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Abstract: Artificial agents can uplift the living standards
of domestic population considerably. One hindrance for
this is that the robot is less competent to perceive com-
plex human behaviors. With such perceptive skills in the
robot, nonexpert users will find it easier to cope with their
robot companion with less and less instructions to follow.
Perception of the internal state of a user or “user situa-
tion” before interaction is crucial in this regard. There are
a variety of factors that affect this user situation. Out of
these, posture becomes prominent in displaying the emo-
tional state of a person. This article presents a novel
approach to identify diverse human postures often encoun-
tered in domestic environments and how a robot could
assess its user’s emotional state of mind before an interac-
tion based on postures. Therefore, the robot evaluates
posture and the overall postural behavior of its user through-
out the period of observation before initiating an inter-
action with its user. Aforementioned user evaluation is non-
verbal and decisions are made through observation as well.
We introduced a variable called “valence” to measure how
“relaxed” or “stressed” a user is, in a certain encounter.
The robot decides upon an appropriate approach behavior
accordingly. Furthermore, the proposed concept was cap-
able of recognizing both arm and body postures and both
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postural behaviors over time. This leads to an interaction
initiated by robot itself in a favorable situation so that the
scenario looks more intelligent. Hence more humanlike.
The system has been implemented, and experiments have
been conducted on an assistive robot placed in an artifi-
cially created domestic environment. Results of the experi-
ments have been used to validate the proposed concept and
critical observations are discussed.

Keywords: body language, posture recognition, postural
behavior, human-robot interaction, social robots

1 Introduction

Service robots play an interesting co-operative role in
making human lifestyle comfortable and efficient. As
in many of the today’s applications, service robots are
used in interaction scenarios that are often encountered
in social environments in addition to service tasks. Con-
versations and small talk with the robot companion when
the user is in relaxing situations can be stated as examples in
this regard [1,2]. Therefore, the capability of service robots
toward collaborative interaction other than performing
a specialized task is a pleasing factor for its human user.
Therefore, in addition to supporting daily tasks such as
cooking, cleaning, and therapy [3-5], the robot is expected to
help maintain a healthy mental condition in user by accom-
panying when the user seeks association nonverbally.
In order to achieve a socially intelligent behavior, robots
must be capable of perceiving user situation. It becomes
humanlike if the robot could perceive nonverbal behaviors
of users. User situation depends highly on the activity he is
engaged in. As a user’s posture varies in accordance with his/
her current activity, posture could be analyzed as the foun-
dation. This is due to the fact that almost all the human
postures change when the current task of that particular
human changes. As a result, posture is task dependent and
at the same time emotion dependent [6].

Identification of arm and body postures is widely
used for applications where human activity recognition
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is required [7]. This has a wide range of applications other
than service applications in domestic environments, such
as surveillance [8], ergonomics, and behavior monitoring
of workers [9]. In addition, body language plays an impor-
tant role in displaying one’s inner state of mind to the
outside world, without the help of words. Posture recogni-
tion considering body movements has become a challen-
ging and exhaustive objective for computer vision. This
becomes even harder when humans use awkward postures
during an activity. Most existing methods of posture evalua-
tion use complex mechanisms or are based on a lengthy
stream of data that require computer intensive preproces-
sing. Due to this reason, deploying such methods becomes
difficult when a quick assessment of a scenario has to be
made. Existing real-time methods lack recognition accuracy
when intermediate postures and postures with high self-
occlusion are considered. Hence, these systems are difficult
to be used for occasions where decision making on robot-
initiated interaction initiation was necessary.

Because of the above reasons, simple methods for pos-
ture recognition and effective initiation of interaction are
emerging requirements at present. As an effort toward this,
we present an approach based on body geometry for arm
and body posture recognition, which was then used to deter-
mine the user situation. Finally, appropriate behaviors such
as approach behavior and verbal responses from a robot
were generated for a robot-initiated human-robot inter-
action (HRI).

2 Related work
2.1 Recognition of body posture

Modern approaches for posture recognition often involve
video stream analysis or tracking of body joint locations.
Most of the literature focuses on motion capture of body
parts during posture recognition. The other methods involve
pose estimation using depth images. Recognition of postures
through depth video streaming has also received recent
attention. But such methods require a lot of pre-processing.
Thus, this has become a problem to overcome in real time
posture recognition applications.

In ref. [10], authors presented an approach using top
view image of the human in order to avoid self-occlusion.
Postures with similar top view, but slightly deviated from
each other in the arrangement of body joints, are difficult
to be identified in this manner. Furthermore, a top view
camera is inapplicable for a moving robot in a domestic
environment. Cucchiara et al. [11] used posture classification
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with the help of multiple cameras based on projection his-
tograms implemented using Hidden Markov Model (HMM).
Postures that are slightly deviated from each other but fall
under a common major posture group (e.g., standing
straight, standing while torso bent forward, standing while
leaning to a wall, etc.) are difficult to be differentiated
during this approach.

Pisharady and Saerbeck [12] have implemented a pos-
ture recognition algorithm based on geometric features
of the body. In some postures, independent position of
body parts as seen by a coordinate frame outside the
body is required to identify a posture with a satisfactory
accuracy. Buccolieri et al. [13] have used a recognition
technique with active contours for moving action detec-
tion with HMM in fall detection. This requires intersection
of inputs from all the cameras. Both the methods men-
tioned above require a large number of features for accu-
rate functioning. A similar approach is explained in ref.
[14], and this method analyzes an ellipse drawn around
the human shape. Deviations in the ellipse are used to
identify a certain posture. Identification of intermediate
postures with similar geometry in the human shape is
difficult with these systems. Visual surveillance of shapes
is also a projection of this concept [15]. However, optimal
matching of a silhouette will meet some difficulties when
complex postures are considered. In such occasions, simi-
larities between shapes will sometimes be misleading.
A comparison of conventional 2D approach and modern
3D models for posture recognition has been presented in
ref. [8]. The 2D model depends on the camera point of
view. This gives erroneous results when the camera is in
motion. Similar methods which use 3D models recognize
only standard postures with high accuracy. Therefore,
additional measurements have to be taken to identify inter-
mediate postures accurately.

In summary, there are several body postures that cannot
be recognized with a satisfactory accuracy. Hence, a require-
ment of approaches, which are able to recognize a higher
number of postures, emerges.

2.2 Recognition of arm posture

We use gestures frequently to communicate nonverbally
or enhance what is communicated verbally [16]. More-
over, human gestures can be considered a resemblance
of actions where most of the gestures in nonhuman pri-
mates lack the representational elements to perceive ges-
tures [17]. Perceiving a gesture is important in exploring
emotional aspects in an encounter as well as a physical
activity of an individual [18].
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Most of the existing literature to determine the hand
pose related to fingers and griping as in refs [19-21] was
unable to identify the overall arrangement of the hand
including upper and forearms. A hand posture recognition
system which used discrete Adaboost learning algorithm
with Lowe’s scale invariant feature transform (SIFT) fea-
tures has been proposed in ref. [22]. Here, the authors have
taken an effort to reduce the issues posed by background
noise in existing approaches.

In ref. [23], an effort was taken to anticipate future
activities of a human to generate reactive responses from
a robot. Spatio-temporal behavior of selected subjects
has been observed by a robot over time to anticipate
future trends in human and object behavior. Each pos-
sible tendency has been predicted using an anticipatory
temporal conditional random field (ATCRF) which simu-
lated rich spatial-temporal relations through object affor-
dances. Similar approaches can be utilized to identify
spatial behavior of certain body parts such as hands
which form gestures.

According to the literature, color cues contribute
mostly to recognize hand pose. But the spatial orientation
of limbs seems to be helpful in determining the overall
body language of hands. This fact was suggested by
ref. [24]. The study conducted in ref. [25] is an example
for the effectiveness of perceiving nonverbal behaviors
over voice during human-robot encounters in hospitals.
In the work explained in ref. [26], the robot understands
the meaning of human upper body gestures and expresses
itself by using a combination of body movements, facial
expressions, and verbal language. Twelve upper body ges-
tures including four gestures with the association of objects
have been considered here. One drawback of the approach
is the deployment of wearable sensors to recognize ges-
tures and people in domestic environment will not prefer
being disturbed by this equipment for a long time. But here,
the robot’s reaction toward a user was generated based on
the emotions associated with the upper body gestures of
its user. A robot teacher which could perceive affect of stu-
dents and evaluate how that influences the engagement
in a classroom is presented in ref. [27]. Affect was mostly
deduced from four different facial expressions: “confused,”
“distracted,” “engaged,” and “thinking,” and each expres-
sion was assigned with a positive/negative/neutral mood.
This was combined with behavior recognition as well.
For instance, bodily gestures such as “lower head,” “raise
hand,” “sit still,” and “support chin” have been utilized to
“map” people. People were mapped for their overall “state”
of affect to be “confused,” “distracted,” “engaged,” and
“thinking” in the end. This approach testifies to the fact
that gestures contribute considerably to the internal state
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of a person, although a limited number of gestures have
been considered for the study. Furthermore, this work is an
example where a combination of cues interprets emotional
state of people better than a single cue alone.

Most of the gestures involving hands were detected
with a considerable accuracy using body worn sensors as
in ref. [28]. But humans prefer other methods as they will
find it cumbersome to wear sensors in daily encounters.
In ref. [29], authors used HAAR-like features which associate
digital image features similar to Haar wavelets. This method
requires a relatively smaller set of training data compared
to other similar methods. Even so, context-free grammar
is required to reach a high level of accuracy to analyze the
syntactic structure. Most of the probabilistic approaches
have shown proven accuracy in gesture recognition [30].
But these involve complex algorithms which slow down the
decisioning process which has to be made in real time, con-
suming more computational power. The spatial behavior of
joints in the human hand has been monitored over time to
identify friendly gestures in ref. [31]. However, this method
requires monitoring several body joints for a minimum dura-
tion of time to confirm a gesture. Hence, much simpler
mechanisms to recognize arm posture for socially interactive
applications are required for present robotic systems.

Still there are several arm postures that could not be
recognized with a satisfactory accuracy. Hence, a require-
ment of approaches that are able to recognize a higher
number of arm postures emerges.

2.3 Nonverbal interaction initiation

An assistive robot is expected to possess intelligence to
determine when to interact with the user and when not
to. This natural human-like behavior enhances the rela-
tionship between robot and its nonexpert user. Therefore,
the robot must replicate complex human behavior in deci-
sion making [32]. However, the focus of these approaches
is to maintain the interaction by analyzing user feedback
rather than initiating the interaction. Furthermore, pos-
tures are beneficial for a robot in assessing interaction
demanding of a user prior to a conversation. Even so pos-
tures are excluded as a factor to determine user situation
in most approaches.

Work explained in ref. [33] states an affect recognition
technique based on body language and vocal intonation.
This approach has been used to interpret human affective
cues and respond appropriately via display of their own
emotional behavior. But it conducts diet and fitness coun-
seling during HRI, not an HRI scenario in general. Somehow
this can be considered a mechanism where the robot could
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accurately guess the emotions associated with a situation.
Mechanisms used in refs. [34,35] have evaluated emotions,
gestures, pose, and movements of the human in his envir-
onment while interaction to measure interactive behavior.
In ref. [36], nonverbal user engagement has been measured
using initiator and responder gaze times, face orientation
and feedback times for the two speakers. Bodily posture
which is a critical parameter before and during an interac-
tion is omitted in this method. In ref. [37], user’s pose and
movements have been taken into account before interaction
initiation. But this system lacks any input about the changes
in user’s attention toward robot’s presence. Therefore, there
is an emerging requirement for modern cognitive systems to
perceive human situation prior to an interaction. In addition,
although torso and lower body are good displays of internal
state of humans, literature related to the assessment of these
are scarce. Analysis of arm and body postures can be an ex-
cellent mediator to analyze human state in designing
cognitive social robots.

The study conducted in ref. [25] is an example for the
effectiveness of perceiving nonverbal behaviors over voice
during human-robot encounters in hospitals. In the work
explained in ref. [26], the robot understands the meaning
of human upper body gestures and expresses itself by
using a combination of body movements, facial expres-
sions, and verbal language. Twelve upper body gestures
including four gestures with the association of objects
have been considered here. One drawback of the approach
is the deployment of wearable sensors to recognize ges-
tures and people in domestic environment will not prefer
being disturbed by this equipment for a long time. But
here, the robot’s reactions toward a user was generated
based on the emotions associated with the upper body
gestures of its user. A robot teacher which could perceive
students’ affect and evaluate how it affects the engage-
ment in a classroom is presented in ref. [27]. Affect was
mostly deduced from four different facial expressions: “con-
fused,” “distracted,” “engaged,” and “thinking,” and each
expression was assigned with a positive/negative/neutral
mood. This was combined with behavior recognition as
well. For instance, bodily gestures such as “lower head,”
“raise hand,” “sit still,” and “support chin” have been uti-
lized to “map” people. People were mapped for their overall
“state” of affect to be “confused,” “distracted,” “engaged,”
and “thinking” in the end. This approach testifies to the fact
that gestures contribute considerably to the internal state
of a person, although a limited number of gestures have
been considered for the study. Furthermore, this work is
an example where a combination of cues interprets emo-
tional state of people better than a single cue alone.
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2.4 Problem statement and the proposed
mechanism

Techniques for arm and body posture recognition which
could recognize an adequate number of postures with
a higher accuracy are scarce. Furthermore, the aforemen-
tioned systems evaluate a number of parameters for evalu-
ating the possibility of an interaction. Even so the possibility
of integrating posture and gaze factors in monitoring user
behavior is not adequately considered within these works.
Therefore, this article presents a model to interpret user
situation before interaction by analyzing postural behavior
and this behavior is recognized by means of arm and
body-based geometry derived through postures encoun-
tered during each scenario.

The proposed system adopts a novel geometry-based
approach for recognizing a set of human arm and body
postures. The standard body postures considered here
are sitting, standing, and bending, which are most fre-
quently adopted by humans in domestic environments.
In addition to that frequent relaxing postures are consid-
ered as well. The same approach was applied to recognize
often encountered arm postures as well. The system can
also be utilized in self-employee environments where the
same posture prevails for extended periods. In addition
to that, postural behavior of the user is monitored by the
system to identify user’s interest toward interaction by
evaluating his/her body language. This approach enables
the robot make intuitive decisions during an encounter
rather than adopting a behavior only based on a prede-
fined set of actions.

This mechanism uses body joints and spatial arrange-
ment of limbs to establish patterns in their arrangement.
Spatial arrangement or the geometry of selected limbs with
respect to each other is analyzed mathematically to differ-
entiate various postures considered. This system is imple-
mented on various activities which involve a number of
postures to assess its functionality. A vision-based tech-
nique is used for posture identification in the system.
Image processing techniques were equipped with extrac-
tion of feature points in 3D space using color and depth
information. Spatial orientation of postures is mapped to
the corresponding posture using a multi-layered feed
forward neural network. Arm and body postures observed
throughout a period were used to assess the emotional
state of a certain encounter. This evaluation determines
the appropriate behaviors for the assistive robot. We con-
sidered the nature of conversation and approach distance
as the “approach behaviors” of the robot.

This article has two contributions.
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(1) A novel method to recognize a number of arm and
body postures.

(2) Evaluation of the effect of considering arm and
body postures to generate human-aware responses
by a robot prior to an interaction. In this context, the
robot’s responses are related to its approach behavior
which includes mutual distancing and the type of con-
versation to initiate with its user.

3 System overview

The functional overview of the overall system is shown in
Figure 1. This system evaluates factors that can be used to
describe the nonverbal interaction demanding of a user,
such as postural behavior. This “postural behavior” includes
the changes in body posture and arm posture of a person
over time. It is intended to enhance the capability of under-
standing user situation for deciding whether or not an inter-
action is appropriate at that particular moment.

This system takes spatial orientation of limbs as input
to determine a particular posture. Limbs critical in forming
a certain posture are used as vectors that make the posture
arrangement. Joint information required to form such vec-
tors is extracted from an individual by the Information
Extraction Unit through RGB-D camera. Extracted informa-
tion and calculated parameters are stored in the Data
Recorder (DR) for further analysis at a later stage. After
observing the user for a predefined period of time, Posture
Identifiers (Body Posture Identifier and Arm Posture
Identifier) are accessed to determine the current posture of
its user and postural changes made by that user during the
period of observation, T. Arm and body postures determined
by Arm and Body Posture Identifiers are fed into the
Interaction Decision Making Module (IDMM) to determine
whether the postural behavior of the human is favorable
for interaction. In addition to the outputs from Posture

Information Extraction Unit
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Identifiers, data recorded in DR are used to take decisions
regarding interaction initiation, by the IDMM.

Decisions regarding the initiation of interaction with
the user are then transferred to Navigation Controller and
Voice Response Generation Modules to take basic steps
toward interaction such as; moving toward the user and
greeting. Navigation Controller is used to achieve a socially
interactive distance between the two conversants. In this
case, conversant will be the robot and its user. Maps
required for navigation within the specified environment
are held in Map Repository. Voice responses are generated
from the Voice Response Generation Module as the final
stage of initiating the interaction. Sentences for the conver-
sation between the user and robot are generated here.

4 Rationale behind using body
language for situation-
awareness

People undergo different states of mind in different situa-
tions. Happiness, insecurity, anxiety, relaxation, stress,
confusion, fear, calmness, and anger, to name a few.
There are physical means of displaying such mind sets
involuntarily, such as the body language. For instance,
we cross our arms when we undergo self-restraint or frus-
tration. In contrast, we cross our legs and tilt the head,
when we are interested of something.

The facts put forward in ref. [6] reveal fascinating
trends in nonverbal human behaviors or body language.
In this way, transmission of information is achieved
through body-based behaviors such as facial expres-
sions, gestures, touching, physical movements, posture,
and body adornment. Nonverbal behavior comprises
approximately 60—65% of all interpersonal communica-
tion or an interaction [38].

I = Data Recorder (DR)
— Map Language
T—’ Repository database
RGB data Depth data Body Posture Arm Posture I - I
Identifier Identifier Navigation Voice Response
Controller Generation
Approach behavior . \—u—‘
: ‘Mutu?l Interaction Decision Making
distancing | | L—» Module (IDMM)
Voice :

Figure 1: Overview of the system.
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As nonverbal behavior can reveal a person’s true
thoughts, nonverbal behaviors are often referred to as
“tells.” Because people are not always aware of what
they are communicating nonverbally, body language is
more honest than a person’s voluntary responses which
can be crafted as required. Hence, this silent medium can
successfully decode the real objectives and expectations
of a human-involved scenario. This fact was utilized
in a social environment to enhance a robot’s perception
upon its users before the robot initiates an interaction
with them.

According to ref. [6], observing the context is the key
to understanding nonverbal behavior. From a robot’s per-
spective, it is important to understand its user’s intentions
with a careful observation of the person’s nonverbals.
Learning to recognize and decode nonverbal behaviors
is important in this regard. Some bodily behaviors are
universal because they are adopted similarly by many.
In a typical human-robot encounter, idiosyncratic non-
verbal behaviors which are unique to a person cannot be
perceived in a single encounter. This will only be possible
after gaining experience with that individual for a period
of time. Therefore, in this research, we did not consider
such unique nonverbal behaviors. But, as the best pre-
dictor of future behavior is the past behavior, it is impor-
tant for a robot to observe its user’s immediate past beha-
vior to predict the state of that person in that instance.
In order to identify the baseline behaviors of people with
whom a robot regularly interacts with, the robot requires
to identify changes in ordinary behavior. This behavior
might take different forms such as postures, gestures, and
facial expressions. These changes in behavior are common
among people during interactions with fellow humans. There-
fore, we evaluated such behavioral responses of a person
toward a robot prior to an interaction. But modeling
what goes in a person’s mind in such an encounter is chal-
lenging and lacks conceptual basis.

4.1 Most honest part of our body

People use their faces to bluff or conceal true sentiments
and truthfulness reduces from feet to head [6]. Lower
body must receive a significant level of attention when
collecting nonverbal cues. For instance, we cross our legs
when we feel comfortable. Then we uncross our legs in the
presence of someone (e.g., a stranger or an official). When
the whole body including legs is considered, individuals
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lean forward when they are thinking of something and
they lean backward when relaxed. In addition, the degree
to which we move arms is a considerable and accurate
indicator of an individual’s attitudes and sentiments. Nor-
mally, arms move effortlessly when they interact. In con-
trast, when upset or exited we restrict arm movements.
Gravity-defying arm movements are often generated from
joy and excitement. Hence, arms are plausible cues to
access for moods and feelings. Certain arm behaviors ges-
ture attention and some gesture denial. Therefore, in this
research, we consider various arm postures to be perceived
by a robot for their emotional interpretations as well.

4.2 Changes in behavior

Changes in behavior can help reveal how a person is
processing information or adapting to emotional circum-
stances. Changes in behavior can further reveal a per-
son’s interest in an event. Careful observation of such
changes can allow a robot predict the intensions upon
an encounter in order to align robot’s behavior accord-
ingly. Hence, the robot’s actions would not cause any
intrusion or disturbance to the users. Knowing to distin-
guish between comfort (e.g., content, relaxation, happiness,
excitement) and discomfort (e.g., displeasure, unhappiness,
anxiety, stress) will help a robot decode user behavior and
generate a response that will comfort that person. Learning
to read cues of comfort and discomfort will help a robot
decipher what their mind and the body are saying. For
instance, people tend to keep their arms on hip, when there
are issues or to show dominance.

To decode user behavior, the robot will observe them
at a distance in our approach. Hence, neither the obser-
vation nor the interaction will be intrusive. For example,
a person may distance herself from someone by leaning
away. All such behaviors are controlled by the brain [39]
and indicates whether a person is interested in or getting
ready to avoid an encounter. Another similar example is
that a person may rub his face or cheeks when in need of
getting rid of a situation. Therefore, hands and the body
are important to be considered in reading body language.
In this research, we consider a number of arm and body
postures to be distinguished by a robot before initiating
an interaction with a human. A set of often encountered
body and arm postures are shown in Figures 2 and 3,
which we tried to recognize using the proposed concept.
Hence, a robot may be able to interact with a human
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Figure 2: A set of body postures encountered in daily chorus are shown. Each posture is called by an abbreviated form of their actual name

and their actual names are explained in Section 4.2.

Figure 3: A set of arm postures encountered in daily chorus are shown. Each posture is called by an abbreviated form of their actual name

and their actual names are explained in Section 4.2.

without territorial violations and disturbing behaviors.
In addition, there are pacifying behaviors such as sooth-
ing necks or stroking necks. When we are in discomfort,
our hands involuntarily respond to make us comfortable
again. In addition, touching face, head, neck, and arms

can originate in response to a negative stimulus such as
stress.

Set of body postures shown in Figure 2 identified by
the proposed approach are abbreviated for the ease of
referencing as follows.
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STA Standing

STDUP Standing, with one leg up

LEA Leaning forward

PIK Picking up something

CRO Crouch

SEA Seated

SEAF Seated, with spine bent forward
SEAB Seated, with spine bent backward
MED Meditation

SEAUP Seated, with one leg up

BEN Seated, with legs up and bent

Similarly, the set of arm postures shown in Figure 3
identified by the proposed approach are abbreviated as
follows.

DWN Hand down

FRO Hand in front

UP Hand up

FOR Hand forward

SID Hand to side

WAI Hand on waist

CHK Hand on cheek

DES Hand as in a desk activity
WAV Waving hand

HEA Hand on head

5 Posture recognition

We selected a set of limbs in our body, which make up
most of the arm and body postures. We tracked each of
the limbs using the Information Extraction Unit discussed
under Section 3. The RGB-D camera tracks the joints and
the vectors joining these joints will make up the limbs. The
process of creating these limbs is given in detail below.

5.1 Mechanism used to differentiate
postures

To detect a posture uniquely from a set of postures, orien-
tation of vectors drawn along selected limbs in human
body is considered. In other words, each limb that makes
a posture, becomes a vector. A vector is formed by com-
bining two adjacent joints in the skeleton. Once a person
is tracked, his/her skeletal arrangement is extracted to
analyze the positioning of a selected set of vectors in
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Figure 4: Body angles derived from the limbic vectors of a person
with stretched hands are shown. Coordinate system as seen from
the camera is shown as X-Y-Z. The angles formed by the three limbic
vectors with the XZ-plane are marked as a and 3, while the angles
made with the XY -plane are marked as 6 and 0. These angles are
used to recognize the arm posture. A, B, and C denote shoulder,
elbow, and wrist joints.

A- mid-spine
B- spine-base
C- knee
D- ankle

tibia vector

Figure 5: Limbic vectors of a seated person are shown here. The
limbic vectors are derived by joining A (spine-mid), B (spine-base),
C (knee), and D (ankle) joints.

3D space. This is demonstrated in Figures 4 and 5.
Figure 4 shows two vectors: forearm vector and upper
arm vector, which are used to determine arm posture.
To determine the spatial orientation of the body, three
major limbs, spine, femur bone, and knee, are considered.
A vector is drawn across the limb, joining the end joints of
that limb, according to the extracted skeleton. The angles
this vector make with the XZ plane (horizontal) and Y are
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Figure 6: Body angles derived from limb vectors of a seated person
as in Figure 5 are shown here. Coordinate system as seen from the
camerais shown on bottom left. The angles formed by the three limb
vectors with the xz plane are marked as oy, 8;, a5, B,. (a) Orientation
of the upperbody vectors is shown by the triangle ABC, (b) orien-
tation of the lowerbody vectors is shown by the triangle BCD.

also measured. Y direction is marked along the vertical of
the camera of the robot, as marked in Figures 4 and 6.
Spine, femur, and tibia vectors shown in Figure 5 are the
vectors used to determine the body posture. Front view of
a skeletal while sitting is shown in Figure 5.

5.1.1 Arm postures

Three limbic vectors used to derive arm posture are
marked in Figure 4. Following equations are used to cal-
culate each vector considered. A, B, and C denote the
coordinate positions of shoulder, elbow, and wrist joints,
respectively.

— - -
AB= (Xelbow - Xshoulder)l + (yelb()w - yshou]der)]

)

—
+ (Zelbow - Zshoulder)k ’

=7 i i
BC = (prist - Xelbow) r+ (ywrist - yelbow)]

)

N
+ (Zwrist - Zelbow)k ’

where AB and BC denote the vectors drawn along the
upper arm and the forearm. x, y, and z denote the coor-
dinates in i, j, and k directions, respectively, in usual
vector notation. The labels shoulder, elbow, and wrist
denote the shoulder, elbow, and wrist joints. The set of
inputs required to identify the particular arm posture is
represented by H as follows.

H={A,B,(C,6,0,a,Bli=1,2, ...,n}, 3)

where, i denotes the ith posture considered out of n
number of postures. A, E, ¢ ,6,0,a, and § are measured
as marked in Figure 4. 6 and 6 are the angles measured
from the vertical (XY plane) drawn through the spine-base
joint of the skeletal. & and f are angles measured in three-
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dimensional space from the horizontal (XZ plane) drawn
through the spine-base joint of the skeletal.

For example, the set of angles made by limbic vectors
corresponding to a standing human posture can be repre-
sented as follows.

H; = {18°,148°, 14°, 2°, 17°, —70° , —87°} if the ith arm
posture is considered as an ordinary standing posture:
STA with hands down: DWN in Figure 3.

5.1.2 Body postures

Angles related to knee and femur bones are calculated for
the right-hand side of the body. Orientation of these three
vectors is different from posture to posture. Even though
other limbic vectors that change with respect to posture
are present, these three vectors are critical in differen-
tiating two postures that are slightly deviated from each
other. Furthermore, majority of the human body respon-
sible for a posture is included in the above three vectors.
Vectors along the limbs in arms are not considered as
hands are often moved by humans even without a specific
need to do so. Therefore, arms are not considered for body
posture recognition during this study. The set of angles
denoted by P; in (7) includes the angles used to calculate
the orientation of limb vectors shown in Figure 5.

Limbic vectors required to calculate these angles are
shown in Figure 6 and these vectors are calculated as
follows.

g i
AB= (Xspine_base - Xmid_spine) l
il
+ (yspine_base - ymid_spine)) (4)

N
+ (Zspine_base - Zmid_spine) k s

— - -
BC = (anee - Xspine_base) 1+ (yknee - yspine_base)]

®)

N
+ (anee - Zspine_base)k s

- - -
CD = (Xankle = Xknee) T+ (Vanide — Yimee)J

(6)

N
+ (Zankle — Zknee) K ,

where AB, BC, and CD denote the vectors drawn along
the spine, femur and tibia limbs. x, y, and z denote the
coordinates in i, j, and k directions, respectively, in usual
vector notation. Labels mid_spine, spine_base, knee, and
ankle denote the spine-mid, spine-base, knee, and ankle
joints marked in Figure 6.

Pi = {A,B9 C» alyﬂpDAyE’ ﬁ’ az,ﬁ2| ] =1,2, ~-~ym}’ (7)

where A, B, C, a, By, D, E", 1:", @, B, are as marked in
Figure 6. j denotes the jth posture considered out of m
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number of postures. A set of actual values obtained for
a specific posture are shown below.

P ={6°,162°,12°,-82°,-87°,5°,167°,8°,-77°,-73°}

if, ith body posture is considered as “standing” or STA
in Figure 2.

Identifying postures in the above manner is a func-
tion of the Body Posture Identifier and Arm Posture
Identifier. A deep neural network is used to relate the
above body angles in P, and H; to a particular posture.
Inputs to the neural network are 4, B,C,a, B D,E,F, a,
and B, in Body Posture Identifier. The output from this
neural network is the closest posture out of the specified
m postures. This output is considered for all sets of angles
recorded each second throughout T's. This is similar in
Arm Posture Identifier as well. Inputs to the neural net-
work are A, E’, ¢ ,0,0,a, and B in Arm Posture Identifier
and the output from this neural network is the closest
posture out of the specified arm postures.

6 Behavior evaluation model

6.1 Posture change over a timeline

During certain activities, humans change their posture at
least once. Therefore, posture changes must be analyzed
for an adequate duration. The system observes the user
for T seconds from the moment a user’s skeletal was
identified. DR records raw information such as coordinate
positions of specific joints and calculated parameters
such as joint vectors throughout this period. At the end
of T s, set of information recorded in DR is analyzed for
posture identification and decision evaluation. An example
of this evaluation for the period of observation equalto T s
is shown in Table 1.

In Table 1, arm and body postures perceived by the
model in each second throughout the period of observa-
tion are shown. This postural behavior is taken into con-
sideration prior to the interaction. Since different pos-
tures have different emotions associated with them, an
evaluation of postural behavior makes more sense than

Table 1: Observations made through time

Time (s) t=1 t=2 t=3 t=4 t=5 t=T
Body posture CHK CHK STA  STA STA STA
Hand posture DES DES DES DES DES DES

DE GRUYTER

considering the postures observed in the beginning of
a scenario. Hence, the decision making is affected by this
“postural behavior” of the user. The “initial posture” was
recorded att = 1 s and the “final posture” was recorded at
t = T s. A separate experiment was conducted to find the
optimum value for the period of observation during this
type of occasions. This is elaborated in Section 8.5.1.

6.2 Availability of the user

The intention of deploying an assistive robot is to uplift
the mental condition of its user, through friendly inter-
action at user’s leisure or lonely hours. Therefore, the
robot’s interaction approach must consider appropriate
situations to achieve this outcome. IDMM assesses the
availability of the user by analyzing the change of his/
her behavior by means of posture over time. The idea
behind this evaluation is as follows.

According to behavioral sciences, there is a trend in
humans to change their behavior when somebody is
around. Therefore, the user’s response toward the robot
changes, when he/she sees the robot nearby. A common
example for this type of situation is that humans slant
their spine (SEAB in Figure 2) when seated for a long
duration, but when someone comes near, they adjust
their postures to standard sitting posture (SEA in Figure 2)
with erect spine. Humans notice such changes in behavior
in someone when they intend to interact with that person.
Instead of the human, it is the assistive robot who assesses
such incidents in domestic environment in this context.
This is the motivation behind the use of postural behavior
instead of only posture in this approach.

7 Posture-based interaction
decision making

A number of postures are found in humans while engaged
in various activities in domestic environments. Out of
these, often found 11 (m = 11) postures shown in Figure 2
were considered in our approach. These include “standing”
and “seated” postures and postures in-between. Postures
LEA and PIK can also be found while performing a certain
task. These are referred to as “intermediate” postures. Bend-
ing down to pick a fallen object is an example of a task
with such postures. Awkward postures that are unique
to humans, which are especially found in children, are not
considered here. Postures SEAUP and STAUP have two
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different angles for right and left femur and knee vectors,
respectively. In such instances, training data sample has
postures with both right and left sides included. The reason
for this is that only the main postures are responsible to
assess the availability of a human for interaction. Limbic
vectors vary during each posture considered here. Similarly,
there are ten arm postures (n = 10) which were selected to
be recognized using the proposed approach.

As a prior step before interaction, it is important for
the robot to evaluate the user’s posture to gain knowl-
edge on current situation of the user. On the one hand,
posture is a measure of the emotional condition of a
person. On the other hand, postures are related to a user’s
current activity [41]. Therefore, the robot is expected to
evaluate posture as a measure of interactivity of a parti-
cular person. Although there are no strict rules on the
relationship between posture, emotional state, and phy-
sical activities, there are conventional scenarios where
user situation can be approximated by analyzing posture
information.

Interaction decisions are made after analyzing pos-
ture changes according to behavior evaluation model.
Information required by the IDMM are given in the set
denoted by H; and P, in (3) and (7).

Zero Valence

Neutral
poses

Stressed
poses

Negative yalen®

Relaxing
poses
Positive valence

Stressed
poses

Negat,-‘,e valence

Relaxing
poses
Positive valence

Neutral
poses

Zero yalence

Figure 7: A semantic map illustrating the components that make
valence: hand and body poses. Each pose is categorized into three
groups: relaxing, neutral, and stressed. This categorization is based
on the emotions associated with each pose in general human
perception.
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7.1 Valence of a situation

Once the postures observed in a single scenario are
known, a variable called “valence” is calculated to assess
the “internal state” of that person quantitatively. To cal-
culate valence, we categorized postures into three groups
namely, “relaxing poses,” “neutral poses,” and “stressed
poses.” This is shown in Figure 7. Postures adopted
during relaxing situations were categorized as “relaxing
poses,” and are assigned a positive valence. Similarly,
postures adopted during stressed situations were cate-
gorized as “stressed poses” and are assigned a negative
valence. Standard postures were assigned the value zero
for valence. This categorization was done after analyzing
some simulated domestic encounters according to the
generally accepted social norms. Assignment of a valence
for each posture was influenced by the study shown in
ref. [40]. Valence for each posture was determined after
this analysis and the values assigned for the valence are
given in Table 2. Assigning valence and categorizing pos-
tures according to their emotional state were empirical
and based on how humans react in social encounters in
general. Hence, we simulated such encounters and arranged
arm and body postures in an order of their positive emo-
tional state. Values for the valence were assigned after
this step.

In a single scenario, a person adopts both body pos-
ture and hand posture. In such a case, the valence of the
scenario was calculated as follows.

Valence =k * Valence pogy posture ®)
+ ky * Valence gand posture-
Valence pody posture and Valence yang posture indicate the
valence corresponding to body posture and hand posture
as given in Table 2. k; and k, indicate the weights given
to body posture and arm posture, respectively, in deter-
mining the valence of a situation.

Interaction decisions made by the robot based on the
calculated valence are shown in Figure 8. The values to
separate margins between each type of conversation and
mutual distancing were empirical and were decided by

Table 2: Valence assigned for each hand and body posture depending on the general interpretation of emotional state behind each posture

Arm posture DWN FRO up FOR SID WAI CHK DES up WAV HEA
Valence 0 +2 +4 -6 -4 +6 +8 -2 -6 +10 -8
Body posture STA BEN LEA PIK CRO SEA SEAF SEAB MED SEAUP STDUP
Valence 0 +8 -8 -6 +2 0 -4 -2 -10 +6 +4




514 —— Chapa Sirithunge et al.
+18 +18 ——
+14 +14
+10 +10
> &
+4 S +4 =
[} [}
S » | oy o |
S 0 5. 5 c 0 = o
-— (7} b ;‘J B ©
g 2 © o o
> (Gl o > (G} =
S a
-6 < -6 <
S S
8 g
£ £
2 2
-18 -18 i

(b

Figure 8: Marginal values for valence to determine appropriate
approach behavior of the robot. (a) Initial valence is marked as 0
and this corresponds to “Greeting” at a distance of 1.8 m as the
appropriate approach behavior. (b) Final valence increased to +8
which resulted in an approach behavior of “asking for a service”
and keeping a mutual distance of 1.5 m.

repeating a few trial experiments before implementing
the IDMM. Corresponding type of conversation and the
mutual distancing appropriate for a particular instance
were determined according to the value of the valence as
shown in Figure 8. The margins for each approach beha-
vior are set by simulating a number of occasions in
domestic encounters and human responses if a human
approaches another human instead of the robot. This
simulation helped in determining the values that were
used for the valence in each arm and body posture shown
in Table 2. Postures were listed in order of their relaxing
or stressed nature as per the human perception and then
a numerical value for the valence is assigned.

7.2 Decision-making in dynamic user
behavior

In a dynamic user behavior, several changes in body and
arm postures could be observed. In such occasions, the
initial and final postures observed during the period of
observation, T were considered in decision-making. If the
difference between the two valences: initial valence and
final valence, is an increment, the approach behavior is
promoted by one set. The conversation types used in this
work are listed as follows:

e Greeting

e Offering a service

e Small talk
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e Long conversation
¢ No interaction

For instance, if the valence was increased during a
certain occasion and the approach behavior corresponding
to the final valence is “Greeting” and 1.5 m, this is promoted
to “Offering a service” and 1.8 m. For this promotion, we
referred to the chart shown in Figure 8. A combination of
a mutual distance and the corresponding conversation is
referred to as a “set.” Similarly, if the difference between
the initial and final valences is a decrement, the approach
behavior is demoted by one set. For instance, if the final
valence corresponds to {Greeting, 1.5 m}, this is demoted
to {No Interaction, 2 m}. This decision making criterion is
given in the following algorithm.

Require: Initial valence, final valence
Ensure: Mutual distance, type of conversation
(Approach behavior)
Arm and body posture transformations known
if final valence = initial valence then
Select the corresponding set of approach behavior
else
if final valence < initial valence then
Select the corresponding set of approach
behavior for the final valence
Demote corresponding approach behavior by
1 set
else
if initial valence < final valence then
Select the corresponding set of approach
behavior for the final valence
Promote corresponding approach behavior by
1 set
end if
end if
end if

8 Experiment and results

A set of experiments were conducted in support of the
proposed concepts of posture recognition and robot’s
decisioning.

The robot was placed at a predefined location in the
map and was allowed to wander within the specified
map. The routes that were covered by the robot are deter-
mined by a teleoperator. Once a body was tracked, the
robot stops its motion and starts observing. During this
observation, DR stores information and Body Posture
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Identifier and Arm Posture Identifier are initiated. After
the recognition of postures, IDMM is initialized to take
interaction decisions. Once the robot decides an appro-
priate type of conversation and the mutual distance, this
distance and the conversation were implemented by the
teleoperator as in wizard-of-oz experiments. Continuing
a conversation by understanding user’s voice is out of
the scope of this research. Therefore, the teleoperator
handled the implementation of the set of interaction
decisions. Hence, the teleoperator instructs the Voice
Response Generation Module to utter the statements
that she types. Navigation Controller takes care of main-
taining the mutual distance decided by the IDMM. We
implemented the proposed concept to the right side of
the body and the corresponding gesture was performed
by the right hand. Therefore, we selected only right-
handed people as subjects of this research.
The set of experiments are explained as follows.

8.1 Determination of T (Experiment 01)

Since a period of observation was necessary for the robot
to continue with the interaction decisions, the first experi-
ment was conducted to determine T in the first place.
Therefore, a set of domestic activities were selected and
a person was allowed to engage in a particular activity for
a period of time. During that period, posture changes and
the time gap between two consecutive different postures
was recorded. For the experiment, 11 users aged from 26—-59
years (SD: 12.83 and mean: 31.63) participated. The partici-
pants were given a task to perform, e.g., standing, without
further instructions on how to perform the activity. This

Table 3: Results of Experiment 01
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was because we tried not to influence people’s postures
by instructing on how to perform a task. We observed the
postures that they performed and therefore we could iden-
tify variations in posture while performing the same activity.
This step was taken to retain the natural behavior of people
although we conducted it in a simulated environment.
The participants were given the chance to stop the activity
whenever they feel like it. Details of the activities selected
are given in Table 3. Each participant was asked to perform
at least three tasks which resulted in 33 activities observed
altogether. Average values for the variables observed during
each activity are given. In Table 3, “minimum and max-
imum times between two consecutive postures” refer to
the average time observed between two postures, if posture
changes were observed during the period. Here, a single
user was observed for 30 min unless the user walked
away in the middle of observation. To determine T, we
observed for only body postures because the hands are
dynamic and change faster than the body in general.
To determine T, postures were recognized using the
mechanism explained in Section 5.

8.2 Recognition of arm and body postures
(Experiment 02)

A feed forward neural network was trained to map the set
of angles made by the limbic vectors to the corresponding
arm posture. We used a feed forward neural network of
three layers and 50 neurons in the first and second layers.
Training data set consisted of posture information of 21
human subjects (SD: 11.25 and mean: 29.1). We tried
several other hyper parameters such as more and lesser

Average time between two
consecutive body postures (s)

Minimum and maximum times between
two consecutive body postures (s)

Activity Postures observed

1 Standing, waiting STA, STDUP 3.8

2 Sitting, relaxing SEA, SEAF, SEAB, 5.1

SEAUP, BEN

3 Desk activity (reading/  SEA, SEAF 6.4
studying)

4 Cooking STA 6.1

5 Making a phone call, SEA, SEAF, SEAB, 8.4
sitting SEAUP, BEN

6 Making a phone call, STA -
standing

7 Standing, engaged in STA, LEA 5.3

lab work

2,8
3,9

3,12

4,16
5,76

3,16
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neurons and hidden layers as well. But in the end, we
could observe an optimum behavior of the algorithm
for recognizing these postures at the values given here.
The inputs and the output of this network can be stated
as follows:

Inputs: A, B, C, 6,0,a,p

These are the inputs shown by the set H; in (3). We
exempted the two angles A_é‘ makes with the vertical and
the horizontal, from the current set of inputs as we did not
observe an improvement in the training and testing accura-
cies of the dataset with the additional data. This holds true
for the inputs selected for the recognition of body postures
as well. Therefore, we observed the current set of variables
as the optimum set of inputs in our approach.

Output: Corresponding hand posture out of {DWN,
FRO, UP, FOR, SID, WAI, CHK, DES, WAV, HEA}

The module called Arm Posture Identifier performs
the aforementioned functions.

Another feed forward neural network was used to map
the set of limbic vectors to the corresponding body pos-
ture. This feed forward neural network also consisted of
three layers and 50 neurons in the first and second layers.
Data related to body posture were also taken from the
same subjects as for the hand posture.

Inputs: A, E, C‘, a, By, f), E, I:", o, B,

These are the inputs shown by the set P; in (7).

Output: Corresponding body posture out of {STA,
STDUP, LEA, PIK, CRO, SEA, SEAF, SEAB, MED, SEAUP,
BEN}

Different seating arrangements make a body posture
slightly different from each other. Furthermore, people
tend to keep their legs at different angles when seated.
Figure 9 shows three examples for this. Such instances
were also considered while collecting data for the training
data set.

The module called Body Posture Identifier performs
the above functions. In the end, we used this trained
algorithm to recognize posture changes in Experiment 01.

8.3 Implementation of IDMM
(Experiment 03)

After implementing the recognition algorithm and deter-
mining T, we used these findings to determine the internal
state of the people before an interaction. Throughout the
article, we refer to robot-initiated interactions in this regard.
We instructed the participants to perform a selected set of
activities listed under “description” in Table 4. IDMM was
implemented and the interactivity of the situation was
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side chair arm chair

_____

S~ao

Figure 9: A comparison of the limbic arrangement for regular sitting
posture (SEA) when the seated chair is changed. This occurs due to
the difference in dimensions of each chair type. (a), (b), and (c)
represent the user posture, the corresponding skeletal image, and
two angles B; and B, for side chair, stool and arm chair,
respectively.

evaluated at this stage while the participants were per-
forming these activities. The same set of participants in
Experiment 02 participated in Experiment 03 as well. We
asked each participant to perform at least two activities
and altogether we considered 40 different scenarios for
Experiment 03. Twenty scenarios out of these are shown
in Table 4. All the participants were selected outside the
university and over 80% of the participants had no tech-
nical background.

Before implementing IDMM, the robot was remotely
navigated toward the participant adopting the approach
behavior as “Offering a service” and 1.5 m. User was
asked to give a feedback score for the robot’s behavior
by considering user satisfaction. This is used as the
ground truth for this experiment. Then the entire scenario
was performed again and the valence of the set of pos-
tures was calculated for each scenario according to (8).
Then the robot was commanded by a teleoperator to
adopt the approach behavior determined by the IDMM.
IDMM decided upon an approach behavior by evaluating
the valence. For the experiments, we assigned 1 for k
and k in (8), assuming that the arm and body postures
contribute equally for the current user situation. Then
the participant was asked to give a feedback score (rating
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from O to 10) for the approach behaviors of the robot
during the two occasions. Feedback score was given by
users based on how they preferred or how comfortable
were the decisions of the robot during that particular
situation. Users were asked the reason to give their cor-
responding feedback score and important remarks during
reasoning are highlighted in the discussion.

8.4 Research platform

Proposed concept has been implemented on MIRob plat-
form attached with a Microsoft Kinect sensor. This is a
Pioneer 3DX MobileRobots platform equipped with a
Cyton Gamma 300 manipulator. The robot required an
initial map of the environment for navigation and path
planning. Therefore, we initially defined a map of the
simulated environment with the placement of furniture,
doors, and walls. Dynamic obstacle avoidance was pos-
sible with the MobileRobots platform. Navigation maps
required for locomotion were created with Mapper3 Basic
software. Skeletal representation of human body was
extracted as 3D co-ordinates of feature points in Kinect
sensor. The experiment was conducted in an artificially
created domestic environment with the participation of
users in a broad age gap. MIRob is shown in Figure 10.

8.5 Results and discussion
8.5.1 Determination of T (Experiment 01)

According to the results presented in Table 3, several pos-
tures could be observed during a single activity. Results
obtained for a single user during the listed activities are
shown in the table. All the postures that were observed from
each user are listed under “Postures observed.” Number of
postures encountered during an activity increases with the
duration of the activity. Therefore, when the person was
allowed to engage in an activity for a long duration, up to
six postures could be observed. In contrast, during short-
term tasks such as standing/waiting or making a phone call,
only a few postures were observed. A number of posture
changes were observed in “making a phone call while sit-
ting.” This is because the person finds more relaxing pos-
tures when the duration of the call is longer.

As a whole, the number of posture changes in seated
activities was greater than that of standing activities.
In the meantime, the duration between two consecutive
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postures was also recorded “lesser” during seated activity.
An interesting fact revealed during the study was that the
initial posture change takes place short after the start of
the activity if the person was sitting. This is because of
the numerous sitting postures available to chose. Often, the
users did not see another person approaching him, when
he/she was deeply engaged in the task. Such scenarios
are omitted in this experiment. Sometimes, the users tend
to talk to the person approaching them without looking.
This type of scenarios cannot be used for the assessment of
nonverbal interaction demanding. Such complications in
human behavior are yet to be solved. This is not observed
in standing postures due to the limited number of comfor-
table standing postures available. Out of the results obtained,
it was at the eighth second, the person started to change
the posture. That is the average time between two postures
was 8 s. Therefore, 8 s was used as the practical value for
the period of observation, T.

This value was used for the period of observation
in rest of the experiments.

8.5.2 Recognition of arm and body postures
(Experiment 02)

The model developed to recognize hand posture resulted
in a training accuracy of 97.05% and a testing accuracy of
96%. The model to recognize body posture resulted in
a training accuracy of 98.5% and a testing accuracy of
97.5%. These two models were integrated to achieve the
outcomes of the IDMM. That is, we used these two algo-
rithms separately to recognize arm and body postures of a
person during an encounter. One algorithm was run after
the first and then recognized arm and body postures were
stored in the IDMM for decision making. At the beginning
of the observation, the initial postures were recognized
and the final postures were determined at the end of T.
Then the transformation of the participant from the initial
set of postures to the final set of postures was identified.
This transformation is given under “Initial Posture” and
“Transformation” columns in Table 4.

8.5.3 User responses prior to interaction
(Experiment 03)

Table 4 shows the results of Experiment 03: Implementa-
tion of the IDMM. “Initial Postures” column indicates
the set of body and hand postures observed by the robot
at the beginning of time T. “Transformation” column gives
the set of body posture and hand posture at the end of T.



DE GRUYTER

The column “Description” gives a detailed image of the
user situation. The valence of each scenario is given in
the “Valence” column. The type of conversation and the
mutual distance are given as a set in the “Robot Responses™
column. “Feedback score (IDMM)” shows the feedback (out
of 10) received by the user in each scenario when the IDMM
was implemented. “Feedback score” gives the score given
by the same user for the same occasion when the ground
truth was implemented. When the user was stationary, no
transformation was found in the initial set of postures and
therefore the column is kept empty. When the users had
posture changes over the period of observation, the finally
observed set of postures was given under the “Transforma-
tion.” Typical scenarios and our critical observations which
are deviated from the expected outcome during the experi-
ment are discussed below.

In scenario 1, the initial postures were (STA|DWN)
and there were not any transformation in the postures
for the entire duration. During the scenario, the person
was walking slowly. Therefore, the person was standing
(STA- valence 0), holding hands down (DWN- valence 0).
This recorded a valence of 0 when both hand and body
postures were considered, which resulted in a greeting
and a mutual distance of 1.8 m. This is shown in Figure 8.
As the user was walking, he preferred a greeting rather
than a conversation. But once the robot spoke, he stopped
to greet back. This occasion is shown in Figure 10(a).
Hence, the approach behavior received a high feedback
score of 9.

In the next scenario, the person was standing, doing
nothing. Body and hand postures corresponding to this
scenario were STDUP and WAI that resulted in an overall

Figure 10: Two occasions during Experiment 03 is shown.

(a) Occasion 1: Responses of the user when the approach behavior:
“greeting at 1.8 m” was adopted by the robot.

(b) Occasion 2: Robot observes the user at a distance.

(c) Final position of the robot and the behavior of the user.
Recognized postures and mutual distances are marked.
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valence of +8. This resulted in robot asking for a service
at a distance of 1.5 m. As the person was relaxed and
willing to talk, a feedback score of 9.5 was received.

The feedback received for the third scenario was low
compared to the previous occasions. Here, the person
was cleaning the floor, where he was engaged, as per-
ceived by the robot. Therefore, the robot’s decision was
not to have any interaction, even though the user pre-
ferred to have a friendly conversation in such a task.

In the 12th scenario, a dynamic user behavior was
observed. First the user was sitting and then he stood up.
Hence, the initial postures transformed from (STA|DWN)
in to (LEA|FRO). This resulted in a drop of valence from O
to —6. This resulted in a response of no interaction and
a mutual distance of 2 m from the robot. This behavior of
the robot received a feedback score of 10 due to higher user
satisfaction because of not getting disturbed.

In the 17th scenario, (LEA|DWN) transformed in to
(STA|UP) as the user was exercising. But the valance
increased from -8 to +4 during posture transformation.
This resulted in a small talk and a mutual distance of 1.25 m
according to the decision-making criteria in dynamic user
behavior. This resulted in low user satisfaction as the user
was distracted by robot’s behavior. Figure 10(b) and (c)
corresponds to a situation where user situation changed
from (SEA|DES) to (SEAB|FRO). Valence changed from -2
to O that corresponds to a small talk at a distance of 1.5 m.
Here the valence had an increment within the transfer of
initial to final occasion and o corresponds to “greeting”
at a distance of 1.8 m. When this approach behavior is
promoted by 1 set, the new approach behavior became
“greeting” at 1.5 m.

Table 5 compares the feedback scores received after
implementing the IDMM with the ground truth. These
feedback scores are obtained from Table 4 which shows
the results of Experiment 03. We compared the feedback
received for implementing the ground truth (without IDMM)
and the IDMM (with IDMM). These feedback are given under
“feedback score” and “feedback score (IDMM)” columns in

Table 5: Results of the t-test performed upon the feedback scores
received for the approach behaviors without and with the IDMM

T-scores Feedback scores Feedback scores
with IDMM without IDMM

Mean 8.56 5.53

Variance 1.99 2.28

dof 39

P 3.97 x 10710

t 1.685
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Table 4, respectively. In the beginning, we assumed that
there is no significant difference between the feedback
scores received for the robot’s behavior with and without
the IDMM. This becomes the null hypothesis. Table 5 gives
the results of a t-test performed to test our null hypothesis.
Test output is a P value of 3.97 x 107'° (<0.05). Hence, the
null hypothesis cannot be accepted with a confidence
interval of 95%. Hence, we can conclude that there is a
significant difference between the feedback scores received
by the two systems. Looking at the figurative value of the
feedback scores, we can say that the system with the IDMM
received a higher score and resulted in a higher user
satisfaction.

Facts observed during these occasions can be sum-
marized as follows. Interactivity of a human strongly
depends on the activity that the particular human is
engaged in during that situation. As a clue of the activity
as well as the emotional state of mind, posture changes
were considered during this work. Using posture changes
as behavioral measurements of human readiness toward
interaction showed positive results toward interaction
decision making by a robot. In some occasions where
the feedback scores were average, the users preferred to
speak more even though they were engaged. For instance,
in the tasks such as cleaning or just doing nothing. In such
tasks, recognition of the task becomes important. This is
an implication derived from this study. Sometimes, they
did not prefer to be distracted. Furthermore, certain indi-
viduals gave a low feedback score upon the robot’s response,
preferred more interaction with the robot. This was a person-
ality trait and was not evaluated within the scope of this
study. Therefore, it can be stated as another implication of
this study. Other major implications we derived from this
study are elaborated in Section 8.6.

User feedback was low in some occasions because it
is not only the pose that contributes to a human’s state.
According to the behavior of the model it can be seen that
postures such as sleeping and running could also be
identified using this approach. We excluded such pos-
tures for the ease of participants in our experiments.

Besides, there should definitely be other responses
expected by users from a robot. Therefore, in the future,
integrating multiple responses from the robot is impor-
tant, other than interactive distance and voice responses.

We implemented the algorithms for the right-hand
side of the body. There are situations where we inherit
different poses in our right and left hands. This fact
holds true for the legs as well. Hence, we can adopt
the same recognition techniques and then calculate
valence of the entire body considering both sides of
the body in the future.
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8.6 Implications derived from the set of
experiments

Implications derived from the set of experiments can be
stated as follows. These implications could be utilized in
the development of conceptual basis for response genera-
tion and the design of future social robots.

It can be seen from the experiments that an indivi-
dual changes his/her behavior every once in a while.
Therefore, it is important for robots to observe their users
for at least a short duration before initiating an interac-
tion with them. This can be proposed as the first design
guideline derived from our experiments.

The implementation of IDMM received a higher feed-
back score when compared with a nonadaptive approach
behavior used as the ground truth. Hence, considering
the variables in the context such as postures could be
advantageous for a robot in order to receive a higher
user acceptance. Therefore, considering the factors within
humans before making decisions can be stated as the
second design guideline for intelligent robot assistants.
Even though we considered only arm and body posture
as a signal of internal state of human mind, there can be
other factors that affect the internal state of mind. Therefore,
a conceptual basis must be laid to identify such factors and
use them for Al (Artificial Intelligence) systems in a theore-
tical manner. This can be stated as the third design guide-
line derived from these experiments.

There are some situations at which humans nonverbally
seek attention from outside for various reasons. Therefore,
unveiling the meanings of nonverbal behavior is an impor-
tant aspect in present HRI. This can be considered the fourth
design guideline proposed by these sets of experiments.

It can be seen that users preferred different approach
behaviors at different occasions. The difference between
the user feedback scores received for a user-aware approach
behavior and static approach behavior testifies to this.
Therefore, generating adaptive approach behavior which
matches with the context can be proposed as the fifth
design guideline derived from our experiments.

9 Conclusion

A method has been presented to recognize often encoun-
tered human postures using a simplified method rather
than using hardware intensive complex mechanisms. The
proposed method is based on the orientation of limbs and
proved to be an efficient method to recognize a selected
set of postures with a considerable accuracy. These
postures cover a majority of domestic postures that are
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encountered during daily chorus and this can be stated as
an advantage of the proposed concept.

After recognizing user’s arm and body postures,
the robot goes through a logical argument about user’s
behavior before deciding upon an action. Prior to a direct
conversation, the robot will be able to estimate the emo-
tional state of its user and whether a conversation is
appropriate in that particular situation. Hence, one major
improvement of the system is the implementation of a
novel vector-based approach for posture recognition using
spatial orientation of limbs. Second, the utilization of a
nonverbal mechanism for evaluation of user situation is
an added advantage for a proactive robot. Over the existing
systems, presented system has the ability to perceive user
situation using uncountable features such as posture and
postural changes. Furthermore, these features are deviated
from often used cues to measure the user’s attention such
as facial expressions and emotional responses.

As a whole, a robot could be able to generate adap-
tive responses based on a user’s postural behavior. An un-
adaptive approach behavior was compared with the user-
aware approach behavior proposed in this article to eval-
uate the performance of the robot’s adaptive approach beha-
vior. Furthermore, the proposed system proved to be a con-
venient mechanism to identify a defined set of postures and
to perceive a person’s nonverbal demanding for an interac-
tion, at a distance. This fact was confirmed by the experi-
ments and the results presented. Hence, considering the vari-
ables in the context such as postures could be advantageous
for a robot in order to receive a higher acceptance from users.
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