
Research Article

Pauline Chevalier, Valentina Vasco, Cesco Willemse, Davide De Tommaso, Vadim Tikhanoff,
Ugo Pattacini, and Agnieszka Wykowska*

Upper limb exercise with physical and virtual
robots: Visual sensitivity affects task
performance

https://doi.org/10.1515/pjbr-2021-0014
received April 15, 2020; accepted December 6, 2020

Abstract: We investigated the influence of visual sensi-
tivity on the performance of an imitation task with the
robot R1 in its virtual and physical forms. Virtual and
physical embodiments offer different sensory experience
to the users. As all individuals respond differently to their
sensory environment, their sensory sensitivity may play a
role in the interaction with a robot. Investigating how
sensory sensitivity can influence the interactions appears
to be a helpful tool to evaluate and design such inter-
actions. Here we asked 16 participants to perform an imi-
tation task, with a virtual and a physical robot under
conditions of full and occluded visibility, and to report
the strategy they used to perform this task. We asked them
to complete the Sensory Perception Quotient question-
naire. Sensory sensitivity in vision predicted the partici-
pants’ performance in imitating the robot’s upper limb
movements. From the self-report questionnaire, we
observed that the participants relied more on visual sen-
sory cues to perform the task with the physical robot than

on the virtual robot. From these results, we propose that a
physical embodiment enables the user to invest a lower
cognitive effort when performing an imitation task over
a virtual embodiment. The results presented here are
encouraging that following this line of research is suitable
to improve and evaluate the effects of the physical and
virtual embodiment of robots for applications in healthy
and clinical settings.

Keywords: socially assistive robot, virtual agent, sensory
sensitivity, rehabilitation

1 Introduction

Nowadays, the use of social, interactive robots is increas-
ing in our daily life. How to improve the interaction
between one or more users and one or several robots is
one of the main questions of the human–robot interaction
research field. Interindividual differences in the acceptance
of the robot as an interaction partner have often been
reported [1–5]. One critical dimension along which the
users differ is their sensory sensitivity. For example, some
individuals would suffer from exposure to background
noise in an open-space environment or would be affected
by bright lights in a shopping mall, whereas others would
be less disturbed. Sensory sensitivity is mainly discussed
and defined in individuals diagnosedwith autism spectrum
disorder (ASD) as a hypo- or hyper-reactivity to sensory
stimuli [6]. However, the sensitivity to sensory stimuli
can be found in typical population as well [7], although
this too was found to be correlated with sub-diagnostic
autistic traits [8]. In ref. [8], the authors discussed that,
for auditory inputs, in the range of audible frequencies,
individuals’ “comfort zones” differ and would be narrower
for individuals diagnosed with ASD. We believe that sen-
sory sensitivity is critical in human–robot interaction, as
sensory information plays a major role in interactions with
the environment, including social interactions [9]. The use
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of vision enables people to observe the interaction part-
ner’s expressions and bodily behavior. Hearing is used to
analyze emotion in the speaker’s voice or to follow
instructions. In addition, robots are a complex source
of sensory information, as they vary in embodiment types
(e.g., humanoid or not, physical or virtual), display
mechanical parts or LEDs, and produce noise from their
motors, mechanical joints, and loudspeakers.

To our knowledge, only a few studies investigated
the role of sensory sensitivity in the acceptance of social
robots. In clinical settings, sensory sensitivity in vision
and proprioception was investigated as a predictor of
performance in an interaction with a robot (in imitation
[3], emotion recognition [10], and joint attention [11]).
In ref. [11], 11 children diagnosed with ASD were asked
to perform a joint attention task with the robot Nao (Soft-
bank Robotics). The results showed a relationship between
their reaction times and their proprioception and visual
sensitivity. However, these results were obtained during
a single interaction with the robot, with few joint attention
trials. Similarly, in ref. [10], 19 children and adults diag-
nosed with ASD were asked to identify four emotions on
different artificial agents (two robots, a virtual agent, and a
human). A relationship between correct classification of
facial expression of emotion and proprioception and
visual sensitivity was found. Finally, in ref. [3], 12 children
diagnosed with ASD did an imitation training with the
robot Nao. Sensory sensitivity in vision and proprioception
was found to predict improvement in imitation during the
sessions. Overall, these studies show that in individuals
diagnosed with ASD, visual and proprioception sensitivity
affected the success of the interaction (e.g., training imita-
tion) and in emotion recognition [10]. However, little is
known about the impact of visual sensitivity in general
(healthy) population on engagement with a robot. This
information is crucial in order to make comparisons with
clinical populations. In typically developed adults, the
auditory sensitivity was shown to have an impact on
the performance in a Stroop task with the Tiago robot
[4]. In this single case experiment, the authors manipu-
lated visual and auditory stimuli from the robot (e.g.
movements and speech volume) to make it appear neutral,
encouraging, or stressing. The participants were screened
for their sensory sensitivity in audition and vision. Indivi-
duals who generally seek auditory sensation or who do not
detect changes in auditory information performed better
with a stressing and an encouraging robot, compared with
the neutral robot. The results of this work demonstrate an
impact of the sensory sensitivity of a typical individual in a
cognitive task done with a robot, and that manipulating
the robot’s behavior in auditory and visual cues can help
improve participants’ performance.

In this context, it is important to further understand
the impact of users’ sensory sensitivity on their interac-
tions with social robots. These considerations will be
impactful for both healthy and clinical populations.
Indeed, the more attuned and engaging the robot is,
the more benefits the interaction might bring [12–14],
and sensory sensitivity might have an impact on engage-
ment. In ref. [12,14], engagement with the robot was found
to be beneficial during stroke rehabilitation therapy. The
engagement with the robot helped the users perform exer-
cises for longer periods. In long-term interactions with a
robot, the engagement with the user is often discussed
as a limitation and a point to improve in future work, as
observed in cases diagnosed with ASD (see ref. [15]).
Therapists, during interviews reported in ref. [13], high-
lighted the need for engagement during therapies including
a social robot. Therefore, maximizing the engagement and
interest of the users in the interaction can improve their
performance and avoid premature withdrawal from the
training program.We believe that studying the sensory sen-
sitivity of users of social robots, especially in socially assis-
tive robotics, could improve engagement and commitment
to interaction.

In the framework of a collaboration between the
Italian Institute of Technology and the Don Gnocchi
Foundation, we tested the use of the R1 robot [16] (see
Figure 1), as a training coach for upper limb rehabilita-
tion in an imitation task with neurotypical young adults,
in view of using the robot with elderly individuals in later
phases of the project. We believe that this is a funda-
mental preliminary step, which provides a baseline com-
parison for tests with nonhealthy individuals. In a pre-
vious article [17], we investigated the differences in the
participants’ engagement toward the robot and perfor-
mance in the task when the robot was presented in its

Figure 1: The robot R1 in its physical (left) and virtual (right)
embodiments.

200  Pauline Chevalier et al.



physical and virtual forms. Virtual agents are often used
in stroke rehabilitation therapy, and we investigated
which type of embodiment was the most engaging for
participants. As expected from literature (see ref. [18,19]
for reviews on the impact of the robot embodiment
types), we observed that the physical form of R1 improved
the engagement of our participants. We believe that real
and virtual robots offer a different sensory experience to
the user. For examples for visual cues, the flickering of
the screen in which the virtual robot is displayed may
interfere with the task for some sensitive participants,
or similarly with bright lights from the LED display of
the robots. In this article, we aimed to observe the influ-
ence of sensory sensitivity in vision on our participants’
performance in the imitation task, with regard to the
different embodiments. With this study we aim to
advance the knowledge of how sensory sensitivity can
affect the interactions between a human and a robot
partner. Investigating the difference between physical
and virtual embodiments in regard to sensory sensibility
was not done previously to our knowledge.

2 Methods

2.1 Robot and framework

We used the robot R1 [16], a 1.2 m-high humanoid capable
of extending the torso height up to 1.35 m, with two arms
of 8 degrees of freedom (Figure 1 [left]). The robot’s head
is equipped with an Intel Real Sense RGB-D camera for
depth sensing. We developed a realistic simulation of the
robot in the environment Gazebo (Figure 1 [right]). The
robot and its simulated version run on YARP [20], an
open-source middleware in which a large variety of
modules running on different operating systems can be
interconnected.

The devised framework¹ used in this article retrieves
human skeletons from RGB-D camera to analyze actions
and to provide verbal feedback to the user. The frame-
work and its modules are shown in Figure 2. First, we
detect 2D human key points on the RGB image provided
by the camera, using OpenPose [21], an open-source
library for real-time multiperson 2D pose estimation.
Key points are then reconstructed in 3D fashion, using

the depth provided by the camera, with the classical pin-
hole camera model (i.e., skeletonRetriever). The retrieved
skeleton undergoes an action recognition layer, which
classifies the skeleton data in a predefined temporal
window, using a Recurrent Neural Network with Long
Short-TermMemory cells (i.e., actionRecognizer). We trained
the network in a supervised fashion off-line, with pairs of
temporal sequences of fixed length, including 2D joints of
the upper body, and the corresponding class labels (abduc-
tion and random). At run time, if the predicted class has the
label of the exercise to perform (i.e., abduction), we perform
a finer analysis, by comparing the observed skeleton with
a prerecorded template, moving coherently with the robot
(i.e., motionAnalyzer). Observed and template skeletons are
aligned spatially, considering the roto-translational offset
between the bodies and, temporally, applying the Dynamic
Time Warping to the 3D joint positions. We then perform
a statistical analysis of the error in position between each
component of the candidate and template skeletons and
look for positive and negative tails in the error distribution,
which reflect to a higher and lower range of motion, respec-
tively. We also evaluate the speed performing the Fourier
transform of each component of the joints under analysis: a
positive difference in frequency relates to a skeleton moving
slower than the template and a negative difference relates to
a faster movement than the skeleton. Finally, the participant
is associated with a score ranging from “0” (if the movement
is completely wrong) to “1” (if no error is detected). Real-
time verbal feedback is synthetized according to the protocol
summarized in Table 1. For this article, the template is a pre-
recorded skeleton generated by a person performing the

Figure 2: The devised framework.



1 The code is open source, available at
https://github.com/robotology/assistive-rehab
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exercise with the robot and is normalized at run time to deal
with differences in the body structure. However, there
might be small differences between the template and
the robot movement (in terms of amplitude and timing).
To avoid such variations in future studies, a new version
of the template was developed to now compute at run
time the 3D configuration of the robot limbs directly
from the robot’s joints.

2.2 Experimental design

2.2.1 Participants

We recruited 16 participants (age M = 23.0, SD = 2.81;
7 males) via the web platform “join the science” of the
Italian Institute of Technology. We sampled 16 partici-
pants due to the limited time of the robot availability
and the long duration of the experiment and installation
of the participants (around 1½ h per participant). Our
study adhered to the ethical standards laid down in the
Declaration of Helsinki andwas approved by the local Ethics
Committee (Comitato Etico Regione Liguria). Participants
were compensated with 20€ for their participation. Only
right-handed participants were recruited for the experiment.
First, the participants were asked to imitate a movement
with their left arm and choosing right-handed partici-
pants ensures us that dominance differences would not
be an issue. Second, for the study reported in ref. [17] we
also recorded the neural activity, for which it is typical
to only select right-handed individuals to avoid poten-
tial variations in brain structure and functioning related
to left-handedness. Participants did not report any pre-
vious familiarity with robots.

2.2.2 Design considerations

The imitation task has been chosen as it is common
during typical rehabilitation therapy. Robots have been

used in upper limb rehabilitation for stroke patients (see
ref. [22] for a systematic review), for children with phy-
sical impairment in pediatric rehabilitation structures
[23], or for children diagnosed with ASD to train body
movement imitation [3,24]. In the typically developed
population, the use of robots has been discussed to pro-
mote sports activities to prevent insufficient physical
activity [25]. In our task, participants performed an imita-
tion task with a physically embodied R1 robot and also
with its virtual version. Critically, we introduced two
additional conditions for both the physical and the vir-
tual robot: one in which the robot was visible to the par-
ticipants and one in which it was occluded. We were
interested in the accuracy of continuation of the imitation
rhythm in the absence of visual feedback [17]. Patients
undergoing such therapy often suffer from sensitivity
impairments, for example, vision deficiency is common
after stroke or in the elderly. It is then relevant to inves-
tigate the relationship between sensory sensitivity in the
context of rehabilitation with artificial agents. However,
before recruiting patients in rehabilitation therapy to par-
ticipate to this study, we wanted to test our setup with
young healthy individuals. Indeed, it enables to verify
the feasibility of the setup without recruiting vulnerable
population.

2.2.3 Procedure

In this study, the participants were asked to do an imita-
tion task with the R1 robot, in its physical and virtual
embodiments. After receiving their informed consent,
we gave the participants earplugs to wear to attenuate
background and actuator noise, and we fitted them with
an EEG equipment (EEG data are not the focus of this
article, see ref. [17]). The setup is visualized in Figure 3.
Two types of embodiment were presented in counter-
balanced order to the participants, so that half of the par-
ticipants interacted first with the physical robot and then
with the virtual robot, and the other half interacted first

Table 1: Verbal feedback delivered by the robot during the interaction

Detected error Score Verbal feedback

Action not recognized 0.0 Please put more effort
df > 0 (<0) 0.5 Move the left arm faster (slower)
εx > 0 (<0) 0.5 Move the left arm more on the left (on the right)
εy > 0 (<0) 0.5 Move the left arm further up (further down)
εz > 0 (<0) 0.5 Move the left arm backward (forward)
— 1.0 You are moving very well
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with the virtual robot and then with the physical robot.
The physical robot and the screen displaying the virtual
robot were placed at the same distance from the partici-
pant. Before the experiment, the experimenters informed
the participants of the procedure (the text provided to the
participant can be found in the Supplementary Material).
Participants had to perform abduction movements with
the left arm following the robot’s instructions, during
three conditions. First, they had to observe the robot’s
arm performing the abduction movement (observation,
see Figure 3 first row). This step acted as a training phase,
as when a therapist demonstrates the movement to
patients. Then they had to do the movement with the
robot (visible imitation, see Figure 3 second row). Finally
they had to do the movement with the robot with its arm
occluded from the participant’s view (occluded imitation,
see Figure 3 third row). The occlusion phase was added to
evaluate how patients would perform in situations in
which perceptual information processing is not complete.
Instructions for these three conditions were provided by
the experimenters before the experiment commenced.
When the participant was interacting with the physical
robot, one of the experimenters placed a panel in front of
the robot arm at the onset of the occluded imitation con-
dition. With the virtual robot, a virtual panel appeared
in front of the robot’s arm. For each condition, the par-
ticipants performed the movement with the robot eight
times, and the sequence (i.e., observation– visible imitation–

occluded imitation)was repeated six times for each embo-
diment type of the robot. During the visible imitation
phase, the verbal feedback (see Table 1) was delivered
approximately every three and half movements (around
18 s). Participants were allowed breaks between each
sequence. When the six sequences were performed with
the physical or the virtual robot, the participants were
asked to complete a self-report questionnaire. As the vir-
tual robot did not generate any noise, while the physical
robot did, and because there was external background
noise from the equipment and environment, we made
the participants wear earplugs to neutralize most of the
noise of the motors of the physical robot. Since auditory
sensitivity was not the focus of our study, we excluded the
auditory sensitivity from our evaluation. Before starting the
experiment, we checked with each participant whether
wearing the earplugs did not cancel out the vocal feedback
of the robot (as described in Section 2). The selected move-
ment (abduction of the left arm) is rather simple, but this
movement is at present in use for arm rehabilitation,
for example after stroke. Both physical and virtual robot
did the movement at an average period of 5.6 s. The
frequency was the same across all conditions. Trial repe-
tition is fundamental for both the effectiveness of a reha-
bilitation therapy and the reliability of EEG measure-
ments. Given the duration of the experiment (around
30 min for each participant), the simplicity of the move-
ment further allowed us to keep the participants’ fatigue
under control.

2.2.4 Measurement

To evaluate the relationship between sensory sensitivity
and the participants’ performance, we collected perfor-
mance metrics and questionnaires described below.

2.2.4.1 Performance metrics

As described in Section 2, the framework recorded the
participant skeleton and the “template” skeleton (see
Figure 4). These recordings enabled comparing each par-
ticipant’s performance in imitating the movement to the
template during the visible imitation and occluded imita-
tion conditions. We used the participant’s hand position
as a predictor of good performance, as the hand’s move-
ment is the widest compared to other key points involved
in an abduction. As shown in Figure 4, the abduction
movements (i.e., the arm is resting alongside the body
and is then spread away from the midline of the body)

Figure 3: The experimental scenarios during observation, visible
imitation, and occluded imitation (respectively, first, second, and
third rows) for the physical robot and virtual robot (first and second
columns, respectively).
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occur mainly in the axes X and Y (perpendicular to the
body and parallel to the body, respectively), and this is
why we do not consider the Z axis in the measurements.
As our framework does not enable us to guaranty the
synchrony in the recording of the participants and the
template, we corrected the lag between the signals. We
computed the cross correlation between the participant
and template’s hand position in the X and Y axes for each
condition to determine the delay between two signals. We
corrected the lag between two signals and computed their
correlation coefficients, which indicates the “closeness”
from one signal to another (see Figure 5). The correlation
coefficient depends on the differences in the amplitude
and the frequency of signals: a hand moving at a different
velocity, frequency, or amplitude than the robot’s hand
would produce a lower correlation coefficient.

We computed the mean correlation score of each par-
ticipant for the whole experiment per embodiment type
(virtual robot; physical robot) and per condition (visible
imitation; occluded imitation), resulting in each partici-
pant obtaining nine scores in both X and Y axes.

2.2.4.2 Sensory Perception Quotient (SPQ)

To screen the participants’ sensory sensitivity, we used
the SPQ² [26]. This self-reported questionnaire enables
determining one’s sensory sensitivity in five modalities:
Hearing, Vision, Touch, Taste, and Smell. The question-
naire contains 92 items, and scoring them by subscales
enables obtaining one’s sensitivity for each modality. The
higher the score is, the more sensitive the person is. All
participants filled out the questions only for the Vision,
Hearing and Touch subscales of the SPQ (20 questions
each). Each question can be answered by “strongly agree,”
“agree,” “disagree,” and “strongly disagree.” The scoring
key gives a table for each question corresponding to an
answer, i.e., each question can score “0” or “1.” We com-
pute for each subscale (Hearing, Visual, and Touch) the
score corresponding to the sum of each question of a sub-
scale. Therefore, each participant had a score between
0 and 20 for Visual, Hearing and Touch sensibility. The
authors of the SPQ indicated that a higher score corre-
sponds to a higher sensitivity, but they did not indicate

Figure 4: Captures of the participant’s and template’s skeletons
during the abduction movement of the left arm. The movement
occurs mainly in the X and Y axes (respectively, in red and green in
(b) and (d)). The participant’s skeleton is tracked in the robot’s
video feed as seen in (a) and (c). With the depth-sensor data and as
explained in Section 2, the 3D skeleton of the participant, in yellow
in (b) and (d), is extracted. The template’s skeleton is visible in gray
in (b) and (c).

Figure 5: The template’s (top) and participant’s (middle) hand
positions in the X axis during the imitation phase of the first
sequence with the virtual robot. The cross correlation between
the two signals is computed (bottom) and the lag between the two
signals is corrected to compute the correlation coefficient (r)
between the two signals. The correlation coefficient is taken as
an indicator of good performance.



2 The Sensory Perception Quotient and its scoring key can be found
at https://www.autismresearchcentre.com/arc_tests
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ranges. The SPQ was originally developed for a population
with ASD, to screen their sensory perception; however, the
authors of the SPQ state that the questionnaire can be used
for population with and without ASD [26]. We did not ask
our participants to complete the Taste and Smell sub-
scales, as these senses were not related to the experiment.
However, as we used earplugs in our setup to cancel the
high background and R1’s actuator noise, we did not use
the Hearing subscale in our analysis as we are unsure on
how it affected the participants’ hearing sensitivity.

2.2.4.3 Reported strategy questionnaire

After completing the six sequences of movements with
the virtual and the physical robot, the participants were
asked to describe what strategies they used to imitate the
robot when the arm was occluded.

2.2.5 Data analysis

A 2 by 2 between-group analysis of covariance (ANCOVA)
was conducted to assess the effect of the different robots
on the participants’ performance in visible and occluded
imitations. The independent variables were the type of
robot (virtual, physical) and the imitation conditions
(visible, occlusion). The dependent variable was the per-
formance in the X and Y axes of the participants. The
mean-centered visual sensitivity score from the SPQ was
used as a covariate. We ran a similar ANCOVA but with
mean-centered sensitivity to touch as a covariate instead
of sensitivity to vision. In view of the results of the
ANCOVA, we then computed bivariate (Pearson) correla-
tions between the participants’ performance metrics in X
and Y axes and their visual sensitivity score.

3 Results

3.1 Sensory sensitivity effects

On the X axis, there was a significant main effect of the
robot’s embodiment (F(1, 14) = 7.81, p = 0.014, with a large
effect size (partial η2 = 0.358)) and of the imitation condi-
tions (F(1, 14) = 8.50, p = 0.011, with a large effect size
(partial η2 = 0.378)). A significant interaction effect was
also observed between the robot’s embodiment and
the imitation conditions (F(1, 14) = 7.75, p = 0.015, with

a large effect size (partial η2 = 0.356)). These results sug-
gest that both the robot’s embodiment and the imitation
conditions impacted the participants’ performance on
the X axis. See Figure 6 for a visual representation of the
interaction effect with visual sensitivity. We followed up
this analysis with correlations to observe the effect of
the covariate (visual sensitivity score).

We found significant relationships between the X axis
of the participants’ performance and the visual sensitiv-
ity of the participants. First, we found that a higher visual
sensitivity was positively correlated with a better perfor-
mance of the participants over the whole experiment (r =
0.606, p = 0.0128, 95% CI [0.158, 0.847]; see Figure 7).

Regarding the embodiment types, we found that a
higher visual sensitivity was positively correlated with a
better performance of the participants when interacting
with the virtual robot (r = 0.605, p = 0.0129, 95% CI [0.156,
0.847]), but we did not find any relationship in the phy-
sical robot condition (r = 0.188, p = ns, 95% CI [−0.339,
0.626]; see Figure 8).

Regarding the condition of the task, we found that
a higher visual sensitivity was positively correlated with
a better performance of the participants in occluded im-

Figure 6: Visualization of the interaction effect (robot embodiment ×
imitation condition) of the participants’ performance in the X axis
with vision sensitivity. We used the median split to create a group of
low-visual sensitivity (n = 6) and a group of high-visual sensitivity
(n = 5; the remaining participants scored the median of 9, and
therefore could not be grouped). Within-subject standard errors [31]
were used for the error bars. This graph is purely for visualization
purposes. Because of the small remaining group sizes, only the
between-subject main effect of visual sensitivity group was signi-
ficant, but none of the interactions anymore. We believe these
graphs really show how the participants’ performance in X axis
drops only if the virtual, but not if the physical, robot is occluded.
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itation (r = 0.614, p = 0.0114, 95% CI [0.170, 0.851]), but
we did not find any relationship for visible imitation (r =
0.294, p = ns, 95% CI [−0.236, 0.689]; see Figure 9).

Regarding the interactions between the embodiment
types of the robot and the condition of the interaction, we
only found that a higher visual sensitivity was positively
correlated with better performance of the participants
when interacting with the virtual robot when its arm was
occluded (r = 0.607, p = 0.0126, 95% CI [0.160, 0.848]; see
Figure 10).

We did not find any significant relationships between
visual sensitivity and participants’ performance along the

Figure 7: Scatterplot of the template–participant correlation coeffi-
cient for the left hand in the X axis in function of the participant’s
visual sensitivity score for the whole experiment. The more a par-
ticipant has a high-visual sensitivity score, the better the partici-
pant performed during the experiment.

Figure 8: Scatterplot of the template–participant correlation coeffi-
cient for the left hand in the X axis in function of the participant’s
visual sensitivity score for both embodiment types (physical – left
and virtual – right). The more a participant has a high-visual sen-
sitivity score, the better the participant performed when interacting
with the virtual robot. This relationship was not found with the
physical robot.

Figure 9: Scatterplot of the template–participant correlation coeffi-
cient for the left hand in the X axis in function of the participants
visual sensitivity score, for both conditions (visible imitation – left
and occluded imitation – right). The more a participant has a high-
visual sensitivity score, the better the participant performed when
performing the occluded imitation. This relationship was not found
when the participant performed the visible imitation.

Figure 10: Scatterplot of the template–participant correlation coef-
ficient for the left hand in the X axis in function of the participants
visual sensitivity score, for the interactions between the embodi-
ment types (virtual and physical) and the conditions (visible imita-
tion and occluded imitations). The more a participant has a high-
visual sensitivity score, the better the participant performed when
performing the occluded imitation with the virtual robot. The parti-
cipants’ performance was not affected by their visual sensitivity in
the other conditions.
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Y axis of the motion. The ANCOVA with sensitivity to
touch yielded no significant main effect for sensitivity
to touch in either X or Y axis. No significant interactions
involving touch were observed. We did not find any sig-
nificant relationships in the correlations between touch
sensitivity and participants’ performance. The full results
can be found in the Supplementary Materials.

3.2 Reported strategy questionnaire

Participants used different strategies to continue fol-
lowing the robot’s movement during the occluded imita-
tion conditions. They reported a combination of strate-
gies, involving the auditory and visual cues, delivered
by the robot or internal processes such as counting or
following their body rhythm (e.g., breathing). Table 2
provides some of the strategies reported by our partici-
pants. We categorized our participants’ strategies by clas-
sifying them as “auditory,” “visual,” or “internal” (see
Table 3 for a contingency table of the participants’ stra-
tegies). When interacting with the physical robot, 5 of
16 participants reported to rely on visual cues, 10 on

auditory cues, and 8 on internal processes. Ten of the
participants used auditory cues even if they were wearing
earplugs, as it did not neutralize all the sounds from the
robot’s motors. During the interaction with the virtual
robot, four participants reported having relied on visual
cues, and all of them reported having relied on internal
processes, such as counting or synchronizing with their
breath to perform the task.

4 Discussion

In this study, we evaluated the relationship between sen-
sory sensitivity and the performance on an imitation task
with a virtual and a physical robot. From the reported
strategy questionnaire, we confirm that sensory strategies
based on visual and hearing cues were used by the parti-
cipants of our study alongside more internal strategies,
like counting or synchronizing themovement with internal
processes, like breathing. We observed that to perform the
task with the virtual robot, the participants might have
invested more cognitive effort as they all reported using
counting or other internal processes to follow the move-
ment, while only half of them used these strategies with
the physical robot. Indeed, with the physical robot, parti-
cipants reported to rely more on auditory and visual cues
to perform the task, suggesting that the physical embodied
robot provides indeed more physical presence than its vir-
tual counterpart.

The participants’ performance in following the trajec-
tory of the robot’s hand during the task showed a number
of relationships with their visual sensitivity as scored
with the SPQ questionnaire. Participants with a higher
score in visual sensitivity performed the task in the X

Table 2: Examples of the participants’ strategies to continue following the robot’s movement during the occluded imitation conditions

Visual strategies Physical robot
“[I used the] reflection of the arm on its face”; “[I used] the vibrations of the right arm during the movement”
Virtual robot
“I used the shadow and the little movement of R1’s left arm”; “I used first the oscillation of [R1’s] body, that was
lining towards the direction of the arm that was raising”

Auditory strategies Physical robot
“I was not seeing the robot’s arm but I was hearing its movement, so I followed its rhythm”; “I heard its
mechanism”

Internal strategies Physical robot
“I counted the seconds when I was still able to see the movements, and I continued with the same rhythm”; “I was
counting my breath and replicate the rhythm and number in the occluded part”
Virtual robot
“Creating a kind of metronome in my head for the movement and counting the repetitions”; “I remembered the
rhythm between movements”

Table 3: Classification of the participants’ (N = 16) strategies as
“auditory,” “visual,” or “internal” strategies when asked to imitate
the physical and virtual robots during the occluded imitation con-
dition. Participants may have used a combination of strategies to
perform the task

Strategies

Agent Auditory Visual Internal

Physical robot 10 5 8
Virtual robot 0 4 16
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axis better across the entire experiment. However, this
relationship between visual sensitivity score and perfor-
mance was observed for interactions with the virtual
robot, but not with the physical robot. We also found
that participants with a higher sensitivity to vision per-
formed better than those with lower sensitivity in the
occluded imitation. Visual sensitivity did not play a role
in the visible imitation condition. In sum, the visual sen-
sitivity of participants was of benefit when performing
occluded imitation with the virtual robot. Following on
from these results, we propose that participants with a
higher visual sensitivity might have been better able to
detect subtle movements of the robot than participants
with a lower sensitivity. For example, they could have
been better able to detect the vibrations in the agent’s
body, which were more subtle to detect on the virtual
agent. These types of behaviors are indeed similar to
the SPQ items that relate to visual screen sensitivity.
This result is in line with the previous findings [3], where
children diagnosed with ASD who rely more on visual
cues were found to perform better in an imitation task.

Contrary to the X axis, we did not find similar results
in the Y axis. Prior to the analysis of the data, we
expected to find similar patterns in the X and Y axes, as
the abduction movement of the arm is present and similar
in both axes. We did not find an explanation to this dif-
ference in the participants’ performance in X and Y axes
in the literature. However, this behavior can be explained
by basic physics, as it is related to the forces and activa-
tion of the muscles applied to the arm during the abduc-
tion movement. Indeed, at the initial position (against
the body) and the goal position (i.e., away from the
body), the arm has a null velocity and therefore a null
momentum (i.e., quantity of movement). At the goal posi-
tion (i.e., away from the body), the arm is in extension
and the muscles are activated. We hypothesize that the
hand suffers less variation when the arm is stiffer, caus-
ing no difference in the variation in X and Y axes.
Contrary, in the initial position, the arm is close to the
resting position (i.e., the arm against the body). Thus, the
participants had their relevant muscles passing from an
active to a resting state in this position, inducing a wider
variation in movement in the X axis compared to the Y
axis. Furthermore, when the arm goes down, the Y com-
ponent moves in favor of gravity, which might justify the
lower variation too.

Finally, we did not find any significant relationship
between the participants’ performance and touch sensi-
tivity. The tangible nature of the robot’s embodiment did
not appear to influence the performance of our partici-
pants depending on their touch sensitivity. However,

touch was not involved in the task itself, so a lack of
relationship with sensitivity to touch is not surprising.

Interestingly, visual information was discussed to be
primordial in synchronization between two interaction
partners. Indeed, during a repetitive task, two humans
will synchronize [27,28]. As discussed in ref. [27], visual
information of the movement enables partners to increase
the synchrony. The authors asked participants to perform
a puzzle while holding a pendulum and observed that
when the visual stimuli was visible, the synchrony
increased. Similarly, ref. [28] observed that people will
synchronize with a stimulus displayed in the environ-
ment. However, in ref. [29], the authors discussed that
in human–robot interaction, the synchronization does
not emerge naturally. The robot needs to adapt to the
human movements during the interaction, to retrieve
this natural phenomenon. In our article, we did not
record the difference in phase between the participants
and the robots, but we nonetheless observed that visual
cues (from the robot vibration, for example) could help in
the imitation in frequency and amplitude in the occluded
imitation phase, as there was no impact of occlusion on
participants’ performance.

As participants’ performance in the physical robot
condition was practically at ceiling, with no impact of
occlusion, we suggest that a physical embodiment requires
less cognitive strategies in continuing an imitation task
under conditions with lack of sensory information, com-
pared to its virtual counterpart. This is perhaps not sur-
prising due to the larger amount of sensory cues that
embodiment provides, even when the most relevant cue –
the arm in our case – is unavailable. The interesting
finding of our study is that people with higher visual
sensitivity are able to keep a rhythm of imitation in the
occluded condition (with virtual robot) better than those
with lower visual sensitivity. This might be due to a better
consolidation of sensorimotor representation of the task.
Finally, it is also important to note that overall, the per-
formance in the virtual occluded condition was substan-
tially lower than the performance in the other conditions
(physical robot and visible imitation, physical robot and
occluded imitation, and virtual robot and visible imita-
tion). This is due to a lack of additional sensory cues that
the virtual agent’s embodiment provides, even in the
absence of the most relevant sensory input. Hence, this
speaks in favor of the idea that physical embodiment
provides physical presence to a larger extent and allows
for compensatory strategies, such as picking up additional
cues and signals in the absence of the relevant channel.

Given the relationship we found, the absence of visual
input might detrimentally affect a typical rehabilitation
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therapy. However, the quality of the therapy could ben-
efit from the use of an embodied platform, specifically
designed to enhance different sensory channels. Therefore,
we believe that our findings are important when devising
strategies for delivering rehabilitation. In the rehabilita-
tion contexts, this should be taken into account when
considering whether physical embodiment can be substi-
tuted only by virtual agents. For example, virtual agents
are widely used to deliver rehabilitation therapies to
elderly individuals; however, this population shows a
degradation in their visual functions [30]. The use of
physical robot may be beneficial for them in view of our
results.

A limitation of our work is the difference in size of
both robots. The virtual robot was indeed smaller than
the real robot, as it is shown in Figure 3. It was already
discussed that the size of virtual agent against real arti-
ficial agent could play a role in the perception and inter-
action with the agent (see ref. [19]). Indeed, this review
suggests that people respond more favorably to real
agent than virtual agents. We also obtained these results
in our previous paper [17]. We cannot exclude this effect
to happen in our experiment. However, we made sure
that during the task, the movement of the robot was
clearly visible in both condition. Another limitation of
our work is the subject pool number, as we recruited
only 16 participants. This was due to the limited time of
the availability of the robot and the long duration the
experiment and installation of the participants.

To our knowledge, this is the first study investigating
the relations between sensory sensitivity and the perfor-
mance in an imitation task with a real or a virtual robot.
Taken together, we show that visual sensitivity predicts
performance in an imitation task, especially in the absence
of complete sensory input (as was the case for our virtual
robot condition, with occlusion). Even though these
results are only preliminary and need to be replicated
with larger samples, including patients, they can be
informative with respect to designing human–robot
interaction for rehabilitation. These results should be
followed up with studies with clinical populations,
such as children diagnosed with ASD who show wider
and more pronounced interindividual variability in
sensory sensitivity [6] and elderly people suffering from
sensitivity impairments (e.g., hearing or vision loss)
due to aging conditions.
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Appendix

Instruction to the participants

The following instructions were provided by the experi-
menters to the participants:

The robot will demonstrate a simple exercise. Please
just observe and try to sit still. When the robot says
“Now do the same with me,” try to copy the same motion
together with the robot, using your left arm. Then we will
put a panel between you and the robot’s arm, so you can’t
see it anymore. It is very important that you keep looking
at the robot: try not to be distracted by the placement of
the panel. Even when you can’t see the robot’s arm any-
more, try to keep copying the same motion.

After this exercise, please take a break for as long as
you need. When you indicate that you’re ready, we will
repeat the exercise, followed by another break until
we have completed the exercise six times. During each
break, you can take as long as you need. If you feel any

discomfort, please stop immediately. This has no conse-
quences for your participation or your payment.

After these exercises, you can have a rest while we
change the setup. When you’re ready, we will do the
same but this time via the screen/physical robot

To reiterate:
- Try to remain still when you’re just observing the robot.
When you’re copying the robot, try to only move your
left/right arm.

- You decide how long your breaks are.
- You can stop at any time.

Additional results

1. Plots of the participants’ performance (i.e., the cross
correlation between the participant and template’s
hand position in X axes, R) depending on their first
interaction partner (physical or virtual robot).
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2. Sensory sensitivity effects on the cross correlation between the participant and template’s hand position in the
observed axes.

(a) ANCOVA with sensitivity to vision as covariate in X axis

Condition F(1,14) p Partial η2

Robot 7.81 0.014* 0.358
Imitation 8.50 0.011* 0.378
Robot × imitation 7.75 0.015* 0.356

(b) Correlations between the X axis of the participants’ performance and the visual sensitivity of the participants.

Condition R p 95%CI

All conditions 0.606 0.013* [0.158, 0.847]
Physical robot 0.189 0.484 [−0.339, 0.626]
Virtual robot 0.605 0.013* [0.156, 0.847]
Visible imitation 0.294 0.268 [−0.236, 0.689]
Occluded imitation 0.614 0.011* [0.170, 0.851]
Physical robot × visible imitation 0.126 0.641 [−0.394, 0.585]
Physical robot × occluded imitation 0.187 0.488 [−0.340, 0.625]
Virtual robot × visible imitation 0.373 0.154 [−0.150, 0.733]
Virtual robot × occluded imitation 0.607 0.013* [0.150, 0.848]

(c) ANCOVA with sensitivity to vision as covariate in Y axis

Condition F(1,14) p Partial η2

Robot 2.59 0.130 0.156
Imitation 3.52 0.082 0.201
Robot × imitation 3.71 0.750 0.209

(d) Correlations between the Y axis of the participants’ performance and the visual sensitivity of the participants.

Condition R p 95%CI

All conditions 0.310 0.243 [−0.219, 0.698]
Physical robot −0.392 0.133 [−0.743, 0.129]
Virtual robot 0.353 0.180 [−0.173, 0.722]
Visible imitation −0.141 0.602 [−0.595, 0.381]
Occluded imitation 0.375 0.152 [−0.148, 0.734]
Physical robot × visible imitation −0.288 0.280 [−0.686, 0.243]
Physical robot × occluded imitation −0.473 0.064 [−0.785, 0.030]
Virtual robot × visible imitation −0.073 0.788 [−0.549, 0.439]
Virtual robot × occluded imitation 0.401 0.124 [−0.118, 0.748]
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(e) ANCOVA with sensitivity to touch as covariate in X axis

Condition F(1,14) p Partial η2

Robot 0.032 0.862 0.020
Imitation 0.000 0.990 0.000
Robot × imitation 0.013 0.912 0.001

(f) Correlations between the X axis of the participants’ performance and the touch sensitivity of the participants.

Condition R p 95%CI

All conditions −0.086 0.751 [−0.558, 0.428]
Physical robot −0.214 0.426 [−0.642, 0.315]
Virtual robot −0.068 0.803 [−0.545, 0.443]
Visible imitation −0.363 0.167 [−0.728, 0.162]
Occluded imitation −0.045 0.869 [−0.529, 0.461]
Physical robot × visible imitation −0.330 0.211 [−0.710, 0.198]
Physical robot × occluded imitation −0.048 0.860 [−0.531, 0.459]
Virtual robot × visible imitation −0.342 0.194 [−0.716, 0.185]
Virtual robot × occluded imitation −0.042 0.877 [−0.527, 0.463]

(g) ANCOVA with sensitivity to touch as covariate in Y axis

Condition F(1,14) p Partial η2

Robot 0.070 0.795 0.005
Imitation 0.047 0.832 0.003
Robot × imitation 0.031 0.863 0.002

(h) Correlations between the Y axis of the participants’ performance and the Touch sensitivity of the participants.

Condition R p 95%CI

All conditions −0.008 0.978 [−0.501, 0.490]
Physical robot −0.436 0.092 [−0.766, 0.077]
Virtual robot 0.031 0.910 [−0.472, 0.519]
Visible imitation −0.160 0.554 [−0.607, 0.365]
Occluded imitation 0.022 0.937 [−0.479, 0.512]
Physical robot × visible imitation −0.436 0.091 [−0.766, 0.076]
Physical robot × occluded imitation −0.394 0.131 [−0.745, 0.126]
Virtual robot × visible imitation −0.044 0.872 [−0.528, 0.462]
Virtual robot × occluded imitation 0.041 0.881 [−0.464, 0.526]
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