, “Trust, self-confidence, and operators’
adaptation to automation,” Int. J. Human—-Computer Stud.,
vol. 40, pp. 153-184, 1994, DOI: https://doi.org/10.1006/ijhc.
1994.1007.

R. C. Mayer, J. H. Davis, and D. F. Schoorman, “An integrative
model of organizational trust,” Acad. Manag. Rev., vol. 20,
no. 3, pp. 709-734, 1995, DOI: https://doi.org/10.2307/
258792.

D. Gefen, E. Karahanna, and D. W. Straub, “Trust and TAM in
online shopping: An integrated model,” MIS Quarter., vol. 27,
no. 1, pp. 51-90, 2003, DOI: https://doi.org/10.2307/
30036519.

M. Korber, “Theoretical considerations and development of

a questionnaire to measure trust in automation,” in
Proceedings of the 20th Congress of the International
Ergonomics Association (IEA 2018), Vol. VI, 2018, pp. 13-30.
D. H. McKnight, M. Carter, ). B. Thatcher, and P. F. Clay, “Trust
in a specific technology: An investigation of its components
and measures,” ACM Trans. Manag. Inform. Syst. (TMIS),
vol. 2, no. 2, pp. 1-25, 2011, DOI: https://doi.org/10.1145/
1985347.1985353.

S. Chien, M. Lewis, Z. Semnani-Azad, and K. Sycara, “An
empirical model of cultural factors on trust in automation,”

An interdependence model of human-robot trust

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

— 499

Proc. Human Factors Ergonom. Soc., vol. 58, no. 1,

pp. 859-863, 2014, DOI: https://doi.org/10.1177/
1541931214581181.

K. A. Hoff and M. Bashir, “Trust in automation: Integrating
empirical evidence on factors that influence trust,” Human
Factors, vol. 57, no. 3, pp. 407-434, 2015, DOI: https://doi.
0rg/10.1177/0018720814547570.

C. Castelfranchi and R. Falcone, Trust Theory: A Socio-
Cognitive and Computational Model, Chichester, UK:

John Wiley & Sons, 2010.

J. D. Lee and K. A. See, “Trust in automation: designing for
appropriate reliance,” Human Factors, vol. 46, no. 1,

pp. 50-80, 2004, DOI: https://doi.org/10.1518/hfes.46.1.50.
30392.

T. Law and M. Scheutz, “Trust: Recent concepts and evalua-
tions in human-robot interaction,” in Trust in Human-Robot
Interaction, C. S. Nam and ). B. Lyons (Eds.), London: Academic
Press/Elsevier, 2020, pp. 27-57, DOI: https://doi.org/10.
1016/B978-0-12-819472-0.00002-2.

B. F. Malle and D. Ullman, “A multi-dimensional conception
and measure of human-robot trust,” in Trust in Human—Robot
Interaction, C. S. Nam and ). B. Lyons (Eds.), London: Academic
Press/Elsevier, 2020, pp. 3-25, DOI: https://doi.org/10.1016/
B978-0-12-819472-0.00001-0.

Y. S. Razin and K. M. Feigh, “Hitting the road: Exploring human-
robot trust for self-driving vehicles,” in 2020 IEEE International
Conference on Human-Machine Systems (ICHMS), Rome: IEEE,
2020, pp. 1-6, DOI: https://doi.org/10.1109/ICHMS49158.
2020.9209525.

M. Salem, G. Lakatos, F. Amirabdollahian, and K. Dautenhahn,
“Towards safe and trustworthy social robots: ethical chal-
lenges and practical issues, in International Conference on
Social Robotics, Paris: Springer, 2015, pp. 584-593.

M. Salem, G. Lakatos, F. Amirabdollahian, and K. Dautenhahn,
“Would you trust a (faulty) robot? effects of error, task type
and personality on human-robot cooperation and trust,” in
2015 10th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), IEEE, 2015, pp. 1-8.

D. J. Atkinson, W. J. Clancey, and M. H. Clark, “Shared aware-
ness, autonomy and trust in human-robot teamwork,” in 2014
AAAI Fall Symposium Series, 2014.

J. Meyer, R. Wiczorek, and T. Giinzler, “Measures of reliance
and compliance in aided visual scanning,” Human Factors,
vol. 56, no. 5, pp. 840-849, 2014, DOI: https://doi.org/10.
1177/0018720813512865.

R. Parasuraman and D. H. Manzey, “Complacency and bias in
human use of automation: An attentional integration,” Human
Factors, vol. 52, no. 3, pp. 381-410, 2010, DOI: https://doi.
0rg/10.1177/0018720810376055.

J. W. Thibaut and H. H. Kelley, The Social Psychology of Groups,
New York: John Wiley & Sons, 1959.

A. R. Wagner, The Role of Trust and Relationships in
Human-Robot Social Interaction, Ph.D. dissertation, Atlanta,
GA, USA: Georgia Institute of Technology, 2009.

P. Robinette, Developing Robots that Impact Human—Robot
Trust in Emergency Evacuations, Ph.D. Dissertation, Atlanta,
GA, USA: Georgia Institute of Technology, 2015.

P. A. M. Van Lange and C. E. Rusbult, “Interdependence
theory,” P. A. M. Van Lange, A. W. Kruglanski, and E. T. Higgins
(Eds.), Handbook of Theories of Social Psychology, 2012,


https://doi.org/10.1257/0022051043004577
https://doi.org/10.1257/0022051043004577
https://doi.org/10.1037/0003-066X.35.1.1
https://doi.org/10.1177/1368431003006002002
https://doi.org/10.1177/1368431003006002002
https://doi.org/10.1016/S0020-7373(87)80013-5
https://doi.org/10.1016/S0020-7373(87)80013-5
https://doi.org/10.1006/ijhc.1994.1007
https://doi.org/10.1006/ijhc.1994.1007
https://doi.org/10.2307/258792
https://doi.org/10.2307/258792
https://doi.org/10.2307/30036519
https://doi.org/10.2307/30036519
https://doi.org/10.1145/1985347.1985353
https://doi.org/10.1145/1985347.1985353
https://doi.org/10.1177/1541931214581181
https://doi.org/10.1177/1541931214581181
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1518/hfes.46.1.50.30392
https://doi.org/10.1518/hfes.46.1.50.30392
https://doi.org/10.1016/B978-0-12-819472-0.00002-2
https://doi.org/10.1016/B978-0-12-819472-0.00002-2
https://doi.org/10.1016/B978-0-12-819472-0.00001-0
https://doi.org/10.1016/B978-0-12-819472-0.00001-0
https://doi.org/10.1109/ICHMS49158.2020.9209525
https://doi.org/10.1109/ICHMS49158.2020.9209525
https://doi.org/10.1177/0018720813512865
https://doi.org/10.1177/0018720813512865
https://doi.org/10.1177/0018720810376055
https://doi.org/10.1177/0018720810376055

500

(37]

(38]

W
2

[40]

(41]

[42]

(43]

[44]

[46]

(47]

[50]

—— Yosef S. Razin and Karen M. Feigh

pp. 251-272, DOI: https://doi.org/10.4135/
9781446249222.n39.

). Geanakoplos, D. Pearce, and E. Stacchetti, “Psychological
games and sequential rationality,” Games Econom. Behav.,
vol. 1, no. 1, pp. 60-79, 1989, DOI: https://doi.org/10.1016/
0899-8256(89)90005-5.

J. Ermisch and D. Gambetta, “People’s trust: The design of

a survey-based experiment,” in ISER Working Paper Series,
no. 2006-34. University of Essex, Institute for Social and
Economic Research (ISER), Colchester, 2006. https://www.
econstor.eu/bitstream/10419/91938/1/2006-34.pdf.

D. Balliet and P. A. Van Lange, “Trust, conflict, and coopera-
tion: A meta-analysis,” Psych. Bulletin, vol. 139, no. 5,

pp. 1090-1112, 2013, DOI: https://doi.org/10.1037/
a0030939.

E. Ert, I. Erev, and A. E. Roth, “A choice prediction competition
for social preferences in simple extensive form games:

An introduction,” Games, vol. 2, no. 3, pp. 257-276, 2011,
DOI: https://doi.org/10.3390/g2030257.

P. Battigalli and M. Dufwenberg, “Dynamic psychological
games,” J. Econ. Theory, vol. 144, no. 1, pp. 1-35, 2009,

DOI: https://doi.org/10.1016/j.jet.2008.01.004.

Y. Razin and K. Feigh, “Toward interactional trust for humans
and automation: Extending interdependence,” in 2019 IEEE
SmartWorld: Advanced Trusted Computing, 2019,

pp. 1348-1355, DOI: https://doi.org/10.1109/SmartWorld-
UIC-ATC-SCALCOM-10P-SCI.2019.00247.

J. F. Nash, “Equilibrium points in n-person games,” Proc. Nat.
Acad. Sci., vol. 36, no. 1, pp. 48-49, 1950.

J. M. Gottman, The Science of Trust: Emotional Attunement for
Couples, New York: W.W. Norton & Company, 2011.

C. E. Rusbult and B. P. Buunk, “Commitment processes in
close relationships: an interdependence analysis,” /. Soc.
Pers. Relationships, vol. 10, no. 2, pp. 175-204, 1993,

DOI: ttps://doi.org/10.1177/026540759301000202.

H. H. Kelley and ). W. Thibaut, Interpersonal Relations: A Theory
of Interdependence, New York, NY: John Wiley & Sons, 1978.
G. E. Bolton and A. Ockenfels, “ERC: A theory of equity, reci-
procity, and competition,” Am. Econ. Rev., vol. 90, no. 1,

pp. 166-193, 2000.

M. Rabin, “Incorporating fairness into game theory and eco-
nomics,” Am. Econom. Rev., Vol. LXXXIII, pp. 1281-1302, 1993.
R. E. Stuck, “Perceived relational risk and perceived situational
risk: Scale development, Ph.D. Dissertation, Atlanta, GA, USA:
Georgia Institute of Technology, 2020.

A. L. Anwyl-Irvine, ). Massonnié, A. Flitton, N. Kirkham, and J. K.
Evershed, “Gorilla in our midst: An online behavioral

(51]

(52]

(53

(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

DE GRUYTER

experiment builder,” Behav. Res. Meth., vol. 52, no. 1,

pp. 388-407, 2020, DOI: https://doi.org/10.1101/438242.

E. de Visser, S. Monfort, R. Mckendrick, M. Smith, P. Mcknight,
et al., “Almost human: Anthropomorphism increases trust
resilience in cognitive agents,” J. Exp. Psych. Appl., vol. 22,
pp. 331-349, 2016, DOI: https://doi.org/10.1037/
Xxap0000092.

R. Hauslschmid, M. von Buelow, B. Pfleging, and A. Butz,
“Supporting trust in autonomous driving,” in Proceedings of
the 22nd International Conference on Intelligent User
Interfaces, 2017, pp. 319-329.

J.-Y. Jian, A. M. Bisantz, and C. G. Drury, “Foundations for an
empirically determined scale of trust in automated systems,”
Int. J. Cog. Ergonom., vol. 4, no. 1, pp. 53-71, 2000,

DOI: https://doi.org/10.1207/5153275661)CE0401_04.

C. Nass, Y. Moon, and P. Carney, “Are people polite to com-
puters? Responses to computer-based interviewing systems,”
J. Appl. Soc. Psych., vol. 29, no. 5, pp. 1093-1109, 1999,

DOI: https://doi.org/10.1111/j.1559-1816.1999.th00142.x.

N. Epley, A. Waytz, and ). T. Cacioppo, “On seeing human:

A three-factor theory of anthropomorphism,” Psych. Rev.,
vol. 114, no. 4, pp. 864-886, 2007, DOI: https://doi.org/10.
1037/0033-295x.114.4.864.

S. Park, “Multifaceted trust in tourism service robots,” Annals
Tourism Res., vol. 81, art. 102888, 2020,

DOI: ttps://doi.org/10.1016/j.annals.2020.102888.

C. B. Nordheim, Trust in Chatbots for Customer Service-find-
ings from a Questionnaire Study, Master’s Thesis, Oslo,
Norway: University of Oslo, 2018.

J. Zhu, Intentional Systems and the Atrtificial Intelligence (Al)
Hermeneutic Network: Agency and Intentionality in Expressive
Computational Systems, Ph.D. dissertation, Atlanta, GA, USA:
Georgia Institute of Technology, 2009.

F. Alaieri and A. Vellino, “Ethical decision making in robots:
Autonomy, trust and responsibility,” in International
Conference on Social Robotics, Kansas City: Springer, 2016,
pp. 159-168, DOI: https://doi.org/10.1007/978-3-319-47437-
3_16.

J. B. Lyons and C. K. Stokes, “Human-human reliance in the
context of automation,” Human Factors, vol. 54, no. 1,

pp. 112-121, 2012, DOI: https://doi.org/10.1177/
0018720811427034.

F. M. Verberne, ). Ham, and C. ). Midden, “Trust in smart sys-
tems: Sharing driving goals and giving information to increase
trustworthiness and acceptability of smart systems in cars,”
Human Factors, vol. 54, no. 5, pp. 799-810, 2012,

DOI: https://doi.org/10.1177/0018720812443825.


https://doi.org/10.4135/9781446249222.n39
https://doi.org/10.4135/9781446249222.n39
https://doi.org/10.1016/0899-8256(89)90005-5
https://doi.org/10.1016/0899-8256(89)90005-5
https://www.econstor.eu/bitstream/10419/91938/1/2006-34.pdf
https://www.econstor.eu/bitstream/10419/91938/1/2006-34.pdf
https://doi.org/10.1037/a0030939
https://doi.org/10.1037/a0030939
https://doi.org/10.3390/g2030257
https://doi.org/10.1016/j.jet.2008.01.004
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00247
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00247
ttps://doi.org/10.1177/026540759301000202
https://doi.org/10.1101/438242
https://doi.org/10.1037/xap0000092
https://doi.org/10.1037/xap0000092
https://doi.org/10.1207/S15327566IJCE0401_04
https://doi.org/10.1111/j.1559-1816.1999.tb00142.x
https://doi.org/10.1037/0033-295x.114.4.864
https://doi.org/10.1037/0033-295x.114.4.864
ttps://doi.org/10.1016/j.annals.2020.102888
https://doi.org/10.1007/978-3-319-47437-3_16
https://doi.org/10.1007/978-3-319-47437-3_16
https://doi.org/10.1177/0018720811427034
https://doi.org/10.1177/0018720811427034
https://doi.org/10.1177/0018720812443825

DE GRUYTER

Appendix

A.1 Glossary of terms

Ap Trustor’s payoff for successfully placed trust

A, Trustor’s payoff (cost) if betrayed

A,y Trustor’s payoff (cost) for not trusting and regret

A,  Trustor’s payoff if they do not trust an untrust-
worthy player

By Trustee’s payoff for successfully returned
trustworthiness

By,  Trustee’s payoff if they betray the trustor

B,y  Trustee’s payoff (cost) if they are not trusted
when they are trustworthy

By, Trustee’s payoff (cost) if they are not trusted
when they are not trustworthy

RC  Reflexive control: How much unilateral power
each actor has over their own outcomes

FC Fate/Partner control: How much unilateral power
each actor has over the other player’s outcomes

BC  Bilateral control: How much one actor’s choice
further facilitates or inhibits the other’s out-
comes, i.e. the cooperative gain

T8 Probability of the trustee acting trustworthy

TI Gottman’s TI

CL,: Comparison level for the alternative

SPE Sub-perfect equilibrium

A.2 Derivations of interdependent trust
conditions

Theorem 1. If Improvement and Exposure are true
(equations (2) and (4)), BC4 > O.

Given Au > A21 and Azz > AlZ

Ay > Ay NAyp > Ap

Ay + Ap > Ay + Ap
A+ Ay — Ay - Ap >0
n BCA >0

Theorem 2. If Improvement and Exposure are true, FCy > 0.

Given A11 > Azz and A21 > A12

Ap > Ap N Ay > Ap

Ay + Ay > Ap + Ap

Ap + Ay —Ap -Ap >0
" FCA >0
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Theorem 3. If Improvement and Exposure are true,
FCy = |RCy|.

Given Az] > A12

An> Ap
24y > 24
An = Ap>Ap - Ay
Ay —Ap + A - Ap > Ap — Ap + A - Ay
2FCy > 2RCy
. FCy>R(Cy

An > Ap
2A1 > 2A»
Ay - Ap>-Ay + Ap
Ay - Ap + Ay — Ap>-Apy + Ap + Ay - Ap
2FCA > —ZRCA
. FCy>-RCy

An > Ap
24 > 245
Ay —Ap > -Ap + Ay
FC4 > RC4 N FCq > —RCy
FCA > IRCAI

Theorem 4. If Improvement and Exposure are true,
BC4 > |RCyl.

Given Az] > A12

Ap > Ap
245 > 241,
Ap —Ap> Ap - Ap
Ap —Ap + Ay — An> Ap - Ap + An - Ax
ZBCA > ZRCA
" BCA > RCA

Ay > Ay
2A1 > 2Ay
Ay — An>-An + An
An — Ay + Ay — Ap>-An + An + Ap — Ap
ZBCA > —ZRCA
" BCA > —RCA

BC4 > RCy N BCy > —RCy
“ BCA > IRCAI

A.3 Derivations of trust measures

Theorem 1. The Nash equilibrium can be expressed in Inter-

1 RC
dependence terms as g = -~ — -2
2 7 2By
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Given BCy = 0.5(A;; + Ap — Ap — An) and RC4 = Theorem 2. Gottman’s TI can be expressed in Interde-

0.5(Au + A — Ap — Ap). pendence terms as TI = % - %.
_ Ap - Ap
TB =
All + A22 - A12 - A21 Given FCA = 0.5(A11 + A21 - A12 - Azz) and RCA =
_Ayn - Ap 0.5(A1 + Ap - Ap - Ap).
2BC,
Ay - Ap
Ay -4y 2 TI=
S Ay + Ay - Ap - Ap
2BCy 2
_Ap - Ay
- 24Ap — 2An T IFC
4BC, 4
Ay -Ay 2
:Au—A11+A21—A21+2A22—2A12 —TXE
4BC, 4
24y - 24n
_ (An + Ap — Ap — Ay) — (An + Ap — Ap — Ap) = 4FC,
4BC
A _Ap —Ap + Ay — Ay + Ay + Ay - Ap - Ap
2BC4 — 2RCy =
= T 4FCA
. R CA _(An + Ay - Ap - Ap) + (Au + Ap — Ap - An)
S B=5 7 e 4FC,
A _ ZFCA + ZRCA
4FCy
TI — l + &

2 2FCy
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