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Abstract: In this article, we investigate the role of causal
reasoning in robotics research. Inspired by a categoriza-
tion of human causal cognition, we propose a categoriza-
tion of robot causal cognition. For each category, we
identify related earlier work in robotics and also connect
to research in other sciences. While the proposed cate-
gories mainly cover the sense—plan—act level of robotics,
we also identify a number of higher-level aspects and
areas of robotics research where causation plays an
important role, for example, understandability, machine
ethics, and robotics research methodology. Overall, we
conclude that causation underlies several problem for-
mulations in robotics, but it is still surprisingly absent
in published research, in particular when it comes to
explicit mentioning and using of causal concepts and
terms. We discuss the reasons for, and consequences
of, this and hope that this article clarifies the broad and
deep connections between causal reasoning and robotics
and also by pointing at the close connections to other
research areas. At best, this will also contribute to a
“causal revolution” in robotics.

Keywords: robotics, causal cognition, causal reasoning,
causal inference, causation, causality, counterfactual,
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1 Introduction

Causal reasoning is generally considered to be a crucial
human cognitive competence necessary for a range of
tasks such as predictions, diagnoses, categorization, action
planning, decision-making, and problem solving [1]. The
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and analysis

development of causal understanding has been described
as a major part of human evolution [2,3], and causal
functionality has also occasionally been recognized as
a necessity for the development of intelligent robots [4].

The purpose of this article is to provide a structured
analysis of how the broad area of causality relates to the
equally broad area of robotics. Inspired by a categoriza-
tion of human causal cognition [5], we propose a categori-
zation of robot causal cognition. We also identify several
additional aspects of robotics research where causation
plays, or may play, an important role. We review related
earlier work in robotics and also identify connections to
earlier work on causation in other sciences.

Overall, we find very little earlier work in robotics
where causation is explicitly mentioned. However, we
identify several interesting connections between large
sub-areas of robotics and causal concepts. For example,
task planning and several common learning paradigms
rely on, often implicit, causal assumptions and principles.

The remainder of this article is organized as follows:
Section 2 provides an overview of how causation is, and
has been, dealt with in other sciences. In Section 3, we
analyze the role of causal reasoning in robotics together
with links to earlier work. The reasons for, and conse-
quences of, the relatively weak appearance of causation
in published robotics research is finally discussed in
Section 4.

Basic terminology often varies between different
research fields and even between authors in the same
field. In this article, we interchangeably use the terms
Causal reasoning and Causal cognition (as often used in
psychology [1,5,6]) to denote the union of two processes
of (a) learning models of causal relations and (b) using
and drawing conclusions from causal models. Process (a)
is denoted here as Causal learning, and process (b) is
denoted as Causal inference (in computer science and
statistics, the latter term is often used to denote the union
of (a) and (b) [7-9]).

The presented work is applicable to all kinds of
robots but is particularly relevant for robots that interact
closely with humans, other robots, or the environment.
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2 Causation outside of robotics

Causation has for a very long time been an active topic in
several sciences, and we will in this section summarize
how causation is, and has been, dealt with in philosophy,
statistics, computer science, cognitive psychology, and
machine learning. Each field has on its own produced
huge amounts of research, and our summary is, for that
reason, very selective — focusing on the concepts and
notions that are relevant for causation in conjunction
with robotics.

2.1 Philosophy

Causation is one of these concepts that continue to puzzle
us, even after millennia of considerable intellectual effort.
Viewpoints among scholars still vary widely, and there is
not even an agreement that causation exists, let alone on
what it is. Nevertheless, people use causal expressions
daily, with a reasonably agreed upon meaning. Most
people are also quite clear about the difference between
causation and correlation, even if they not necessarily use
these terms. As an example, let us imagine that the owner
of an ice-cream shop observes the relation between elec-
tricity consumption and ice-cream sales during a hot
summer month. It turns out that sales goes up during
days with high electricity consumption and vise versa.
Does that mean that the owner should switch on all lights
in the shop in order to increase sales? Most of us would
probably agree that this would be a bad idea and that
the reason for the observed correlation between ice-cream
and electricity consumption is a third variable, the out-
door temperature, which makes people buy more ice-
cream, but also increases the electricity consumption,
since the A/C has to work harder during hot days.

Not surprisingly, philosophers have not settled with
such intuitive notions of causation. In the remainder of
this subsection, we will merely scratch the surface of the
substantial body of work on the nature of causation,
focusing on philosophical theories that are relevant for
the continued analysis and discussion.

Woodward [10] identifies two main kinds of philoso-
phical views on what causation is. The difference-making
views focus on how causes affect what happens in the
world, such that the state of the world differs depending
on whether the cause occurs or not. For example, a robot
vacuum cleaner starting up in the middle of the night
might be regarded as the cause of the owner waking up.
The other kind of views are denoted as the geometrical-
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mechanical theories and focus on the idea that causes
somehow are connected to their effects, often through trans-
mission of a “force” from cause to effect. A typical example
is a billiard ball hitting another ball, thereby stopping while
the other ball starts moving due to the “transfer” of energy
or momentum.

As is most often the case with theories on causation,
compelling counterexamples for both views are easily
formulated. The billiard ball example can be easily ques-
tioned by referring to fundamental physics principles of
relativity of motion. One ball moving toward a second is
equivalent to the second moving toward the first, but
according to the geometrical-mechanical view different
balls will be assigned as the cause in the two cases. A
classical example, challenging the difference-making view,
is a firing squad, where ten soldiers shoot a victim who dies.
However, for each one of the soldiers can be said that he or
she did not cause the death, since the outcome would have
been the same had the soldier not fired the gun. Each indi-
vidual soldier did not make a difference. On the other hand,
there are lots of examples of events that make a difference,
but are not commonly regarded as causes. Big bang, cer-
tainly made several differences, but it is usually not referred
as a cause to things happening now, billions of years later.
A more recent example is given in ref. [11, p. 127], where
is it noted that having a liver is a necessary, albeit not
sufficient, condition for having cirrhosis. Therefor, having
a liver is a difference-maker for having that disease, even if
is does not make sense to say that having a liver caused the
disease.

This approach of reasoning about necessary and suf-
ficient conditions was refined by Mackie [12,13], who
argued that what we normally mean when we say that
something is a cause is that it is “an Insufficient but Non-
redundant part of a condition which is itself Unnecessary
but Sufficient for the result.” Such a condition is called an
INUS condition. As an example, consider a house that
catches fire after a short-circuit occurred in the house,
with flammable material nearby. The short-circuit is said
to be the cause of the fire because: (a) it is part of a true
condition “short-circuit and presence of flammable mate-
rial”), (b) the short-circuit is an insufficient (since flam-
mable material is also required) but necessary (i.e., non-
redundant) (since the condition is a conjunction) part of
the condition, (c) the condition is unnecessary since it can
be replaced by other conditions (for example, “lightning
and presence of flammable material,” and (d) the condi-
tion is sufficient since it, on its own, will result in the
house catching fire.

David Lewis formulated a related theory of causation,
based on counterfactual dependencies [14]. An effect is
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said to counterfactually depend on a cause; just in case if
the cause had not occurred, the effect would not have
occurred. Furthermore, A is said to be the cause of B if
there is a causal chain of counterfactual dependencies
linking A with B. The idea of counterfactual reasoning
became both popular and influential (even if both Mackie’s
and Lewis’s theories, of course, have been challenged by
counterexamples).

A certain frustration of failing to define what “causa-
tion is” can be sensed in emotional statements by several
prominent scientists. Bertrand Russell, who engaged heavily
in the debate, concluded in 1913: “The law of causation, ...
is a relic of a bygone age, surviving, like the monarchy, only
because it is erroneously supposed to do no harm.” [15].!

By this we move on to how causation has been, and
is, treated in statistics and computer science.

2.2 Statistics and computer science

We start by summarizing the relation between statistics
and causation: probabilities alone cannot distinguish
between cause and effect. This fact was realized by sta-
tisticians early on, but with unfortunate consequences.
Karl Pearson, English mathematician and one of the
founders of mathematical statistics, dismissed causation
altogether in his book from 1911 [17], where he called it “a
fetish amidst the inscrutable arcana of modern science.”
Still, as Judea Pearl remarks [18, p. 412], statistics is
unable to express simple statements such as mud does
not cause rain. There have, however, been several attempts
to formulate causation in probabilistic terms. In line with
the previously mentioned view of causation as a difference-
maker, a cause C can be seen as something that raises the
probability for an event E to occur. In its simplest form this
can be expressed as

P(E|C) > P(E). 1

While this at first may look like a promising definition of
a cause—effect relation, it has several problems [19]. First
of all, it is symmetric in the sense that equation (1) is
equivalent with

P(CIE) > P(C). (2

1 It is noteworthy that Russel in later work, from 1948, changed his
view on causation and stated that “The power of science is its dis-
covery of causal laws” [16, p. 308].
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Hence, if C is the cause of E, then E is also the cause of C,
which goes against most intuitive and formal notions
of causation. Second, it does not differentiate between
genuine causation and spurious correlation. Returning
to previously mentioned ice-cream example, electricity
consumption would pass as the cause of increased sales
according to equation (1), with the probabilities estimated
from observations. The formal reason for this incorrect
inference is that a “lurking variable,” the outdoor tempera-
ture, is a common cause or confounding variable to both
electricity consumption and sales.?

Attempts to repair the definition have been made, for
example, by conditioning on background variables:

P(C|E, K) > P(CIK). (3)

For the ice-cream case, letting K be the outdoor tempera-
ture would avoid the false conclusion that electricity con-
sumption (C) causes higher sales (E). For example, equa-
tion (3) would probably not hold for observations with
K = 25°C (or any other fixed value).?> However, giving a
general answer to which variables to include in K turns
out to be far from trivial. Nancy Cartwright proposed that
K should include all “causally relevant factors” [21],
which may be correct but unfortunately does not provide
a way to determine what these factors are. More recent
approaches are suggested and discussed in ref. [22].

A simple and intuitive way to test whether electricity
consumption really causes higher sales would be to try it
out in reality, by some days switching on all lamps and
electrical devices in the shop and observing how sales is
affected. To be sure about the result, the process should
of course be repeated at several random occasions. This
approach has been formalized in the technique Randomized
Controlled Trials (RCT), which was popularized by Ronald
Fisher in 1925 [23]. RCT has ever since been a standard tool
to find and test causal relations. The important word “ran-
domized” stands for the intervention, where we some days
deliberately increase electricity consumption. If this is
done at random, the values of the background variables
K become equally distributed between the intervened and
not intervened cases [24], even if we do not know what the

2 Even if the symmetry would be enough to dismiss equation (1),
the idea of causes as probability raisers is also problematic in other
ways. Hesslow [20] describes an example in which contraceptive
pills (C) are shown to cause thrombosis (E), besides lowering the
probability of pregnancy. However, pregnancy also increases the
probability of thrombosis, and the net effect may very well be that
the cause C lowers the probability of its effect E.

3 In statistical terms, this would be called “controlling for tempera-
ture” or “adjusting for temperature.”
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variables in K are (see Section 3.3.4 for a discussion on the
role of RCTs in robotics). It is important to note that an RCT
estimates causality at population-level and computes the
average causal effect, also referred to as the average treat-
ment effect. This may have very little to say about causality
at the individual level. Consider, as an example, a medi-
cation that makes all men healthier, but all women sicker.
An RCT with equally many men and women, would esti-
mate the average treatment effect to zero, even if the medi-
cation causally affected every person in the experiment.

One of the two major frameworks for causal inference
is the Neyman-Rubin Causal Model [25,26], where the
causal effect of a binary variable C is defined as the dif-
ference between the potential outcome if C occurred and
the potential outcome if C did not occur. However, for
a specific instance, only one potential outcome can be
observed, depending on whether C occurred or not. This
general problem, that we cannot observe counter fac-
tuals, is called the fundamental problem of causal infer-
ence [27, p. 947]. The second major framework was popular-
ized by Pearl with the do-calculus [28] (for a shorter intro-
duction see e.g., ref. [29]). Using this formalism, we say
that C causes E if [30]:

P(E|do(C)) > P(E). 4)

The do-operator encapsulates the notion of intervention,
and while P(E|C) describes what value E took when a
certain value of C was observed, P(E|do(C)) describes
what values E would take if C was set to a certain value.
The “trick” with introducing the do-operator is that the
whole discussion about what causation “is” gets circum-
vented by an axiomatic approach, in a similar way as done
in for example Euclidean geometry, number theory, and
probability theory.

The causal relations between a number of variables
can be conveniently represented by a Causal Bayesian
Network, which is a Directed Acyclic Graph (DAG), where
the nodes represent variables, and the directed links (i.e.,
arrows) represent causal dependencies going from parent
nodes to children nodes. Hence, a parent node “causes”
its child node to take a specific value. Each node has an
associated table with conditional probabilities given their
parents. Given a DAG, the do-calculus enables inference
of answers to causal questions about relations between
the variables in the DAG. The DAG may be created in
several ways. Conducting RCTs is one alternative but is
often expensive, time-consuming, and sometimes even
impossible. However, the graph structure may also be
learned from observational data through causal discovery
[7, pp. 142-154], [31], for example with the LINGAM [32]
algorithm and the PC and FCI algorithms [33], or from a
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formal structural causal model [29] based on prior knowl-
edge about the problem domain. It should be noted that
the directions of the causal links in the DAG cannot be
learned from observational data alone without additional
domain information or assumptions. For example, the
LiNGAM algorithm builds on the assumption that there
are no unobserved confounding variables.

To facilitate practical usage, several researchers and
companies offer implementations of algorithms for statis-
tical causal learning and inference. Microsoft has launched
a software library DoWhy, with a programmatic interface
for several causal inference methods (https://github.com/
Microsoft/dowhy). The Center for Causal Discovery offers
several tools, including the Tetrad causal discovery tool
(https://www.ccd.pitt.edu/tools/). Elias Bareinboim offers
Fusion, a tool based on Pearl’s book [30] (http://bit.ly/
36qUz4y). CausalWorld is a benchmark for causal structure
and transfer learning in a simulated robotic manipulation
environment [34] (https://sites.google.com/view/causal-
world). Links to other software packages can be found in
ref. [31], and new software is of course constantly being
developed.

2.3 Cognitive psychology

Causal reasoning was, until about three decades ago,
absent in cognitive psychology research. One reason
may have been the general scepticism about causation
in philosophy and statistics (see Section 2.1), with the
result that earlier work in psychology was mostly based
on correlations and associations. Reasons for this can be
traced back to, at least, Hume’s work in the 18th century
(for an analysis of this influence, see e.g., ref. [35]).

One example of how causality enters cognitive psy-
chology research is causal perception [36], which is the
immediate perception of certain observed sequences of
events as causal. This effect appears automatically, and is
often hard to resist. For example, if the lights in the house
go out exactly when you close a door, you may perceive
that you caused the lights to go out, even if you know that
it is totally incorrect. However, in many cases, the per-
ception of a causal relation is correct and valuable, and
causal perception can be observed already in 6-month-
old infants [36, p. 4].

A historically influential model of humans causal
reasoning is the Rescorla—Wagner model [37], which incre-
mentally estimates the association between a conditioned
and unconditioned stimuli based on observations. This
and similar associative models were for a long time quite
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successful in modeling human behavior, but studies also
indicated that human causal reasoning sometimes cannot
be explained with covariation information alone [1]. A step
toward causal theories were probabilistic theories such as
the AP model [38,39], aiming at modeling how humans
learn the strength between a potential cause C and an
effect E. The causal power AP is given by

AP = P(E|C) — P(E| = C) 5)

where the probabilities may be estimated from observed
frequency data. The AP model follows the previously
described philosophical view of causes being difference
makers (see Section 2.1). It can be seen as a variant of
equation (1) and hence suffers from the same shortcom-
ings of symmetry and common causes.

To clarify the distinction between correlation and
causation: equation (5) quantifies the correlation between
E and C. The two variables may very well be causally
connected, but this fact cannot be established from AP.
The reason is that both E and C may have a third variable
as common cause, which may be manifested as a strong
correlation, and a large AP. For the example given in Sec-
tion 2.1, the consumption of ice-cream and electricity
would have a large AP, even though there is no causal
connection between the two variables.

The power PC theory [39] builds on the AP model and
aims at modeling causal power from covariation data
complemented by background knowledge. Some studies
indicate that the model conforms with certain aspects of
human causal reasoning. However, neither the AP model
nor the power PC theory is seen as fully adequate to
explain human causal induction [40].

Algorithms for causal inference using machine learn-
ing (see Section 2.4) have also been considered as models
of human causal reasoning. Several experiments indicate
that people distinguish between observations and inter-
ventions in the same fashion as Casual Bayesian Networks
(see Section 2.2) [41-43]. One general concern is that these
algorithms require large amounts of training data, while
humans often manage to learn causal relations based on
just a few observations. In cases with more than a few
variables, it becomes impossible for humans to estimate
all required covariations, and experiments show how
humans, beside covariation data, use mechanism knowl-
edge to draw causal conclusions. Studies also show that
people use prior knowledge about temporal delays of
different mechanisms [44]. For example, if I suddenly
become nauseous, I may assume that a drug I took 2 hours
ago was the cause, and not the food I ate 1 minute ago
(example from ref. [1]), thereby reducing the number of
covariations I need to consider. People also use cues such
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as spatial contiguity (the assumption that an effect is spa-
tially close to its cause), temporal order (the assumption
that a cause cannot occur before its effect) [45], and other
temporal cues [46,47]. Waldmann [1,35] argues that humans
employ such so called knowledge-based causal induction
rather than Bayesian approaches based on statistical infer-
ence. Gardenfors [48] supports this view and further argues
that human causal cognition is based on an understanding
of forces involved in events, and he also provides guidelines
for implementations of such causal reasoning in robots.

2.3.1 Categorization of human causal cognition

Lombard and Gardenfors [5,49] suggest a seven-grade

model of the evolution of human causal cognition. The

grades form a hierarchy of increasingly more complex
causal skills:

1. Individual causal understanding and tracking behavior.
Understanding the connection between a perceived
motor action and the perceived resulting effect. Example:
A baby learns how kicking the foot results in the foot
moving in a certain way.

2. Cued dyadic-causal understanding. Understanding the
connection between the perception of another human’s
actions and the effect they have.

3. Conspecific mind reading. Understanding how another
human’s desires, intentions, and beliefs lead to dif-
ferent kinds of actions. Example: If a person fetches
a glass of water, I infer that the person is thirsty.

4. Detached dyadic-causal understanding. Understanding
the connection between another human’s actions (non-
perceived) and the effect (perceived). Example: You per-
ceive the tracks of a person in the snow, and conclude
that somebody’s presence in the past is the cause of the
tracks.

5. Causal understanding and mind reading of non-conspe-
cifics. Example: If I see an animal, or even the tracks of
an animal, I may be able to infer the mental state of the
animal.

6. Inanimate Causal Understanding. Understanding causal
relations between inanimate objects. Example (from
ref. [49]): by observing an apple falling from a tree at
the same time as a gust of wind, I infer that the wind
caused the apple to fall.

7. Causal Network Understanding. Understanding how
nodes in one causal network is linked to nodes in a
causal network in another domain. Example (from ref.
[49]): once I learned that wind can cause an apple to
fall, I may understand that wind can also cause other
things to fall or move.
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While the seven grades are presented as a model of
human evolution, we find them valuable also to describe
an “evolution” of robots with casual cognition and will
build on them for that purpose in Section 3.1.

2.4 Causation in machine learning

In machine learning, the recent progress in deep learning
has been achieved without any explicit notion of causa-
tion. The results from applications in speech recognition
[50], natural language translation, and image processing
[51] can be seen as the victory of data over models, as
claimed already in 2009 by Halevy, Norvig, and Pereira in
their article The Unreasonable Effectiveness of Data [52]. A
common view seems to have been, and to a large extent
still is, that most problems can be solved by providing
sufficient amounts of data to sufficiently large computers
running sufficiently large neural networks. As an extreme
example, the current state-of-the-art model for language
processing, GPT-3 [53], was trained with almost 500 bil-
lion tokens and contains 175 billion parameters. Given
that the size of the model is of the same order of magni-
tude as the modeled data, the comparison with a giant
lookup table is not far-fetched. Nevertheless, when GPT-3
was introduced, it outperformed previous state-of-the-art
on a large range of natural language processing tasks,
including translation, question-answering, and genera-
tion of news articles.

Despite the unquestionable success of such purely
data-driven approaches, critical voices have expressed
concerns about their true “intelligence.” Judea Pearl,
one of the pioneers in Al and causal reasoning, argues
that deep learning is stuck on the level of associations,
essentially doing advanced curve fitting [8,54] and clus-
tering, and only modeling correlations in data. As such it
works for predictions, answering questions such as “What
will the outcome of the election be?” However, it cannot
answer causal questions, like “Would we have won with
a different financial policy?,” or “How can we make more
people vote for us?” The former question requires counter-
factual reasoning about possible alternatives to events that
have already occurred. An answer to the latter question pro-
vides an action for control, such as “By lowering the interest
rates.” Both counterfactuality and control are out of reach for
methods using observational data only.

The reliance on predictive algorithms in machine
learning, combined with a dramatic increase in the use
of machine learning for real-world tasks, is for these rea-
sons seen a serious problem [55].
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Léon Bottou, a leading researcher in deep learning,
points to the fundamental problem of machine learning
“recklessly absorbing all the correlations found in train-
ing data” [56]. This leads to sensitivity to spurious corre-
lations stemming from data bias,* and a failure in identi-
fying causal relations, for example, between features and
classification of objects in images. Examples of such fail-
ures, and an argumentation for a general need to incor-
porate causation in models of human-like intelligence
can, for example, be found in ref. [4]. The specific con-
nection between causality and generalization is analyzed
in ref. [58].

Important steps have also been taken to incorporate
both causal inference and causal reasoning in machine
learning, in general (see refs. [7,59] for overviews), and
deep learning, in particular [4,60-63]. Two specific tech-
niques for supervised learning will be described in more
detail. The Invariant Risk Minimization (IRM) paradigm [56]
addresses the observed problems with “out-of-distribution”
generalization in machine learning. To train neural net-
works that also function with previously unseen data, the
training data are first divided into environments. The loss
function is extended by a term penalizing performance
differences between environments. This promotes net-
works that are invariant over environments, in a way
that is fundamentally linked to causation. The Invariant
Causal Prediction (ICP) approach [64] is a technique to
identify features that are causally connected to a target
variable (as opposed to only being connected through cor-
relation). Combinations of features are used to build sepa-
rate models for data from several different environments.
Combinations that work well over all environments are
likely to contain features that cause the target variable.
The intersection of several such successful combinations
are regarded as the overall causally relevant features.

3 Causation in robotics

In this section, we present an analysis of the role of
causal reasoning in robotics, organized in two parts.
The first part is a novel categorization of robot causal
cognition, inspired by the categorization of human causal
cognition in ref. [5], previously described in Section 2.3.1.
The latter describes a hierarchy of seven grades of causal
skills, with humans mastering all grades, and animals

4 In this case, bias refers to sampling bias [57], causing a skewed
distribution for some feature in the training data.
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only certain grades, all according to their stage in evolu-
tion. Our categorization defines eight categories that relate
to these grades; however, with several important differ-
ences as discussed in Section 3.2. The categories describe
causal cognition mainly at the sense—plan—act level.> The
second part of the analysis describes the usage of causation
in robotics, beyond the sense—plan—act level covered in the
first part.

Throughout the section, we review related earlier
work in robotics and also identify connections between
the previously described work in philosophy, statistics,
computer science, and cognitive psychology.

3.1 Causation for sense—plan-act

Our categorization comprises eight categories of robot
causal cognition at the sense—plan—act level. The under-
lying causal mechanisms are illustrated in Figure 1, with
a robot, a human, and the (rest of the) world, affecting
themselves and each other causally, illustrated by the
arrows, and with numbers referring to the corresponding
categories. The categories are illustrated in more detail in
Figure 2. An interacting human’s internal causal pro-
cesses are included since they are important for the
robot’s causal reasoning. The top row shows the human
Mind initiating (i.e., causing) Motor Forces (e.g., muscle
activations) that result in Motor Actions, (e.g., limb motions).
Motor Actions may in turn cause World Effects since the
human is situated in the environment. The robot’s mind is
modeled in a similar way, with additional World Effects
added to model non-animate causal relations. For both
the human and the robot, the term “mind” denotes the
mechanism that, for one reason or another, causes Motor
Forces. In a deterministic world, the activation of such a
mechanism, of course, also has a cause. The usage of the
word “mind,” with its associations to free will and non-
determinism, indicates that we here regard the mind as
“the ultimate cause.”

In the figure, all causal relations are illustrated by
thick arrows. Inference of causes is illustrated by thin
arrows pointing toward the inferred entity.

Categories 1-3 have to do with Causal Learning, i.e.,
how a robot learns causal relations involving itself, inter-
acting humans, and the world. Categories 4—6 have to do

5 In this context the term planning refers to all sort of low- or high-
level mappings between sensing and acting and not only planning
in its original meaning in robotics.
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Figure 1: Causal mechanisms between a robot, a human, and the
(rest of the) world. The arrows go from cause to effect, and the
numbers refer to the corresponding category further described in
the text.

Mind Motor Motor World Human
Forces Actions Effect
4. Dyadic Causal 4 o Robot
R 51
Understanding < & <5 o
=] s _E
ST AETE
23 = O
ol ¢ =
v
. Motor Motor World World
Mind .
Forces Actions Effect Effect
7. Planning 1. Sensory- 2. Learning 3. Learning
8. Innovation Motor About How the About the
Learning Robot Affects Causal World
the World

Figure 2: The functions of the eight categories of robot causal cog-
nition. Categories 1-3 refer to learning of causal relations (bold
arrows). Categories 4-6 refer to inference of causes (thin solid
arrows) related to an interacting human, while categories 7-8 refer
to how the robot decides how to act.

with the important cases of inference of causes related to
an interacting human. Categories 7-8 have to do with how
the robot decides how to act, with more or less sophis-
ticated usage of causal reasoning.

Category 1. Sensory—motor learning

This causal skill is about learning a mapping from Motor
Forces to Motor Actions (Figure 2). The former are acti-
vated by the robot’s Mind, as a result of some decision
activity, to be further described as categories 7 and 8. This
causal mechanism is also illustrated by arrow 1 in Figure 1.

Sensory—motor learning is strongly related to motor
babbling, which is the method supposedly used by infants
to learn the mapping between muscle movements and the
resulting change in body pose and limb positions [65].
Motor babbling has also been suggested as a plausible
model of humans’ acquisition of more complex beha-
viors, such as movements along trajectories for avoiding
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obstacles or movements directed to grasp objects [66].
Motor babbling has been fairly well explored in robotics
[67-69] with the same aims. The typical setup is that the
robot learns a mapping between randomly explored joint
settings and the resulting perceptual inputs, from touch
sensors or visual sensors. For complex robots with lots of
joints, the “curse of dimensionality” calls for special
solutions [70]. This mapping is strongly related to the
“the kinematic equations,” which map joint settings to
the configuration of, for example, a robot arm. In ref. [71],
a robot learns the causal relations between moving the
arm, touching an object, and the object visually moving.
The results show how causal dependencies improve scene
understanding by discriminating real objects from visual
artefacts.

In causal terms, motor babbling is related to reinfor-
cement learning (see Section 2.2), where the robot partly
executes random actions and receives reward depending
on whether the actions led to (i.e., caused) an advanta-
geous state or not.

Category 2. Learning about how the robot affects
the world

This category has to do with how a robot learns how its
Motor Actions have a causal World Effect. See Figure 2
and also the arrows labeled 2 in Figure 1. One example is
the mechanism by which a computer is switched on by
pressing a certain button, and another is how a service
robot may make its user happy by suggestion her to read
a book. The previously described RCT technique (see
Sections 2.2 and 3.3.4) provides a general approach for
such learning, and a similar experimental approach was
applied in ref. [72], where a Baxter robot learned tool
affordances (what tools can be used for). The robot first
observed demonstrations of a block being pushed with a
hoe tool by a human teacher. The previously mentioned PC
algorithm (Section 2.2) for causal learning was then used to
create an initial structural causal model in the form of a
DAG [18]. In order to orient the edges of the DAG, the robot
then intervened by forcing one variable to take a new value
and observing the result. The difference between the two
resulting interventional distributions was then estimated
by a nonparametric test. With additional interventions, the
robot added robot actions as nodes to the DAG.

Category 3. Learning about the causal world

This category has to do with how a robot learns how the
world evolves through causal mechanisms. One example
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is learning physical laws like gravitation and inertia. This
category also includes how inanimate objects and humans
affect themselves, each other, and the robot. One such
example is a robot companion learning how ice on the
road sometimes makes the human slide. Another example
is a robot learning that the user tends to forget charging it
after having watched TV late at night.

In Figure 2, this category is illustrated by the arrow
between the two World Effect items, and in Figure 1 by
the arrows labeled 3. Humans often find such causal rela-
tions by observing co-occurrences of events and com-
puting measures such as the causal power AP in equation
(5). Robots may of course do the same, with the same
associated risk of taking correlation for causation.

An experimental approach addresses this risk and
was explored in refs. [73,74], where the authors describe
an iCub humanoid robot that learns simple causal rela-
tions related to Archimedes’ principle. For example, the
robot learns that the amount of water an object displaces
is independent of the color of the object. This insight is
reached by cumulative learning of causal relations through
experimentation. Based on its experiences, the robot chooses
actions it believes will cause the desired response, and step-
by-step updates its causal hypotheses.

Just like categories 2 and 3 is closely related to the
techniques for statistical causal inference described in
Section 2.2. Any real-world application has to deal with
complex causal relations that go beyond single causes
having single effects. In the real world, causes are often
neither sufficient nor necessary, and the intertwined rela-
tions are best expressed with techniques such as causal
Bayesian networks. As described earlier, several algorithms
and software tools have been developed, both to create
such networks and to conduct causal inference with them.

Category 4. Dyadic causal understanding

This category has to do with how observations of another
agent’s motor actions are used to infer the cause of the
motor action. Humans accomplish this task with the aid
of mirror neurons, which are a specific kind of neurons
that respond to both observed and self-produced actions
[75]. By observing another human’s motor action, for
example kicking a ball, an observing human may per-
ceive unintentional movements of the leg [76]. Mirror
neurons have also been suggested to play a role in human
empathy [77]. For example, if the kicker grimaces after
hitting the ball, the observing human may also the “feel”
pain. For humans, some of these mechanisms are encoded
in innate mirror neurons mechanisms such that they do
not have to be learned [78].



246 —— Thomas Hellstrém

Category 4 refers to this type of causal inference
mechanism for a robot observing an interacting human.
The mechanism is illustrated in Figure 2, with the arrow
going from the observing robot eye to the human’s Motor
Forces, which are inferred as the cause of the perception.®
The dotted arrow illustrates the mirroring to the robot’s
Motor Forces.

Earlier related work include refs. [79,80], in which
mirror neurons are implemented to support action inter-
pretation in imitation learning and also for goal-depen-
dent action-understanding [81].

Category 5. Mind reading

There is large body of robotics research addressing how
a robot reads parts of an interacting human’s mind. The
terms “mind reading,” “theory of mind,” “mentalizing,”
and “perspective-taking” are commonly used to denote
this process [82,83]. A common focus is the human’s
ongoing and planned actions and goals and also the
underlying reasons for the human’s actions. In plan
recognition, intention recognition, and behavior recogni-
tion, a human’s actions are used to infer a plan, intention,
or behavior that is assumed to govern the human’s beha-
vior. A robot may utilize this knowledge in many ways,
for example, to support the human or to improve collabora-
tion. Example: A robot at an elder care facility observes a
human taking out a bottle of juice from the refrigerator and
infers that the human is thirsty and intends to drink. The
robot therefore recommends the human to first test the
blood sugar level. Note that this inference is susceptible
to confounding variables (see Section 2.2). One do not
have to be thirsty to take a bottle of juice from the refrig-
erator. Other possible causes may be to offer someone else
juice, to throw away old juice, or to clean the refrigerator.
Hence, correlation-based techniques are not sufficient,
and context may be necessary to make the correct infer-
ence [84].

This type of inference is addressed in category 5 and
is illustrated in Figure 2, with the robot’s eye observing
the human’s Motor Actions. Based on these observations,
the human’s plan, intention, or behavior is inferred as
a possible cause.

6 Strictly speaking, the result of the inference does not map to the
human’s Motor Forces but rather to the robot’s model of the human.
For simplicity, this distinction is not made in the figure. The same
simplification is made in the illustration of categories 5 and 6.
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The inference of a human’s mind is typically based
on an assumption of rationality on behalf of the observed
human [85], such that the human’s actions are seen as
being caused by the plan, intention, or behavior. Only
rarely is this relation to causation mentioned in pub-
lished research. One exception is ref. [86], in which intent
recognition and plan adaption is integrated for collabor-
ating human-robot teams. Causal link analysis is used to
narrow down the possible options that the human has,
thereby improving intent recognition as well as adaption
of the robot’s actions.

Mind reading is relevant for several techniques where
human operators teach robots skills. The most common
such techniques are learning from demonstration (LfD)
[87,88] and imitation learning (IL) [89]. In LfD, a human
operator typically remote controls the robot, and the
robot tries to infer the intention of the operator. In IL,
the human performs the task while the robot observes
the human and then tries to infer her intention. In both
cases, the aim is to make it possible for the robot to repeat
the demonstrated behavior, also in new situations with
different conditions than during the learning phase. The
human is usually assumed to act rationally, in the sense
that each action is performed because it causes a specific
wanted effect. This means that both LfD and IL are causal
by definition.” However, this does not mean that causal
inference techniques are used, or that causation is even
mentioned in published research on LfD and IL. Instead,
most published work rely on observed correlations between
sequences of actions and goals, intentions, or behaviors.
Some important exceptions are briefly reviewed below.

In refs. [90,91], LD is used to teach a robot arm to
follow trajectories demonstrated by a human teacher. In
order to generalize, causal reasoning is used to identify
which of three pre-defined user types (differing in degrees
of cautiousness in motion) a demonstrated trajectory
belongs to. The authors of ref. [92] address a similar pro-
blem in a multimodal setting. Using RGB images, sound
spectra, and joint angles as inputs to a deep neural net-
work, a robot may learn cross-model causal dependen-
cies. Despite this claim made in the article, it is unclear
how the correlation and causation are distinguished from
each other.

7 Note that the robot does not aim at learning causal relations
during LfD or IL but rather assumes that the human acts according
to causal principles, while the robot tries to learn the human’s goal.
For that reason, we view LfD and IL as examples of a robot con-
ducting causal inference rather than causal learning.
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In ref. [93,94], causal reasoning is explicitly utilized
for IL. The Parsimonious Covering Theory (PCT), a formal
computational model of cause-effect reasoning, is extended
and used to infer sequences of human intentions that
explain demonstrated actions in a causal fashion. This
should be compared to imitating the observed actions lit-
erally, which is often the approach taken in IL. Another
approach that combines causal modeling of the environ-
ment with IL is presented in ref. [95].

In ref. [96], the authors described an approach to
understand the causal structure of a demonstrated task
in order to find which variables cause what other vari-
ables to change. A robot simulator was used to generate
data for a demonstrated pick and place task, and Tetrad,
a well-known computer program [97] for causal analysis,
was used to identify irrelevant variables in the demon-
strated task.

The authors of ref. [98] describe, as an example, how
IL can be used to teach an autonomous car when to
brake, based on images shot by a camera mounted inside
the car. The idea is that the robot should learn to brake
when a pedestrian appears in certain locations in the
image, and data for this learning are collected with a
human driver operating the brakes. However, this can
go terribly wrong if the braking indicator lamp of the
car is visible in the images. The learning algorithm may
in such case learn to activate the brakes when the lamp is
lit, which is a clear case of how cause and effect may be
mixed up by correlation-based approaches. The authors
denote the mistake as causal misidentification and describe
it as a naturally occurring and fundamental problem in IL
and generally in machine learning systems deployed in the
real world. Two interventional strategies are proposed to
overcome causal misidentification one based on environ-
mental rewards and the other on human experts providing
additional input.

In ref. [99], the authors present a robot that learns
a cloth-folding task after watching a few human demon-
strations. The robot reproduces the learned skill and
manages to generalize the task to other articles of clothing.
While the used hard-coded graph represents causal rela-
tions, the inference mechanism only relies on correlations
observed during the demonstrations.

In ref. [100], the design of an indoor cleaning robot is
described. In order to automatically switch between four
operation modes (sweeping, absorption, grasping, and
erasing), the mapping from perceived garbage attributes
(e.g., size, solid/liquid, flat/non-flat) and the appropriate
operation mode is built by modeling observed manual
decisions with causal inference techniques. A causal
Bayesian network in the form of a DAG is constructed
using the DoWhy toolbox (see Section 2.2).
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Category 6. Detached mind reading

Sometimes the robot only perceives the effect of a human’s
action, which in itself is not perceived. Category 6 refers to
the causal skill of inferring the action in such situations.
Example: the robot sees an empty juice bottle on the kitchen
counter and concludes that the human has been drinking
juice.

This type of inference requires of the robot to handle
two mental representations at the same time: the current
perceptual state and the mind of the human in the past
[49]. The inference is illustrated in Figure 2 in the same
way as for category 5, but with the robot’s eye now obser-
ving the World Effect. Based on this information, the
human’s plan, intention, or behavior is inferred as a pos-
sible cause.

The inference of the cause of a perceived effect
answers the question why the effect was observed. This
may also be seen as generation of an explanation for the
effect. The authors of ref. [101] describe methods for infer-
ence of actions not performed by the robot (the so-called
exogenous actions) from observations. The specific tech-
niques used include KRASP, a system for Knowledge
Representation for Robots using ASP, and are based on
Answer Set Prolog (ASP) that allows representations of
causal relations. Generation of explanations is also described
as a part of understandable robots in Section 3.3.1.

Category 7. Planning

By Planning we here refer to all processes by which a
robot generates single, or sequences of, actions or beha-
viors that lead to the robot’s currently set goal. In Al and
robotics, this goes under names such as Action Selection,
Arbitration, and Planning. Planning is inherently causal
since the chosen actions or behaviors are expected to
cause known effects and not merely be correlated to
them. This was noted already in early research in plan-
ning [102] and is still sometimes mentioned explicitly,
even if it most often is an implicit assumption.

The mappings of actions to effects are either hard-
coded or learned, based on non-causal [103] or causal
[104] approaches. The previously described categories
1-3 are all relevant for such causal learning. For example,
the robot may hit a door by driving against it (category 1),
a door may swing open if being hit (category 2), and the
opening of the door may cause people in the room to turn
toward the door (category 3).

In ref. [105], causal reasoning is applied for planning
and coordinating multiple cleaning robots. Causal laws
are formulated in the action description language C+ [106],
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and a causal reasoner CCALC [107] is used for planning.
A similar approach is taken for task planning in ref. [108],
where the action domain and the planning problem are
formulated as causal theories [107] such that a causal
model corresponds to a planning solution which is found
using sophisticated solvers.

Category 8. Causal innovation

We do not define this category very precisely, but see a
need to go beyond category 7, and cover what is often
denoted “common sense,” or “human level intelligence.”
Such abilities involve a range of cognitive skills beyond
causal reasoning, such as identification of similarities
between problem domains, generalization of observations,
imagination, fantasy, and curiosity. However, many of
these skills relate to answering counterfactual questions
(see Section 2.2) like “what would have happened if I had
knocked on the closed door instead of driving against it?,”
and “what would have been the advantages that?.” This
kind of causal reasoning is placed at the top of the three-
level causal hierarchy by Judea Pearl, above the interven-
tional and associational levels [8]. Counterfactual rea-
soning is sometimes mentioned as a necessity for truly
intelligent robots but has rarely been applied in published
research. In ref. [109], counterfactual reasoning is used to
find ways to modify a scenario such that a robot controller
manages a given task. New “hallucinated” (counterfactual)
data are generated by modifying the observed scenario
data such that a simulated robot manages the task.

3.2 Discussion on the categorization

Below we summarize the eight identified causal cognition

categories. For ease of comparison, the most similar

grade in the categorization of human causal cognition

in Section 2.3.1 is given within parentheses. The related

technique listed for each category refers to a causal con-

cept or technique from robotics or one of the other

reviewed scientific fields. As such they should only be

seen as examples.

1. Sensory Motor Learning (1) — Related technique: Motor
Babbling

2. Learning How the Robot Affects the World (-) — Related
technique: Interventions

3. Learning About the Causal World (6) — Related tech-
nique: Experiments

4. Dyadic Causal Understanding (2) — Related technique:
Mirror Neurons
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5. Mind Reading (3,5) — Related technique: Intent Recogni-
tion

6. Detached Mind Reading (4) — Related technique:
Statistical Causal Inference

7. Planning (-) — Related technique: Planning Algorithms

8. Causal Innovation (7) — Related technique: Counter-
factual Reasoning

It is interesting to note that all seven grades of human
causal cognition can be associated with existing techni-
ques within robotics. In the other direction, categories 2
and 7 have no direct correspondence in the grades.
However, it can be argued that category 2 is included in
grade 1 and category 7 in grade 7.

We found earlier work in robotics that addressed all
eight categories. However, for all but category 5, we found
very few papers, in particular papers where the connec-
tions to causal concepts and reasoning are explicitly men-
tioned.

3.2.1 Comparison with the categorization of human
causal cognition

There are several differences between our categorization
of robot causal cognition and the categorization of human
causal cognition described in Section 2.3.1. One difference
concerns the distinction between human and non-human
animals. For human cognition, this distinction is important
since inference related to humans and non-humans is
believed to have taken place separately during evolution.
Humans and non-humans were therefore placed in sepa-
rate grades. Furthermore, inference of humans was placed
in lower grades, reflecting that these skills are believed
to have evolved first. We choose to merge inference of
humans’ and non-human animals’ minds into the same
category 5 and also to consider other robots as possible
agents. The main reason is that the conditions for causal
inference is very similar. For example, an assumption of
rationality should apply to the inference of both robots’
and humans’ intentions.?

Regarding causal understanding of agents versus
non-agents, we keep the distinction made in ref. [5].
Indeed, humans do not have any mirror neurons that
model, for example, stones. And stones are usually not

8 However, it would obviously be much more efficient if robots
directly communicate goals and planned actions to each other,
thereby eliminating the need for mind reading altogether. This is
of course only possible if the robots “speak the same language,” and
are programmed to share information with each other.
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regarded to be equipped with minds that are possible to
read. Causal understanding of non-agents therefore requires
other techniques, such as causal models and experiments,
as described in category 3.

Another difference is that we characterize categories
as related to either causal learning or causal inference.
This is a natural choice since learning and inference most
often are realized with very different techniques in a
robot. Furthermore, this separation is also common in
cognitive psychology (even if there, as always, are dif-
fering opinions [110]).

We also introduce two new categories that we believe
are crucial for causal robots. Category 2 has to do with the
robot learning how its actions affect the world, and cate-
gory 7 has to do with planning, in the broad sense, cov-
ering all sorts of inference on how to act.

As a consequence of our ordering of categories, the
hierarchical ordering of the seven grades in ref. [5] is not
maintained. We do not see this as a problem, since the
development of causal robots should not be expected to
follow a linear trajectory (the same is actually also assumed
for human’s evolutionary development of causal skills [111]).

3.3 Causation beyond sense-plan-act

Robotics is more than designing functionality for robots
to sense, plan, and act, and causation also plays an impor-
tant role in these other areas and aspects of robotics. A few
examples are given below, even if the list undoubtedly
could have been made much longer.

3.3.1 Understandable robots

The area understandable robots [112], sometimes denoted
explainable robots, or explicable robots, receives increased
attention and has several connections to causation.
An understandable robot should, among other things,
explain the reasons for its actions to interacting humans.
Such explanations are causal in most cases [113], or
maybe even in all cases [114], and have been shown to
affect humans’ trust in robots [115]. For other examples of
research on generation of explanations in robotics, see
refs. [101,116-119].

An understandable robot should communicate not
only the reasons for its actions but also the reasons
why it is not acting as expected, and also its goals, beliefs,
desires, limitations, and capabilities [112]. All communica-
tion for understandability should be governed by a causal
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analysis of the consequences of informing or not inform-
ing an interacting human. For example, a robot assisting
a pedestrian to cross a street should inform about an
approaching car if there is a risk of collision, and the
human most likely is unaware of the car. Furthermore,
the robot has to decide when, to whom, and on which
level of details it should communicate [120]. All such
decisions require a causal analysis to assess available
alternatives.

3.3.2 Robot ethics

As robots are getting increasingly ubiquitous and auton-
omous, several new ethical questions arise. Many of them
are intimately connected to causation.

One major question is how to design robots that
behave ethically according to the norms of the society
in which they are deployed. One approach is to imple-
ment rules or principles that govern the robot’s behavior
in the desired way. This requires of the robot to predict
the consequences of possible actions, and to generate
plans that leads to desired goals. For this, the robot needs
causal skills from, at least, categories 2 and 7 (and in the
general case also from all the other categories).

A specific problem is how to ensure that robots
behave in an unbiased and non-discriminatory way. For
example, a waiter robot should treat male and female
customers equally, in the sense that sex in itself should
not affect the order in which the robot serves customers.
This is a general problem when big data is being used to
train decision support systems, since they often inherit
bias in the data [57]. Approaches to deal with this have
only recently been addressed from a causal perspec-
tive [121].

Another major question concerns whether a robot
can be regarded as responsible for its actions. A robot’s,
or more generally, an agent’s moral responsibility is often
described with two components: causal responsibility
and intention (see e.g., ref. [122]). Being causally respon-
sible for an event here means to be the cause of the event,
often in the sense of making a difference (see Section 2.2).
In criminal law, this is often posed as a counterfactual
question: “but for the defendant’s action, would the
victim have been harmed as she was?” [123]. Intention,
the second component of moral responsibility, is also
connected to causation. For a robot to have the intention
to cause an event, it should, at a minimum, be aware of
how its actions and non-actions may cause the event.
Ultimately, robots that we consider as morally respon-
sible (as such a debatable question [124-126]) will pro-
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bably need causal competence from all of our eight iden-
tified categories. Hence, the robots must step up to the
highest rung of Pearl’s “causal ladder” [30] in order to
master the necessary counterfactual reasoning.

3.3.3 Machine learning for robotics

Machine learning has always been applied in robotics, for
example, to develop object identification and navigation
functionality. As such, the problems with current non-
causal machine learning mentioned in Section 2.4 also
are highly relevant for robotics.

Machine learning also plays a major role as a way for
robots to learn how to act. We have previously mentioned
LfD and IL as two common learning paradigms. Another
paradigm is reinforcement learning (RL), which has clear
connections to both robotics and causation. In its tradi-
tional form, RL is a technique by which a robot may form
optimal behaviors through trial and error with the envir-
onment (see, for example, ref. [127]). The robot learns
what to do in each state by getting positive or negative
reinforcement after each action. The resemblance with
interventions (see Section 2.2) is clear: the robot learns
causal links between actions and reward, and not merely
correlations between observational data. Since in reality
a complete state may not be observable, one can argue
that RL is not entirely model-free [128], and that some
level of causal knowledge is necessary, and often impli-
citly introduced, to estimate hidden states from partial
observations, or to design simulators used to generate
training data for RL. In causal reinforcement learning,
causal knowledge is explicitly introduced, for example,
as causal diagrams, with the effect that the dimension-
ality of the learning problem is reduced [129].

3.3.4 Robotics research methodology

Causation is important, not only to equip robots with
causal skills, but also as part of common robotics research
methodology. Randomized Controlled Trials (RCTs) have
already been mentioned several times in this article, as a
technique that a robot can use to deal with confounding
variables in causal inference. However, RCTs have a very
prominent role also as a way to draw causal conclusions
regarding the effect of certain design choices or to assess
how external factors influence a robot’s function and
interaction with humans. User studies is probably the
most common approach to verify hypotheses on how
humans perceive interaction with robots, and is often
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organized as an RCT (see e.g., ref. [130] for a thorough
description). An independent variable refers to a “causal
event that is under investigation” [131], for example, the
gender of a robot’s voice. The independent variable is
hypothesized to affect the dependent variable (also denoted
effect), for example, user satisfaction. A number of test
subjects are then randomly assigned to groups, where
each group “receives different treatments,” meaning that
the independent variable takes different values for each
group. In the example, the test participants in one group
would interact with a robot with a male voice, while the
others interacts with a robot with a female voice. Due to the
random assignment to groups, the effect of confounding
variables is reduced such that one can draw causal conclu-
sions from observed correlations between the independent
and dependent variable. In the example, a conclusion from
the experiment could be that a robot with a male voice
makes people less patient.

Path analysis, a special case of structural equation
modeling [132], is a more sophisticated method for causal
analysis of experiments. In ref. [133], structural equation
modeling was used to study the relation between touch
sensations (if the robot is “soft”) and personality impres-
sions (if the robot is “talkative,” etc.).

The general importance of causal learning for robots
is receiving increased attention. In ref. [34], a simulator
for development and testing of algorithms for causal
learning with robots is presented. The simulator imple-
ments basic physics and allows a user to define block-
world manipulation tasks with a simulated robot and to
conduct interventions in the causal structures.

4 Summary and conclusions

We presented a two-part analysis of the role of causation
in robotics. The first was a novel categorization of robot
causal cognition at the sense—plan—act level, summarized
in Section 3.2. We also identified connections between
each category and causal concepts and techniques in phi-
losophy, psychology, and computer science/statistics. For
most categories, very few related publications were found.
The exception was category 5: Mind reading, where some
published work on robot learning recognizes the impor-
tance of causal reasoning. However, causation is rarely
mentioned explicitly.

We also discussed how robotics research beyond the
sense—plan—act level depend on causal concepts and
assumptions, e.g., understandability, machine ethics,
and research methodology. Also in these cases, causation
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is rarely explicitly mentioned in the research articles. One
reason for this, mentioned in ref. [134], may be that most
theoretical development in causation has been based on
structural equation modeling, originating in econometrics
[132]. This has led to a focus on population-level models
[135], describing, for example, general causal relations
between unemployment benefits and unemployment levels
in a society [136]. While such relations may be relevant in
econometrics, they do not address the causal relation
between a specific unemployed individual receiving spe-
cific unemployment benefits. This kind of relations is
better handled with individual-level models such as the
sequences of mechanisms [134], and other approaches
[117,137], of which unfortunately there are not very many.
For a robot, individual-level inference is probably more
relevant than population-level, at least until robots become
considerably more advanced than they are today. Another
reason may be that the causal relations of relevance in
robotics often involve high-level concepts, while available
data typically comes from low-level sensors like laser scan-
ners and ultra-sonic sonars. Higher-level perception, such
as object classification, and recognition of faces, inten-
tions, and emotions, would be more appropriate in this
respect, but research in these areas still struggle with gen-
erality, and robustness in the real-world scenarios robots
typically operate in. This means that high-level perception
cannot be easily applied in complex cognitive computa-
tions such as causal reasoning.

The fact that causation is so rarely explicitly men-
tioned in published robotics research, has several possible
consequences. The most serious would be if causality is
simply not taken into account, leading to mistakes like
interpreting correlation in data as causation. This risk is
particularly high when data-driven machine learning is
involved. As sub-systems building on machine learning
are integrated in robots, this risk will also be an issue
for robotics. Maybe less serious, but still highly undesirable,
would be if causation is recognized as an important part of a
problem, but connections to other research areas, such as
philosophy, cognitive psychology, statistics, and computer
science, are not identified and fully exploited. This empha-
sizes the importance of a cross-disciplinary approach to
fully integrate causation into robotics research.

It is our hope that this article fills a gap by clarifying
the broad and deep connections between causal rea-
soning and robotics and by pointing at the close connec-
tions also to other research areas. At best, this will con-
tribute to a “causal revolution” [54] also in robotics.
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