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Abstract: Suppose an artificial agent aadj, as time unfolds,
(i) receives from multiple artificial agents (which may,
in turn, themselves have received from yet other such
agents:::) propositional content, and (ii) must solve an
ethical problem on the basis of what it has received.
How should aadj adjudicate what it has received in order
to produce such a solution? We consider an environment
infused with logicist artificial agents …a a a, , , n1 2 that
sense and report their findings to “adjudicator” agents
who must solve ethical problems. (Many if not most of
these agents may be robots.) In such an environment,
inconsistency is a virtual guarantee:aadj may, for instance,
receive a report froma1 that propositionϕ holds, then from
a2 that ¬ϕ holds, and then from a3 that neither ϕ nor ¬ϕ
should be believed, but rather ψ instead, at some level of
likelihood. We further assume that agents receiving such
incompatible reports will nonetheless sometimes simply
need, before long, to make decisions on the basis of these
reports, in order to try to solve ethical problems. We pro-
vide a solution to such a quandary: AI capable of adjudi-
cating competing reports from subsidiary agents through
time, and delivering to humans a rational, ethically correct
(relative to underlying ethical principles) recommendation
based upon such adjudication. To illuminate our solution,
we anchor it to a particular scenario.

Keywords: cognitive calculus, cognitive robotics, adjudi-
cation, adjudication for ethical principles, ethics

1 Introduction

Neurobiologicallynormal,maturehumanbeingsoftenenjoy
the luxury of being able to make decisions in and unto
themselves. A hot burner on a stove, if mistakenly touched,
can lead to a rather quick decision to pull away; and while
such a decision usually happens by reflex, the human
in question can then inspect his/her finger and decide
whether or not treatment is needed. But as we know, deci-
sion-making is not always this independent; sometimes
what humans must decide must factor in what has been
received fromother humans.When this happens, the situa-
tion canbequite tricky. Perhaps this is especially truewhen
the required decision is needed in order to try to resolve
some ethical problem. Note that in the course of human
affairs, profound ethical decisions have long needed to be
made in thesekindsofbuzzing,dynamic, dialectical,multi-
agent scenarios,where all the agentsarehumans.Deepand
challenging legal cases provide a case in point,¹ as for that
matter so do command-and-control challenges to humans
inwarfare, adomain thatour case studygivenbelow relates
to.² But our taskherein is to formalize theAI correlate of this
kind of tricky situation and to propose away for a new kind
of AI to solve the correlate.

This AI correlate, in broad strokes for the moment,
has the following structure: An artificial agent aadj, as
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1 It would, e.g., be quite interesting to see how an artificial agent of
the type introduced in the present paper would, if suitably “armed”
with starting information, adjudicate the Dreyfus case, covered bril-
liantly in literary fashion by Proust [68], and in hard-nosed journal-
istic fashion in ref. [69].
2 For a deeper, more complex case study in this domain, it would be
interesting to see whether decision-making as to when to engage
Pershing’s new-world forces in WW I, which involved many a mind
interacting with Pershing’s, could be automated. For background,
see ref. [70].
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time unfolds, (i) receives from multiple artificial agents
(which may, in turn, themselves have received from yet
other such agents…) propositional content, and (ii) must
solve an ethical problem on the basis of what it has
received. How should aadj adjudicate what it has received
in order to produce such a solution? We consider an envi-
ronment infused with logicist artificial agents a a a, ,..., n1 2
that sense, and report their findings to “adjudicator”
agents who must solve ethical problems. (Many if not
most of these agents may be robots.) In such an environ-
ment, inconsistency is a virtual guarantee: aadj may, for
instance, receive a report froma1 that propositionϕ holds,
then froma2 that¬ϕ holds, and then froma3 that neitherϕ
nor ¬ϕ should be believed, but rather ψ instead, at some
level of likelihood. We further assume that agents receiv-
ing such incompatible reports will nonetheless sometimes
simply need, before long, to make decisions on the basis
of these reports, in order to try to solve ethical problems.
We provide a general solution to such a quandary: AI
capable of adjudicating competing reports from sub-
sidiary agents through time, and delivering to humans
a rational, ethically correct (relative to underlying ethical
principles) recommendation based upon such adjudica-
tion, with concomitant justification for the recommenda-
tion. To illuminate our solution, we anchor it to a parti-
cular scenario.

Note that the sort of quandary we seek automated
solutions for have sometimes been called ethical dilemmas.³
We do not wish to focus on ethical dilemmas in the present
paper, but rather on a general formof an ethical problem, as
defined below (Section 3.2). Yet we do offer here an obser-
vation regarding such dilemmas: namely, they can’t be re-
solved by logicist (intelligent) artificial agents that don’t have
thecapacity toadjudicatecompeting, incompatiblearguments
in general. Our emphasis in the present paper is to introduce
formalisms and techniques for how such a capacity can
be given to an artificial agent. Once that is accomplished,
dividends will have been paid for use in the case of outright
ethical dilemmas.

The remainder of the paper unfolds as follows. Next
(Section 2), we introduce the methods by which we bring
to bear AI agents which can adjudicate thorny ethical
problems. We first (Section 2.1) explain the brand of AI
that we pursue. We then summarize our approach to

machine ethics, which is overall based on four general
steps (Section 2.2). In Section 2.3, we quickly point out
that, at a finer-grained level than our four general steps,
lies a specific need to obtain AI able to handle reasoning
that occurs as a dialectic through time. We then present
our results in Section 3. First, we describe the particular
formal logic (or, more accurately for reasons we explain,
cognitive calculus) that is the basis for the kind of auto-
mated adjudication capability needed inmulti-agent situa-
tions where the agents offer competing, incompatible
recommendations in ethically charged situations (Section
3.1), define the concept of an ethical problem, in our gen-
eral, abstract sense (Section 3.2), and define as well what
it is for such a problem to be solved (Section 3.3). At this
point, we are ready to show that our approach can handle
a challenging scenario that demands adjudication of com-
peting arguments through time, and do so in Section 3.4.
We next anticipate and respond to a series of objections
to our approach (Section 4). We conclude the paper in
Section 4.4 by reflecting upon yet another objection to
our approach, one that points to a need for future work
of a certain kind.

2 Methods

2.1 Our overall logicist approach

AI has become a vast field, as chronicled and explained
in ref. [1]. Accordingly, the pursuit of computing machines
that qualify as intelligent, and indeed even the meaning
of “intelligent” itself in some contemporary debates, are
defined differently by different researchers and engineers,
even though all of them work under the umbrella of “AI.”
Our approach is a logicist one, or – as it’s sometimes said –
a logic-based one. A full characterization of our approach
to AI and robotics is of course beyond the reach of the
present paper, but we must give at least information to
orient the reader, and we do so now. We turn first to the
generic concept of an artificial intelligent agent, or – since
by context it’s clear thatwemust have intelligence, in some
sense, front and center – simply artificial agents.

2.1.1 Artificial agents/AI, generically speaking

For present purposes, we rely upon how dominant text-
books, for example ref. [2,3], characterize artificial agents.
Their characterization is simply that such an agent com-



3 Perhaps the best starting point for learning about ethical dilemmas
is the work of Kohlberg, and the scenarios that for him were given as
classical ethical dilemmas. The ability to handle ethical dilemmas
was for Kohlberg the hallmark of sophisticated ethical reasoning and
decision-making; see ref. [71].
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putes a function fromwhat is perceived (percepts) to beha-
vior (actions). All such agents are assumed to operate
this way in a certain environment, but for present pur-
poses, we can leave explicit consideration of this aspect
of the AI landscape to the side; doing so causes no loss of
generality or applicability for the work on machine ethics
we relate herein. But what about the nature of the function
from percepts to actions? As pointed out in the course
of an attempt to show that the so-called Singularity⁴ is
mathematically impossible, ref. [4] notes the fact that
in the dominant AI textbooks, these functions are firmly
assumed to be recursive. In the present paper, we affirm
this assumption, but the reader should keep in mind that
despite this affirmation, our AI technology can still be
based upon automated reasoning that is routinely applied
to problems that are Turing-uncomputable in the general
case. After all, all automated reasoners that are specifically
automated theorem provers for first-order logic confront
theEntscheidungsproblem,first shownunsolvablebyChurch
(Church’s Theorem).

2.1.2 The logicist approach to AI/robotics

We can now quickly state the heart of our logicist approach
to AI and robotics, as follows. The artificial agents we spe-
cify and implement compute their functions (from, again,
percepts to actions) via automated reasoning over a given
formulaϕ in some formal language� for some formal logic
ℒ. This means that what these agents perceive must ulti-
mately be transduced into content expressed in such for-
mulae; and it means that an action, before translated into
lower-level information that can trigger/control an effector,
must also be expressed as a formula. The reader will see
this in action below, both abstractly (when we explain
what an ethical problem in general is for us, and what a
solution to such a problemconsists in, generally speaking),
andwhenwe present the promised scenario. But how, spe-
cifically, are the functions computed in the case of such
agents? The answer is straightforward: These functions are
computed by automated reasoning. Of course, it has long
been known that computation, while often understood
in procedural terms (e.g., in terms of Turing machines),
is fully reducible to, and usable as, reasoning.⁵

What about robotics, specifically? Well, first, the type
of robotics we pursue is best called cognitive or – taking

account of the terminological fact that sometimes the intro-
duction of cognitive elements to a formalism makes
that formalism behavioral in nature; see e.g. ref. [5] –
behavioral. We specifically pursue cognitive robotics as
defined in ref. [6],⁶ with a slight formal tweak, and say
simply that a cognitive robot is one whose macroscopic
actions are a function of what the robot knows, believes,
intends, and so on. As seen below, these verbs are at
the heart of a cognitive calculus, the class of cognitively
oriented logics we employ for machine ethics in general,
and automated argument adjudication specifically. Cogni-
tive calculi are explained in more detail in Appendix A1.

2.1.3 Ethics is rooted in logic

One final point about our approach, one the reader at this
juncture will find thoroughly unsurprising: we view
attempts to decide what an agent, whether artificial or
human or – for that matter – extraterrestrial, ought (can,
etc.) to do, to be, overall, a matter of what holds, declara-
tively speaking. This view on our part is simply derived
from the observation that, from the standpoint of profes-
sional ethics as practiced and taught in the Academy,
that which is obligatory (permissible, forbidden, uncivil,
supererogatory, etc.) is determined by the standing of
propositions, where those propositions are expressed in
declarative statements. Given this, formal logic becomes
a rather promising discipline for capturing ethics sys-
tematically; and in its computational guise, formal logic
then becomes in turn a natural vehicle for computing
what is obligatory (permissible, etc.). Beyond this, onemight
wonder when, specifically, computational logic arrives on
the scene for – at least aspirationally speaking – imbuing
a computing machine with a capacity to make ethical
decisions unto itself. Presumably, this point in time may
coincide with when people first rendered deontic logic in
computation; an early example is ref. [7].

2.2 Our machine-ethics approach,
brutally summarized

Our “Four Steps” to making morally correct machines,
depicted pictorially from a high level in Figure 1, was first
presented in ref. [8]. We now briefly explain the steps in
question.

4 The point in future time at which, so the story goes, AIs reach
human-level intelligence, and the immediately thereafter ascend to
intellectual heights far, far above our own.
5 This is what allows proofs of the Halting Problem for Turing
machines to be relied upon to prove the undecidability of the Entschei-
dungsproblem; see e.g. ref. [72].



6 As is pointed out in that paper, as far as most relevant thinkers
know, it was actually Ray Reiter who coined and first defined the
phrase “cognitive robotics.”
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The first step is the selection of an ethical theory
(or theories), from a family of such theories.⁷ The well-
known families are shown in Figure 1. For instance, one
family of ethical theories is divine-command; another is
utilitarianism; a third is virtue ethics. An ethical theory
that is a member of the second of these families would
be standard act utilitarianism, according to which, put
quickly and without nuance, one ought to always per-
form those actions from available ones that maximize
happiness among the population that can be affected;
for exposition of this ethical theory, see the old but vener-
able [9]. For the most part, in the past, we have, at one
point or another, carried out work based on each family
shown in Figure 1. For instance, for some prior work
that reflects pulling from both utilitarianism and from
deontological families, see ref. [10], which centers around

the so-called Doctrine of Double Effect, a version of which
we use below. Note that we do not advance a framework
that requires one to commit to any particular one of these
theories, or even to particular families of theories. Our
framework is general enough that it can be applied to
any ethical theory, or collection or family thereof. That
said, there are a few high-level requirements for our gen-
eral approach to machine ethics to be pursued, as fol-
lows. Unsurprisingly, these requirements are rooted in
formal logic.

Suppose that we have a family E of ethical theories
of interest. We require that any ethical theory E� ∈ regi-
ments how deontic operators that are invariants across
all ethical theories (e.g., obligatory, permissible, forbidden,
supererogatory, etc.) are to apply to either or both of states-
of-affairs and actions performable by agents. In our
approach, any ethical theory usable in The Four Steps
must be formalized so as to capture these notions.

This formalization is made possible by a cognitive
calculus. While details are provided in Appendix A1,
such a calculus � is a pair � �〈 〉, where � is a formal lan-
guage (composed in turn, minimally, of a formal grammar,

Figure 1: The four steps in making ethically correct machines.



7 This first step includes not only this selection, but the selection,
immediately thereafter, of a particular domain-specific ethical code
that falls under the selected theory, but this is left aside for economy
here.
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and an alphabet/symbol set), and � is a collection of
inference schemata (sometimes called a proof theory
or argument theory) � . Within the present paper, as ex-
plained below, the cognitive calculus �μ will be utilized.

The second of The Four Steps is to automate the gen-
eration of proofs of (un-)ethical behavior so that the rea-
soning can be utilized and acted upon by autonomous
robots. As we explained above, logicist AI for us entails
that the percepts-to-actions functions are handled byauto-
mated reasoning. We specifically use ShadowProver [11,12],
an automated theorem prover for cognitive calculi.

Step 3 in The Four Steps is to integrate automated
ethical reasoning into a cognitive robot’s operating system
(details available in ref. [8,13]). There are basically two
possible approaches to this (see Figure 2). In the first,
only “obviously” dangerous capabilities of an AI/robot
are restricted with safeguards implemented above the OS
level. In the second approach, all AI code must comply
with an “Ethical Substrate” that is part of the OS. Unfortu-
nately, while the first approach allows rapid engineering,
unforeseen unethical behavior on the part of the AI/robot
is entirely possible (see ref. [13]). Only by way of the second
option is there any guarantee that the selected ethical
theories and associated ethical codes will remain in force.

In the fourth and final step, we implement our ethical
OS into a physical robot and arrive at a moral machine.⁸
Specifically, a machine which can be formally verified to
always act in accordance with an ethical theory.

2.3 The specific need to handle dynamic
dialectic

So much for a high-altitude overview of our approach to
machine/robot ethics, in the form of The Four Steps. We
now draw the reader’s attention to a specific capability
we need in our AI for making the Four Steps concrete
reality. In short, we need our automated reasoners to be
able to handle, throughout time, ethical reasoning and

Figure 2: Two futures –with and without an ethical substrate. Higher-level modules are vulnerable to tampering. The ethical substrate
protects the robotics substrate from rogue modules (figure from ref. [18]).



8 The fourth step in our Four Steps should not be taken lightly and
is indeed a full-blown process unto itself. We have been told this in
no uncertain terms: We have encountered roboticists of incontest-
able stature who maintain that while our formal work certainly
comes with its own significant challenges for the computational
logician, and while our automated-reasoning technology is robust
and requires software engineering of high quality, the genuine
implementation across the board of what eventuates from our
Step 3 comes with its own deep, deep challenges – challenges that
can only be met by engaging in a phase of concrete and practical
physical engineering. We do not in any way regard this position with
skepticism; in fact, we accept it. At the end of the day, even when
our work is implemented on physical systems, that is, in physical
robots (e.g. see ref. [73]), our work is in the realm of cognitive
robotics [6], the hallmark of which is that substantive actions per-
formed by the robots in question are a function of the cognitive
attitudes of such robots (where such attitudes are, for us, repre-
sented in cognitive calculi). But physical robots, and for that matter
“softbots” once implemented in physical environments, require an
implementation phase that is long and challenging in its own right,
even when this phase is supplied with the fruits of our Step 3.
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counter-reasoning. We specifically need, therefore, auto-
mated reasoners with the capability to detect and resolve
inconsistencies arising from competing arguments and
positions on moral matters. But this is only one aspect of
sevenfold desiderata for the kind of capability our AI must
have. We dub this set of desiderata “� ,” and lay down that
an automated reasoner of the kind we seek must:

Desiderata (�)
d1 be defeasible (and hence – to use the term fre-

quently employed in AI – nonmonotonic) in nature
through time;

d2 be able to resolve inconsistencies of various sorts,
ranging, e.g., across ω-inconsistency to “cognitive
inconsistency” (e.g., an agent a believing both ϕ
and ¬ϕ) to standard inconsistency in bivalent
extensional logic when appropriate, and tolerate
themwhen necessary in a manner that fully permits
reasoning to continue;

d3 make use of values beyond standard bivalence and
standard trivalence (e.g., beyond the Kleenean TRUE,
FALSE, UNKNOWN trio), specifically probabilities and
strength-factors (the latter case giving rise to mul-
tivalued inductive logic);

d4 be argument-based, where the arguments have
internal inference-to-inference structure both in
terms of declarative formulae (and possibly dia-
grams) and inference schemata, so that detailed
verification, justification/explanation is available;

d5 have specified inference schemata (which sanction
the inference-to-inference structure referred to in
d4), whether deductive or inductive, that are
machine-checkable;

d6 be able to allow automated reasoning over
the sociocognitive elements of knowledge, belief,
desire, perception, communication, emotion, etc.,
of relevant artificial and human agents, where
these elements are irreducibly intensional;

d7 be able to allow automated reasoning that can
tackle Turing-unsolvable reasoning problems, e.g.,
queries about provability at and even above the

Entscheidungsproblem (e.g., at and above ∑1
0 and ∑1

1

in the Arithmetical and Analytical Hierarchies, resp.)

2.3.1 Relevant prior work

2.3.1.1 OSCAR

One of the major modern contributors to research in argu-
ment-based reasoning through time and cognitive change

on the part of the agents involved (sometimes called
argument-based defeasible reasoning⁹) is John Pollock,
a philosopher who made seminal contributions to AI.
Pollock developed a robust theory of rationality which
revolves around the ability to reason defeasibly. He also
implemented this theory in an AI agent called “OSCAR.”
Among all those who have worked on defeasible reason-
ing in argument-centric fashion, there can be no denying
that Pollock stands as hands down the most ambitious,
since he repeatedly claimed and sought to defend the
dual propositions that his line of work can be used to
literally build artificial persons, and that the essence of
this line is to formalize and computationally implement
defeasible argumentation (note the titles in ref. [14,15]).
For technical details regarding Pollockian work given in
AIish terms, see ref. [16,17].

OSCARemploysfirst-order inferenceaswell asPollock’s
(coarse-grained) schemata for defeasible reasoning in order
to solve problems. Input to OSCAR includes a list of for-
mulae, termed givens, with corresponding rational-number
strength values (not probabilities; Pollock adamantly
rejected the probability calculus in all standard forms)
and the ultimate epistemic interest of the artificial agent:
the formula OSCAR will try to establish from the givens,
once processing is launched. The strength of formulae
is a rational number ranging from 0.0 to 1.0 (inclusive),
where 1.0 means that the formula is known with abso-
lute certainty to hold. Values less than 1.0 indicate levels
of uncertainty in the truth of the statement and allow such
statements to be defeated by arguments that rely solely
on statements of higher strength.

OSCAR is impressive, but falls short of meeting the
list � of desiderata prescribed above. First, while OSCAR
includes a set of deductive inference schemata for first-
order logic, it has no inference schematawhatsoever for its
inductive arguments. As a result, its analysis of several
arguments makes no directed use of the internal structure
of individual inference steps. This generally corresponds
to abstract treatments of arguments and the suppression
of the specifics of individual inferences that are chained
together to make an argument; a classic scheme in this
tradition is presented in ref. [18]. OSCAR therefore doesn’t
satisfy d4 and doesn’t satisfy d5. Also, as it is limited to



9 AI cognoscenti will know that “defeasible reasoning” and “defea-
sible logic” are phrases that are for the most part coextensive with –
in AI – “nonmonotonic reasoning” and “nonmonotonic logic.” We
do not have the space to canvas, even just in part, work that falls
under these phrases. Seminal work on nonmonotonic reasoning/
logic was carried out nearly half a century ago, e.g., by McCarthy
[74] and Reiter [75] – but this work was not, at least by our metrics,
argument-based; and nor was subsequent effort in this vein.
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first-order logic, OSCAR cannot satisfy d6 without falling
into unsoundness, as shown in ref. [19].

2.3.1.2 Other defeasible argumentation systems

What about work in defeasible argumentation systems, in
general, with an eye to �? A full answer to this question
that takes account of all (or, for that matter, even most)
prior systems is space-wise infeasible (a nice but now
somewhat dated survey is provided in ref. [20]); we thus
restrict ourselves to mentioning two pieces of impressive
prior work, neither of which significantly overlaps our new
approach, as we explain:
1. Ref. [21] presents a general framework for structured

argumentation, and the framework is certainly compu-
tational in nature. This framework, ASPIC+, is in fact
Pollockian in nature, at least in significant part. More
specifically, ASPIC+ is based upon two fundamental
principles, the second of which is that “arguments
are built with two kinds of inference rules: strict, or
deductive rules, whose premises guarantee their con-
clusion, and defeasible rules, whose premises only
create a presumption in favor of their conclusion”
(ref. [21], p. 31). This second principle is directly at
odds with desideratum d5. In our approach, all non-
deductive inference schemata are mechanically check-
able, in exactly the way that deductive inference sche-
mata are. For instance, if some inference is analogical

in nature, as long as the schema C
Φ (Φ for a collection

of premises andC for the conclusion) for an analogical
inference is correctly followed, the inference is water-
tight, no different than even modus ponens, where of

course specifically we have →ϕ ψ ϕ
ψ

, .¹⁰ Along this line,

the reader will soon see that even the simplified cog-
nitive calculus we use to obtain an implementation
that meets an argument-adjudication challenge, the
calculus �μ is based on inference schemata purported
applications of which can be mechanically certified as
correct, or rejected.

2. Ref. [22] is an overview of implementations of formal-
argumentation systems. However, the overview is highly
constrained by two attributes. The first is that their
emphasis is on Turing-decidable reasoning problems.

As to the second attribute, the authors are careful to
say that their work is constrained by the “basic require-
ment” that “conflicts” between arguments are “solved
by selecting subsets of arguments,” where “none of
the selected arguments attack each other.” Both of these
attributes are rejected in our approach. In fact, with
respect to the first, most of the interesting parts of auto-
mated-reasoning scienceand technology forusonly start
with problems at the level of the Entscheidungspro-
blem; see in this regard desideratumd7. As to the second
attribute, it also is not true of our approach, as will be
seen below.

2.3.1.3 Work in judgment/argument aggregation

We now discuss, briefly, work in “aggregation” that is
related to our research. From a scholarly point of view,
this discussion must start with the fact that, as many
readers will know, nobelist Arrow’s [23] stunning “Impos-
sibility Theorem” (AIT) roughly says that, without a “dic-
tator” who holds sway, it’s mathematically impossible for
a group of agents in that group to have their individual
preferences aggregated to yield preferences for the group
as a whole.¹¹ An immediate and equally stunning corollary
of AIT is that a “meta” agent cannot make a decision based
on the input from an advisory group composed of agents,
where that input is an aggregation of the preferences of
the individuals in the group. Since we seek such an agent,
how can we succeed? Inevitably, the constraints asso-
ciated with AIT must be, at minimum, massaged. AIT is
a negative result regarding the aggregation of preferences;
moreover, AIT is a limitative theorem that only goes
through under the constraint of certain axioms (that are
out of scope in the present paper). Clearly, humans and
machines (including on the machine side even simple sen-
sors) routinely provide information to decision-makers
that greatly exceeds a preference. For example, a com-
mander might need to seek aggregation of a series of
reports from the individual agents ai in a group that are
each reporting information about the location of a bomb;
such reports aren’t preferences, but are rather proposi-
tions or claims or hypotheses (or perhaps even educated
guesses). This broader problem, which is expressed in
a family of theorems we denote via “AIT+,” has been the



10 For a discussion of this sort of explicit rigidity in the case of
analogical inference, see ref. [76].



11 A very nice introduction to AIT is available in ref. [40]. An early
chapter by A. Sen in this recent volume gives an economical and
lucid proof of AIT.
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genesis of the “judgment aggregation” field.¹² Yet our
approach is specifically based upon not just the aggrega-
tion of judgments, but the aggregation, in particular, the
adjudication, of arguments. Given this, what related work
is there, and how does it compare and contrast with our
approach and systems? We now answer this question, by
way of two steps.

The first step is to emphasize that our approach is
indeed best labeled argument adjudication. Argument
adjudication is not to be confused with argument aggre-
gation [24], which is based on the standard approach of
treating arguments as abstract objects having none of the
nuanced, internal structure analogous to what formal
proofs have (this standard, abstract conception is given
in ref. [18]). Since our formal theory of argumentation is
fundamentally different than what is seen in argument
aggregation, the axioms that constrain argument adjudi-
cation are different than those operative in argument
aggregation. Along the same line, while we happen to
often represent proofs and arguments in graphs (specifi-
cally hypergraphical digraphs), prior work on the so-called
graph aggregation [25] is completely separate from our
logico-mathematics and corresponding engineering, since
in this other work, graphs are treated abstractly and any
internal inferential structure they might have is ignored.

Nonetheless, and this is the second of our promised
two steps, we find that some excellent work on argument
aggregation (or as some would be inclined to say, on
argument-centric judgment aggregation) is worth calling
out here, in connection with our research on argument
adjudication (in service, in the present paper, of machine
ethics). Specifically, we cite and briefly comment on a few
papers, as follows.

Ref. [26] introduces the concept of a Value-Based
Argumentation Framework (VAF). VAFs “allow for attacks
to succeed or fail, depending on the relative worth of
the values promoted by the competing arguments.” This
is certainly impressive work – but it fails with respect to
desideratum d4, since it is built upon a definition of what
counts as an argument deriving from the Dungian con-
ception [18], according to which one can have a bona fide
argument in the complete absence of particular inference
schemata and particular content. A parallel diagnosis
applies to ref. [27], for these authors have in no way

considered the internal structure of deductive and induc-
tive (e.g., analogical, abductive, enumerative inductive,
etc.) arguments, and more importantly have not consid-
ered either arguments expressed in implemented systems
for expressing and checking them. Our approach is radi-
cally different; for it gets off the ground only because we
have particular inference schemata, and automated rea-
soning over them, and over detailed declarative content
rendered in the formal languages of cognitive calculi.¹³
The same divergence between our approach and [28]
arises, because this work, certainly impressive as well, is
explicitly devoted to the merging of arguments cast in
Dungian style.

Of course, we do not contend to have taken account
of literally all prior work that might meet � . Of all that
we have seen after considerable digging, the results are
given immediately above, but it is also important to note
that other computational logicist approaches to ethics exist,
and we briefly review some of this work now.

2.3.1.4 Other computational logicist approaches
to ethics

Noteworthy in this sphere is work by Ganascia [29], both
because here he calls for the need to dynamically handle
conflicting ethical positions and arguments, and because
toward the end of this paper, Ganascia turns to consid-
eration of the so-called “BDI” logics, which certainly
move generally in the direction of the kind of cognitive
expressivity that our cognitive calculi provide. Cointe
et al. [30] present a very interesting approach to ethics-
based cooperation that makes some use of BDI elements,
and even mention in passing the Doctrine of Double
Effect, which is central to our simulation below, and
which, by virtue of ref. [10], we purport to have fully
captured formally. Detailed formalization of ethical prin-
ciples, and of argumentation by and among multiple
artificial agents about such formalizations, is beyond
the scope of this work, but – as will be seen below – at
the heart of ours. Our work is thoroughgoingly proof-theo-
retic when it comes to both meaning and to process; in
the latter case, we use automated reasoning over custo-
mized inference schemata the intensional operators in



12 Readers interested in learning more about the broader challenge
of the apparent impossibility of judgment aggregation (i.e., in learn-
ing more about AIT+) can consult [42]. Those readers who wish to
start with a gradual pedagogical introduction to the broader-than-AIT
problem in the form of negative results about judgment aggregation
will be well served by reading [77].



13 In fact, the automated reasoner ShadowProver we use for our
implementation (see Appendix A2) makes crucial use, during its
processing, of multiple formal languages. This is true for technical
reasons pertaining to the core algorithms of ShadowProver; for more
details, see ref. [78].
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which far exceedBDI (see AppendixA3). Finally, ref. [31] is
a very interesting attempt to capture moral agency using
modal logic. This work specifically employs a logic (DL-
MA) that is a variant of STIT logic. There are major dif-
ferences between this work and our paradigm. To men-
tion but two differences from a long, long list: (i) we
exploit at many a turn quantification in and over modal
formulae, whereas ref. [31] is propositional modal logic;
and (ii) we reject possible-worlds semantics (and have
done so since the first cognitive calculus appeared on
the scene in ref. [32]) in favor of semantics based exclu-
sively upon proof-theory/argument-theory, whereas DL-MA
is understood in terms of possible worlds.

As will be seen when we turn below to the particular
problem scenario and our results, an AI with the cap-
ability described in � is indeed what will prove to be
effective. But first we must be clear about the cognitive
calculus we use to obtain our results, and about what we
take, abstractly and generally, an ethical problem and
a solution to it to be.

3 Results

3.1 Cognitive calculus used herein

The cognitive calculus we employ in the present paper is
�μ , a streamlined modal (specifically epistemic) first-

order logic; this calculus is markedly simpler than ����,
which has been used (as said above) previously to fully
model (among other things) robust ethical theories/codes/
principles, and allows the capture and computational simu-
lation of ethical reasoning and decision-making over these
models. The reason we use here a simpler calculus is that
we wish to facilitate and feature the exposition of the key
aspects of intelligent argument adudication, unclouded by
the (considerable) intricacies of robust cognitive calculi,
which are among the most expressive formal logics we are
aware of. Please see Appendix A1 for an account of a cog-
nitive calculus in general, and Appendix A3 for specifica-
tion of the cognitive calculus ���� and its inductive cor-
relate,�����; the latter, like �μ , includes strength factors
on epistemic attitudes (e.g., on belief), but in a much fuller
way. For an introduction to the more robust calculus
����, in a paper that also gives a full formalization of
the Doctrine of Double Effect, see the Appendix in ref. [10].
The syntax for �μ is given in the grammar shown in (1).
The first line of the grammar sets out the conventional
terms in �μ , which are standard (we have variables, con-
stants, and function symbols (denoted by “f ”) and can be
iteratively applied to terms to yield richer terms. Next, well-

formedness for formulae is specified. �μ supplies standard
Boolean formulae, but in addition, and crucially, ( )a t ϕB , ,
denotes that agent a believes formula ϕ at time t; and

( )t ϕC , denotes that it is common knowledge at time t that
ϕ holds; in both formulae t is of course a term.









⩴ | | ( … )

⩴

| ∀ | ∃

¬ | ∧ | ∨ | → | ↔

( ) | ( )

t x S c S f t t

ϕ
t t ϕ t ϕ

ϕ ϕ ψ ϕ ψ ϕ ψ ϕ ψ
a t ϕ t ϕB C

: : , ,
: Formula : :

, , ,

n1

(1)

The �μ calculus lets us formalize, without slipping
into inconsistency (a peril explained in ref. [19]), state-
ments of the form “John believes now that Mary believed
that it was raining.” One formalization of this specimen
could be:

∃ < ( ( ( )))t now john now mary t holds raining tB B: , , , , ,

Given a set of formulae = { … }ϕ ϕΓ , , n1 , the inference
schemata � of the formal system determine whether cer-
tain formulae (plus sometimes meta-logical constraints
placed on the schema in question) can be used to derive
a given formula ψ; that is, whether or not (where⊢ means
provability all and only by inference schemata �∈I ):

⊢ ψΓ

The inference schemata of �μ includes the standard
inference schemata for first-order logic, with quantifica-
tion into modal formulae allowed. In addition, we have in

�μ modal inference schemata for inference with beliefs
and common knowledge, shown in (2). Inference sche-
mata are of the so-called natural kind (originated by Gen-
tzen [33]). Each schema specifies what is required for an
inference to be sanctioned (content above the horizontal
line); if requirements are satisfied, moving to content
below the line is permitted. While cognitive calculi such
as ����, and even the fragment thereof �μ employed
herein, make use of what may seem at first glance to be
rather intricate inference schemata that are fully formal
and hence suitable for use by our automated reasoners,
in each case, the core inference is quite intuitively grasp-
able. For instance, in the case of IB, shown immediately
below, the schema can be interpreted to say that if an
agent a believes at times prior to time t, a collection of
m propositions that together can be used to proof ϕ,
the agent a believes ϕ at t .

( ) …

( )

{ … } ⊢ ⊢ <

( )

[ ]

( )

( … ( ))

[ ]

a t ϕ
a t ϕ

ϕ ϕ ϕ t t
a t ϕ

I

t ϕ
a t a t ϕ

I

B
B

B
C

B B

, , , ,
, , ,
, , , Γ

, ,
,

, , , , ,

m m

m i

n

B

C

1 1

1

1

(2)
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3.2 Generalized ethical problems

Given some background knowledge Γ, at the core of our
approach is an ethical principle ρ. The principle ρ tells us
whether performance of the action α is ethically correct
(usually, specifically, whether α is ethically permissible or
obligatory or forbidden) for agent a at time t in a situation
∑. This can be written formally and schematically as
shown in (3):

∪ ⊢ ( )Σ ρ a α tΓ , , ? (3)

This approach can encapsulate different families of
ethical theories, ranging from consequentialist/utili-
tarian to deontological to virtue ethics and beyond [10,34].
We reveal this in some detail below when we present and
discuss the Doctrine of Double Effect, but to give the reader
a sense at this point in the present paper as to how the
rather abstract form of ρ can work, consider, for example,
the standard biconditionals that have long been taken
by formally inclined ethicists (see, e.g., the work of
Feldman [9]) to capture key parts of ethical theories in
the utilitarian family thereof. Specifically, consider the
biconditional that for any agent a and any time t, α is
obligatory for a if and only if α, among all other options
at t for a, a’s performing α maximizes happiness among
all agents. This biconditional can clearly be expressed as
a formula of the form of ρ. The reader will also see that if
the biconditional is instead designed to express a “mental”
form of utilitarian ethical theory, by, for instance, stipu-
lating that the action is obligatory if and only the agent a
here believes that α is a happiness maximizer, there will
be no problem at all in having formula of the form of ρ do
the job, since in accordance with �μ we have at our dis-
posal the belief operator B.¹⁴

3.2.1 Clausification

The formal principle ρ is usually a logicized version of
an informal version ρ̃ stated in a natural language. We
assume that any such ethical principle ρ can be decom-
posed into ethically relevant clauses …ρ ρ, , k1 such that
the principle holds iff (if and only if) the clauses hold.
Logically speaking, for any formula ϕ, there are an infi-
nite number of ways to recastϕ as clauses. We are mainly

interested in breaking down ρ into clauses …ρ ρ, , k1 that
match the informal version ρ̃.

Informally:

…ρ iff ρ ρ˜ ˜ and and ˜k1

Formally:



















( ∪ ) ⊢

( )∧

( )∧

⋮

( )

↔ ( )Σ

ρ a α t
ρ a α t

ρ a α t

ρ a α tΓ

, ,
, ,

, ,

, ,

k

1

2 (4)

3.2.2 Agents

As part of the situation ∑, we have a set of agents
{ … }a a, , n1 each having beliefs about which of the clauses
hold. We can decompose ∑ into components as shown in
equation (5). Our goal is then to ascertain what one par-
ticular agent aadj, the adjudicator agent, ought to believe
at some time t. For example:



















∪ ′ ∪

( ∧ )

( ¬ )

⋮

( )

⊢ ( )Σ

a t ρ ρ
a t ρ

a t ρ

a t ρ

B
B

B

BΓ

, ,
, ,

, ,

, , ?

n

1 2 4

2 5

1

adj (5)

Each agent a believes a subset of ⊆ { … } ∪β ρ ρ, ,a k1
{¬ … ¬ }ρ ρ, , k1 . Note that we allow agents to be inconsis-
tent. This is useful for representing sensors or agents that
are faulty. Our goal is now summarized as:

Goal

Given …β β, ,a an1
specify a procedure for computing

(aB ,adj ′ )t ρ, where ′ >t now.

3.3 Solution to a generalized ethical
problem

The adjudication framework we present below is based
upon an uncertainty system �, so named in part because
it uses strength factors; this system is detailed in ref. [35].
The prior strength-factor system �, while computing the
strength of propositions (i.e., uncertainties) for an agent
a, took into account only a’s beliefs. We hence present
now amulti-agent version of � that takes into account a’s
beliefs about other agents’ beliefs.

� assumes as a primitive the reasonableness operator
( ≽ϕ ψt

α ). The reasonableness operator tells us when an



14 While the calculus �μ has no operator for what is obligatory,
the aforementioned calculus ���� does, and in it we can thus easily
build a ρ-form formula such as: ∀ [ ( ) ↔ ( )]a t α a α t Max α a tO, , : , , , , .
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agent a at time t finds ϕ to be at least as reasonable as ψ.
In ref. [35], the reasonableness operator was presented in
terms of an individual agent’s knowledge and informa-
tion. We present a multi-agent version below. Briefly,
everything else being equal, an agent a finds ϕ to be
more reasonable than ψ if a believes that more agents
believe ϕ than ψ. First, we define a new operator, the
withholding operator W (this is “syntactic sugar,” in AI
parlance):

( ) ≡ ¬ ( ) ∧ ¬ ( ¬ )a t ϕ a t ϕ a t ϕW B B, , , , , ,

We have two modal operators { }B W, . Let Θ and Ω be
variables denoting one of the two modal operators { }B W, .
Then:

Multi-agent reasonableness





























( ) ≽ ( )

≡

∀

( )

→

∃ ( )

a t ϕ a t ψ

a t a
a t ψ

a a t ϕ
B

Θ , , Ω , ,

, , :
Ω , ,

: Θ , ,

t
a

i

i

j j

The definition immediately above is written in �μ
and states that for every agent ai that has an Ω formula
in ψ, there is an agent aj that has a Θ formula in ϕ. Using
this operator, we can derive the four discrete uncertainty
levels as shown immediately below.

Level 1 Agent a believes at least one other agent ai
believes that ϕ:















( ) ≡

( ( ))

∧

( ≠ )

a t ϕ
a t a t ϕ

a t a a
B

B B

B
, ,

, , , ,

, ,

i

i

1

Level 2 Agent a believes that it is more reasonable to
believe ϕ than withhold ϕ:















( ) ≡

( ) ≽ ( )

∧

( )

a t ϕ
a t ϕ a t ϕ

a t ϕ
B

B W

B
, ,

, , , ,

, ,

t
a

2

1

Level 3 Agent a believes that it is more reasonable to
believe ϕ than believe ¬ϕ:















( ) ≡

( ) ≽ ( ¬ )

∧

( )

a t ϕ
a t ϕ a t ϕ

a t ϕ
B

B B

B
, ,

, , , ,

, ,

t
a

3

2

Level 4 Agent a believes that every agent believes ϕ.

( ) ≡ ( ( ))a t ϕ a a t ϕ aB B B, , , , , ; for every agenti i
4

3.4 Instantiation of the generalized
problem: a scenario

We now, as promised, describe an ethically charged sce-
nario, the solution of which will require AI capable of
adjudicating inconsistent beliefs on the part of other arti-
ficial agents regarding propositional content crucial to
a certain ethical principle. In short, the AI here faces
an ethical problem in a multi-agent context.

The scenario is as follows. A NATO military squad
acquires intel that an old hospital building is being used
by terrorists to prepare for an attack on civilians. However,
as it was originally a hospital, there is a possibility that
there are still civilians inside. The squad wants to deter-
mine whether or not they should destroy the building.

The squad therefore utilizes several robotic systems,
including high- and low-altitude drones and wall-pene-
trating radar¹⁵ to look for evidence of people inside the
building. The difficulty arises when the devices report
inconsistent information regarding the presence of people
inside the building.

The squad has an adjudicator agent aadj. The agent
aadj relies on the Doctrine of Double Effect (���), a well-
known ethical principle that lies at the heart of the Occi-
dental tradition of the so-called “just war.” Anything here
approaching full explication of ��� is infeasible, due to
current space constraints; but we nonetheless very briefly
reprise a robust treatment we have provided elsewhere ref.
[10], andwedirect readerswishingaveryextensive essayon
��� to ref. [36]. ��� assumes that we have a utility or
goodness function for states of the world, including states
that are consequences of actions. For an agenta, an actionα
in a situation ∑ at time t is said to be ���-compliant iff:

ρ1 The action α by itself is not ethically forbidden
(i.e., the action should be morally neutral or above
neutral in an ethical hierarchy for deontic operators,
such as the one given elsewhere by Bringsjord [37]);

ρ2 The net utility or goodness of the α in the situation
is greater than some positive amount γ;

ρ3 The agent performing α intends only the good
effects from this action;

ρ4 The agent does not intend any of the bad effects
from α;



15 Such as that developed by Lumineye, LLC: https://www.
lumineye.com. See: https://taskandpurpose.com/military-tech/
army-technology-see-through-walls for more information.
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ρ5 The bad effects are not used as a means to obtain
the good effects.

The action α in our scenario is the act destroying
the building. The possible good effects are that an attack
on civilians will be averted. The possible bad effects are
that there will be loss of life and there might be civilians
in the building who might be harmed.

Often in scenarios where ��� has to be employed,
the clause that is most under scrutiny is ρ2. This is the only
clause that depends on our scenario. Clause ρ1 is about
the action of blowing up a structure. As a matter of
empirical fact, this action is generally not forbidden
by itself (unlike other actions, such as using biological
weapons). ��� is dependent upon the state of the agent
executing the action; clauses ρ ρ, and3 4 reflect this. Finally,
ρ5 is about the cause-and-effect structure of the action:
the bad effects of the action should not be used to cause
the good effects; this can be decided by relying upon prior
knowledge of the world, and we leave details regarding
this aside. Hence, we are left with a focus upon only ρ2;
this clause has to be adjudicated based on possibly dif-
ferent sensory information by a diverse array of agents.
Therefore, in the elaboration of the scenario given
momentarily, the adjudicator aadj only considers different
reports regarding ρ2. A much more detailed discussion
of the clauses of ���, in connection not with a miliary
situation but rather a railroad one, in which a version of
the event calculus is employed, can be found in ref. [10].

Equation (6) shows the formalization of ρ2 in ����,
which uses an adapted¹⁶ version of the event calculus
to represent time and change in the physical world. The
event calculus has actions/events to represent change and
fluents to represent physical states of the world [38,39].
Fluents are initiated or terminated through actions/events.
Fluents that are initiated by action α carried out by agent a
at time t are represented by αI

a t, , and terminated fluents are

represented by αT
a t, . ( )μ f y, represents the utility of a fluent

f at time y. We are generally interested in modeling utility
till some horizon >H t. Given these definitions, we can
unpack state ρ2 as given in equation (6) like this:











∑ ∑ ∑

≡ ( ) − ( ) >

= + ∈ ∈

ρ μ f y μ f y γ, ,
y t

H

f α f α
2

1 I
a t

T
a t, ,

(6)

3.4.1 The challenge met

The artificial agents in the scenario are listed in Table 1.
These agents report to the adjudicator agent their judg-
ments regarding ρ2. For reasons canvassed above, in the
scenario, the adjudicator only needs to determine whether
ρ2 holds.

We now formalize the scenario using �μ . To start,
we formalize the query which the adjudicator knows will
lead to deciding whether ρ2 holds. That is:

Are there people inside the building who are planning an attack
and are there no civilians inside?

This can be expressed using the following formula:

∃ ( ( ) ∧ ( ))

∧

∀ ( ( ) → ¬ ( ))

p Inside p building PlanningAttack p

p Inside p building Civilian p

,

,

However, what we would really like is a utility based
on what subset of the query each agent believes is satis-
fied. To that end, Table 2 indicates the utility provided by
the satisfaction of each formula.

That is, determining that there are terrorists and there
are no civilians inside the building gives a utility of γ.
Determining that there are no terrorists inside gives a
utility of 0. Finally, if there are civilians inside (regardless
of whether or not terrorists are inside), the utility is −γ.

Next, we walk through how this scenario could play
out based on what each agent perceives and what beliefs
they subsequently infer.

First, a high-altitude drone (hdrone) scans the build-
ing but cannot detect any humans inside.¹⁷ Because this

Table 1: AI agents in the scenario

Agent Description

hdrone High-altitude drone

ldrone1 Low-altitude drone (faulty)
ldrone2 Low-altitude drone (fixed)
radar Wall-penetrating radar



16 For example, the axioms of the event calculus are taken as common
knowledge in most work with ���� , which means that where ϕ is
such an axiom, the common-knowledge operator C applies to ϕ.



17 Strength factors that modulate cognitive attitudes, specifically
here the epistemic attitude of belief, are crucial for handling partial
observability in logicist fashion – and it is partial observability that
the low-level sensing agents such as hdrone must deal with. In, for
example, the seminal work of Barwise and Etchemendy in connec-
tion with their Hyperproof system, observability of objects in themicro-
world they used can be partial (because objects can be occluded by
other objects), but since no precise reasoning (by a human observer or
by the execution of the system’s own code to reason) is allowed over
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drone has been preengineered for purposes of carrying
out such scans, and is state-of-the-art in this regard
(details beyond our scope), a fact it knows about itself,
it therefore by deduction believes after its scan that there
is no one inside the building.¹⁸

( ¬∃ ( ))hdrone t p Inside p buildingB , , ,0 (7)

Next, using background information, the adjudicator
then derives the following:

( ( ¬ ))adj t hdrone t ρB B, , , ,1 0 2

To get a better look, a low-altitude drone (ldrone1) is
deployed to scan the building, but triggers a bug when
scanning someone walking through a doorway, incor-
rectly detecting that there is a person who is inside and
not inside the building simultaneously.


















∃

( )∧

¬ ( )

ldrone t p
Inside p building

Inside p building
B , ,

,
,1 1 (8)

Using background information, the adjudicator then
derives the following:

( ( ))adj t ldrone t ρB W, , , ,2 1 2

Finally, the squad activates a soldier equipped with
wall-penetrating radar (radar) which is able to detect two
people inside. It also notices that the occupants are stand-
ing near a desk, and seem to be assembling a weapon.
This generates a belief that the people inside are planning
an attack (and are therefore not civilians).

( ∃ ( ))

∧ ( ∃ ( ( )

∧ ( ))

∧ ∀ ( ( ) → ¬ ( )))

radar t p Inside p building
radar t p Inside p building

PlanningAttack p
p Inside p building Civilian p

B
B

, , ,
, , ,

,

2

2

Once again, using background information, the adju-
dicator then derives the following:

( ( ))adj t radar t ρB B, , , ,3 2 2

The squad then decides to apply a quick patch to
the low-altitude drone (ldrone2) and redeploy it. It is able
to see inside a window, and determines that the men are
actually civilians, and what appeared to be a weapon was
actually a car engine.




















( ∃ ( ))

∧ ∃

( )∧

( )

ldrone t p Inside p building

ldrone t p Inside p building
Civilian p

B

B

, , ,

, , ,
2 2

2 3

Finally, the adjudicator arrives at the following:

( ( ¬ ))adj t ldrone t ρB B, , , ,4 3 2

Figure 3 shows an overview of the situation. The dif-
ferent agents in the scenario, what they report to the adju-
dicator, the adjudicator’s belief about the agents’ beliefs
(outer belief operator removed for clarity) and the adju-
dicator’s belief is shown in that figure.

Table 3 summarizes how the adjudicator’s belief
uncertainty changes as the various agents report their
beliefs. At the end of the scenario (time t4), the adjudi-
cator aadj holds a belief at level 3 that ρ2 does not hold.
Therefore, aadj believes that not all of the clauses of ���

are satisfied; hence, the detonation of the building is
not ���-compliant and cannot be ethically sanctioned.
Details about the implementation of this scenario are given
in Appendix A2.

3.4.2 Reflecting on the “four steps”

To conclude our discussion of the case study, we briefly
reflect upon our progress in implementing our “Four
Steps,” as we created a moral machine for this scenario.

The first step is fully complete: we selected the
Doctrine of Double Effect/��� as a principle in our
ethical code (derived from both deontological and con-
sequentialist families of ethical theories). The second
step, given what we have done, is partially complete.
We selected ShadowProver as the automated reasoner
with which to implement the ethical reasoning in ques-
tion. We confessedly lay claim to having implemented
part of the reasoning in ShadowProver (see Appendix A2),

Table 2: Utility (w.r.t. ρ2) of the satisfaction of formulae

Utility Formula

γ p Inside p building PlanningAttack p
p Inside p building Civilian p

,
,

∃ ( ( ) ∧ ( ))

∧∀ ( ( ) → ¬ ( ))

0 p Inside p building PlanningAttack p,¬∃ ( ( ) ∧ ( ))

−γ p Inside p building Civilian p,∃ ( ( ) ∧ ( ))



belief and knowledge that is affected by limited observability,
machinery for belief and knowledge, including such machinery that
represents graded belief, is entirely absent the Hyperproof system. In
command-and-control challenge scenarios such as the one we con-
sider and solve momentarily, we don’t have the luxury of avoiding
this machinery: it is needed for our solution, we have it, and we use it.
18 While as we say it’s out of scope, fuller formalization would
bring to bear our prior methodologies for enabling AIs and cognitive
robots to reason about their own capabilities in cognitive calculi that
include the “self-consciousness” operator ∗. See e.g., ref. [73].
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and leave more robust implementations to future work.
The third step is also admittedly incomplete for this parti-
cular case study; however, full completion would not
require any new research: one would simply follow the
processes outlined in ref. [8,13]. Finally, Step 4 is also
only partially finished, as its full completion is precluded
by the merely partial implementation of Step 3. Overall,
though, it should be clear that our Four Steps have been
followed.

4 Discussion

We are under no such illusion as that our work will be
embraced immediately by all. In general, we at this point
anticipate two general classes of objections: one that con-
tains technical worries, and a second aimed at alleged
fundamental flaws in logicist AI, at least as such AI is
pursued by us. In what now follows, in conformity with
this two-part division, we first discuss a class of objec-

tions that relate to limitative theorems due, at least ori-
ginally, to Arrow; and then, we proceed to present and
rebut objections that claim our methodology is missing
something crucial.

4.1 Dialectic arising from arrow’s
impossibility theorem and successors

In point of fact, there is no denying that Arrow’s Impossibil-
ity Theorem (AIT) is directly relevant, logico-mathematically
and implementation-wise, to our framework and tech-
nology for adjudication in multi-agent contexts. However,
we cannot expect our readers in the present case to be
familiar with AIT (very nicely presented and proved in ref.
[40], and ably summarized without proof in ref. [41]).
Hence, wemust find a shortcut here; andwe do, as follows.
We can without loss of generality at the current juncture
takeAIT tobe basedupon the existence ofn artificial agents

…a a, , n1 whose action repertoire consists solely in each of

Figure 3: Overview of the scenario.

Table 3: Overview of the beliefs. The adjudicator’s beliefs about other agents’ beliefs and its uncertainty level in ρ2¬

Time hdrone ldrone Radar Strength for adj t ρ, , 2( ¬ )

t1 hdrone t ρB , ,0 2( ¬ )
Not considered Not considered t ρB adj, ,3

1 2( ¬ )

t2 hdrone t ρB , ,0 2( ¬ ) ldrone t ρW , ,1 2( ¬ )
Not considered t ρB adj, ,2

2 2( ¬ )

t3 hdrone t ρB , ,0 2( ¬ ) ldrone t ρW , ,1 2( ¬ ) radar t ρB , ,2 2( ) t ρB adj, ,1
3 2( ¬ )

t4 hdrone t ρB , ,0 2( ¬ ) ldrone t ρB , ,2 2( ¬ ) radar t ρB , ,2 2( ) t ρB adj, ,3
4 2( ¬ )
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themreporting to some “overseeing”artificial agent ∗a their
respective preference pi at some fixed time. If we let �

represent a set of attributes that are generally seen as desir-
able for the agents ai, we can further stipulate that each
agent has these properties (i.e., �( )ai ). In addition, for AIT,
we must say that a⁎ isn’t allowed to be “dictatorial”;
that is, approximately but not at all inaccurately, a⁎ isn’t
allowed to just lay down the law as to what is to be done,
irrespective of the recommendations from the ai. We can
abbreviate this condition as “�( )a⁎ .”Given this, AIT can be
taken to be this simple (material) conditional:

� �[ ( ) ∧ ¬ ( )] → ⊥a aAIT: .i
⁎

Put simply, this conditional says that if all the “recom-
mender” AIs have the desirable properties in question,
and they don’t report to a dictator, but rather a reasonable
aggregator, then outright contradiction ensues. Since a
contradiction is an impossibility (at least in anything like
a classical logico-mathematical venue), AIT can be said to
point out an outright impossibility.

Given this exposition, we are confident that the reader
can appreciate how skeptics might see direct relevance
between AIT and the framework for multi-agent ethical
decision-making we have presented. As a matter of empiri-
cal fact, we have had expressed directly to us the sentiment
that our framework runs afoul of AIT. But does it? No, it
does not, as we now briefly explain.

4.1.1 “But arrow’s impossibility theorem (AIT) make
the engineering of such an AI impossible!”

Here, now, is the first objection: “You have a framework,
undeniably, in which n artificial agents are making recom-
mendations to the AI you see as innovative, and effica-
cious. I see no harm is labeling your innovative AI as a⁎.
But your a⁎ is not allowed to be a dictator, for otherwise
why would you even need the AI that this agent brings to
bear in the first place? Hence, on the assumption that
the agents involved in your scenario above, and in general
in the analysis of information relevant to solving an ethical
problem (as you have defined such a thing), have these
desirable properties, your paradigm lapses into inconsis-
tency.”

It is actually easy for us to “surmount” AIT. The con-
ditional that is AIT only applies when the subsidiary
agents recommend preferences as their only available
actions, and when the overseeing AI designed to adjudi-
cate is not a dictator. But what we have presented, as
a matter of technical facts, blocks the applicability of
the conditional, for two general reasons. First, we insist that

subsidiary agents do much, much more than express
preferences (among other things, they communicate full-
blown formulae, and proofs/arguments in support of those
formulae). Second, we have been careful not to allow our
overseeing AI to be anything like a dictator. We would
prefer to call such an AI in the case of our framework a
“benevolent dictator,”or evenbetter, a “philosopher king.”
To justify this, we summarize now the definition of the
“dictator” in Arrow’s framework, by drawing directly
from ref. [40]:

An agent a such that “if [a] likes candidate X best, then X is
necessarily elected, regardless of how others feel about X .”
(ref. [40, p. 46])

In our framework, the adjudicator AI agent, at least essen-
tially, has the property described in this quote. Hence,
no violation of the conditional that AIT has occurred.
However, our overseeing AI does not blindly make choices,
disregarding the “voting” AIs. On the contrary, it processes
their arguments within a formal system and makes its deci-
sion based on the strength of each agent’s arguments.

Given that cognoscenti maywell be among our readers,
for goodmeasure,we now consider another objection along
the AIT line of thought.

4.1.2 “What about similar impossibility results
in judgment aggregation?”

We anticipate this contrarian reasoning: “Okay, under-
stood; points well-taken. Yet Dietrich and List [42]
(among others) prove two similar impossibility results,
ones involving not just simple preferences from sub-
sidiary agents, but declarative information of the sort
that is your bread and butter. D&L prove conditionals
similar to the one you conveniently gave above: if a set
of desirable properties is instantiated in a group of sub-
sidiary agents who convey declarative content to a non-
dictatorial but presiding agent charged with issuing
judgement on the basis of this content, a contradiction
deductively follows!”

Fortunately, our adjudication AI enables us to cir-
cumvent these results as well. How?Well, another feature
of the work presented above comes to the rescue. Within
our framework, the subsidiary agents ai do not simply
convey propositions with an assignment of either true
or false. Instead, our ai must provide some logically valid
argument justifying their assertions (which may them-
selves be only likely or unlikely at a certain level); and
our adjudicator must take into account this supplied rea-
soning when making its decision. For instance, specifically,
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the adjudicator playing the role of a⁎ may disregard the
declarative assertion of an ai if another aj voter presents
a competing assertion with an argument of higher like-
lihood. This is in fact precisely the sort of situation seen
in our scenario above (in Section 3.4).

4.2 Discussion of the “missingness”
of formal logic relative to the realm
of human ethics

4.2.1 “But emotions are central to morality and
are beyond logic!”

We expect some skeptics to react to our approach to
machine/robot ethics in general, and dynamic adjudica-
tion in particular, as follows:

Since you yourselves point out that ethics in the human sphere,
including in particular the practice of professional ethics, is a
largely declarative affair, and hence suitable for what might be
called ‘logicization,’ certainly youmust agree as well that human
-level ethics is veritably saturated with emotion. Ethicists,
after all, aren’t robots. And everyday morality is about real
human beings – beings who, whether or not they are them-
selves ethicists paid to adopt a detached, clinical mindset,
wisely base their own ethical decisions (at least in part) upon
emotions. It should for instance be obvious to you that mis-
treating human beings is often judged immoral because of an
understanding that victims too have emotions; hence empathy
plays a crucial role. Even the simple facts that humans know
they have desires, and know other humans do as well, and also
know that quite often when desires are unfulfilled that causes
other, unwanted emotions – these facts undergird morality in
the human sphere.

Of course, we are humans ourselves, and readily accept
that the phenomena here cited are real, and real impor-
tant in the realm of ethics. At the same time, there simply
is no good reason to maintain that artificial agents,
including cognitive robots, actually have emotions. Yet,
there is also no good reason to deny that the abstract
structure of emotions can’t be captured in formal logic;
indeed, see, for instance, ref. [43]. Once logic captures
some phenomena, which allows automated reasoning to
then be deployed to support decision-making informed by
that which is captured, engineering that benefits human
beings is enabled. The mere fact that the world wants AI
that can communicate in natural language with humans,
despite the fact that, at least as the lead author of the
present paper holds [44], AI can’t really understand nat-
ural language in a human way, vindicates the approach
we set out in the present paper.

4.2.2 “Well, but even if the emotions, structurally
speaking, can be captured, consciousness,
key to morality, can’t!”

We fully expect the previous objection, despite our reply,
to be sustained in the following form: “Thank you for
your response. But it’s one thing to say, as you are saying,
that for instance a theory of emotions can be captured
in formal logic, but surely it’s quite another to say such
a thing about consciousness in general. Yet how can we
have a morally competent agent that isn’t conscious?
That doesn’t seem to make any sense.”

We are quite sympathetic. We agree that, for instance,
so-called phenomenal consciousness, which includes what
philosophers call “qualia,” is not possessed by artificial
agents, even when they are embodied as robots. But to echo
our reply immediately above, that doesn’t mean that the
logico-mathematics of consciousness can’t be captured in
formal logic. A physicist like Einstein may in a real sense
feel what simultaneity is, but that doesn’t mean that
relativity can’t be captured in formal logic.¹⁹ As a matter
of fact, we expect that our own axiomatization of (cognitive)
consciousness [45], combined with our theory, Λ, for the
measurement of levels of cognitive consciousness [46],
will in subsequent work be married to the formalisms and
techniques we present in the present paper for machine-
ethics in multi-agent environments.

4.2.3 “But even leaving consciousness aside,
aren’t you after genuine moral agents?”

The next anticipated objection flows from the preceding
one and is expressed thus:

Learning consciousness aside, I take your overarching, longer-
term goal here to be the construction of genuine ethical/moral
artificial agents (although it seems to me that the framework
presented here would be perfectly functional outside of the
domain of ethical reasoning). But then I struggle with the kinds
of problems your framework is here aimed at – such as chal-
lenges in command-and-control, where there are multiple
adjudicator agents responsible for interpreting, processing,
and acting upon information pertinent to morally-charged
situations. If your artificial adjudicators are to be the moral
agents of folk psychology or philosophy of action, it seems
they aren’t actually agents at all: they are after all determined
at the level of the operating system. In some sense, they are
something like ethical “zombies.” Now just maybe we humans
are as well, but we certainly believe that we aren’t, and there



19 In fact it can. See, e.g., ref. [79,80].
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hasn’t been any profound scientific advance to suggest that
we’re wrong. So, given that the space of cognitive calculi is
large, why not turn these attitudes about our genuine agency
into full-blown artificial agents with beliefs about aspects of
themselves and a folk psychology (of the sort that for instance
Jerry Hobbs has pursued), so that youmove closer to something
like responsible agency, even if illusory?

This is a penetrating, profound concern/objection; how-
ever, it doesn’t derail the research and development we
present in the present paper; in fact, the concern cata-
lyzes clarification of the nature of our work. When the
interlocutor here refers to the work of J. Hobbs, no refer-
ence is given; but the recent [47] is in fact a polished
compilation of longstanding effort on the part of Hobbs
and collaborators to capture folk psychology (i.e., – to
conveniently use the subtitle of the Hobbsian book we
have cited – “how people think people think”). We applaud
this work, but the nature of the efforts, formalisms, and
implementation we report in the present paper differ fun-
damentally from what Hobbs et al. are doing, both meth-
odologically and topically speaking. Methodologically
speaking, what we are doing herein is formalizing not
part of folk psychology, but part of precise, rational cog-
nition, with – hopefully – none of the well-known defi-
ciencies and biases of how “people think” in general.
In addition, while Hobbs et al. at the end of the day base
all their formal modeling on first-order logic, we find an ex-
clusive focus on this simple logic to be crippling (which
is reflected in d6 in �). Topically speaking, what we are
doing herein is in line with an attempt to capture in formal
logic what humans doing first-rate work in the formal
sciences do when they discover and prove results in a
manner that can be certified correct. We would thus start
not with cognition seen “on the street,” but with cognition
seen in accomplished mathematicians – cognition that is
now known in the discipline of reverse mathematics to
exceed even second-order logic (see, e.g., ref. [48]). So,
summing up, we do intend our artificial agents to be moral
agents (and if the absence of subjective consciousness and
qualia makes them “zombies,” then so be it), but they
must be, relative to the average human case, precise,
rational, certifiably correct ones.

4.3 “But you leave aside the perception
problem!”

Here is another objection we anticipate: “But your form-
alisms and algorithms and automated-reasoning cap-
ability is only brought to bear, at least as I understand

them, after perception has happened. But perception
is a huge challenge; arguably its severity rivals any of
the challenges that you purport to have solved. Hence,
your machine-ethics work, including specifically work –
described above, of course – targeted at handling the need
to adjudicate competing arguments dynamically in ethi-
cally charged scenarios, is all quite vulnerable. In fact
I would respectfully go so far as to say that this work has,
if you will, an Achilles heel.”

We are painfully aware of the fact that human-level
perception in AIs and, specifically, robots is nearly at the
level of science fiction. This is in large measure why the
threat of “killer robots,” as pointed out in ref. [49],²⁰ is
not yet to be taken too seriously. However, we took pains
at the outset of the present paper to point out that (i)
artificial agents in general (including, then, cognitive
robots as we defined them) compute functions mapping
percepts to actions, but that (ii) logicist artificial agents,
the class our own fall into, cast this computation as auto-
mated reasoning that only starts in earnest after the trans-
duction of sense data into formulae in a cognitive calculus.
This basic conception of the overall pipeline is in line
with how logicist AI has long been characterized by the
lead author; see, for example, ref. [50]. This conception is
also in line with our conception of cognitive robotics, as
we defined this discipline above in our Methods section.
In the scenario we gave above that featured our artificial
adjudicator and its success, we confessedly took liberties
in assuming that perceptual power was on hand, but we
did so in order to present our contribution under logicist
AI, a contribution that presents to the world formalisms,
in precise and even implemented form, that we trust will
be integrated with present and future cutting-edge
research and engineering of AI/robot perception that is
outside our forte.

We now pass to the final section of the paper proper,
in which yet another objection is considered.



20 They tellingly write:

For instance, how will the technology [=“killer robots”] differ-
entiate enemies from friends in asymmetric wars, where the
soldiers don’t wear uniforms? More generally, when humans
are not able, on the basis of a given set of information, to dis-
criminate cases that meet criteria from cases that don’t, how
will machines do better …? Will algorithms be able to recognize
a particular individual from their facial features, a foe from their
militaryuniform, aperson carrying agun, amember of a particular
group, a citizen of a particular countrywhose passportwill be read
from a remote device? (ref. [49], p. 90).
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4.4 Conclusion and future work

We end by considering what is in effect an additional
objection; but because this objection is a direct catalyst
of work on our part that is already underway, considera-
tion of the objection makes for a suitable wrap-up, and
a pointer to future work. What is this new objection?
This: “I believe the three of you must concede that one
unavoidable limiting factor afflicting any logic-based
automated-reasoning system is the apparent necessity
of hand-crafting for it the knowledge that such a system
uses. In what you have presented, what your AI knows
and believes, and reasons wonderfully from, appears,
alas, as if by magic.”

We make two points in rejoinder.
First, we plan that our reasoning systems will be

integrated with ontologies and knowledge graphs to allow
them to harness the epistemic content therein in order to
refine and strengthen the arguments generated and man-
aged by these systems. For example, in the military sce-
nario we used to explain our approach, visual information
from the low-altitude drone was exploited for an argument
that the men were planning an attack. However, it is likely
to be nigh impossible to prove from that data that the
attack was being planned on the U.S. specifically. Such
a narrow proposition, to some level of likelihood, would
be the conclusion of an argument provided for instance by
intelligence.²¹ If such propositional knowledge was avail-
able to the low-altitude drone, it could’ve included it in its
argument, which potentially would have strengthened its
belief. We are actively working on the extension of our
approach in this direction.

The second point we make in rebuttal, and with this
we conclude, is that, actually, it is far from obvious that
automated reasoning cannot, in and of itself, supplied
with percepts, generate new knowledge and belief, which
can then be further reasoned over in conjunction with new
percepts, and so on as the life of the agent in question
continues. In other words, perhaps automated reasoning
can serve itself as the chief engine of coming to know, and
to believe. This would be, if you will, a sort of “learning ex
nihilo.”We have in fact defined just such a type of learning
[51], and future work for us is clearly to imbue adjudicating
AIs discussed above with this form of learning.
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Appendix A Supplemental data

A.1 What is a cognitive calculus?
And why is it so named?

What is a cognitive calculusC, and why is it denoted with
the two words in question? (We use “C” here as an arbi-
trary variable ranging over (the uncountably infinite
space of) all cognitive calculi) (As the reader will recall,
particular cognitive calculi that were called out and used
above included �μ , ����, and �����. The latter two
have their formal languages and inference schemata spe-
cified below.) In keeping with the mathematical-logic lit-
erature (e.g., ref. [52]),²² we first take a logical system L

to be a triple � � �〈 〉, , where � is a (often) sorted/typed
formal language (based therefore on an alphabet and
a formal grammar), � is a set of natural²³ inference sche-
mata, and � is a formal semantics of some sort. For
example, the familiar propositional calculus comprises
a family of simple logical systems; the same holds for
first-order logic; both families are of course at the heart
of AI.²⁴ In the case of both of these families, a frequently
included particular inference schema is modus ponens,
that is:

→ϕ ψ ϕ
ψ

I,
MP

And in the case of the latter family, often universal
introduction is included in a given I ; a specification of this
inference schema immediately follows.²⁵











( )

∀

ϕ a
xϕ

Ia
x

UI

Note that both of the two inference schemata just
shown are included in the particular cognitive calculi

�μ and ���� we used in the present paper for modeling,
and as a framework for automated reasoning. Note as
well that bothLPC (approximately the propositional cal-
culus) andL1 (= first-order logic) are extensional, which
means essentially that the meaning of any formula ϕ in
the relevant languages are given by compositional

functions operating solely on the internal components
of ϕ. If we, for example, know that ϕ is FALSE, then we
know that the meaning of →ϕ ψ is TRUE, for any ψ in the
language, for both of these logical systems.

Moving from the concept of a logical system to that of
a cognitive calculus is straightforward and can be viewed
as taking but three steps, to wit:

S1 Expand the language of a logical system to include
(i) Modal operators that represent one or more mental

verbs at the human level standardly covered in
human-level cognitive psychology (e.g., see any stan-
dard, comprehensive textbook on human-level cogni-
tive psychology, such as [53,54]), and regarded to
be so-called “propositional attitudes” that give rise
to propositional-attitude-reporting sentences, where
these sentences are represented by operator-infused
formulae in a cognitive calculus.²⁶ Such verbs include
knowing, believing, deciding, perceiving, communi-
cating,²⁷ desiring, and feeling X where “X” denotes
some emotional state (e.g., possible =X sad, and so
on). Note that such verbs break the bounds of exten-
sionality, and hence make any logic that captures
them an intensional logic.²⁸ Step S1(i) is the reason
why we speak of a cognitive calculus.

(ii) Metalogical expressions (such as that from a set Φ of
formulae a particular formula ϕ can be proved:

⊢ ϕΦ ). Hence, cognitive calculi are not merely
object-level elements of logics, but include metalo-
gical elements as well. (This feature in the case of
���� is required to fully capture the Doctrine of
Double Effect/���, central to what we did above,
of course.) For example, a cognitive calculus can
have a metaconditional saying that if some prova-
bility expression such as ⊢ ϕΦ holds, then ϕ holds



22 Note in particular coverage in this excellent work of Lindström’s
Theorems, which pertain to the properties of certain logical systems
(e.g., completeness).
23 Hence, when the schemata are deductive in nature, we specifi-
cally have natural deduction.
24 As can be confirmed by looking to the main textbooks of the
field. For example, see ref. [2,3].
25 The standard provisos apply here to the constant a.



26 The attitudes are covered nicely in ref. [81]. Here’s an informa-
tive quote from this work: Propositional attitude reporting sentences
concern cognitive relations people bear to propositions. A paradigm
example is the sentence ‘Jill believes that Jack broke his crown.’
Arguably, ‘believes,’ ‘hopes,’ and ‘knows’ are propositional-attitude
verbs and, when followed by a clause that includes a full sentence
expressing a proposition (a that-clause) form propositional attitude
reporting sentences [81, p. 1].
27 Due to lack of space, we leave aside our approach to formal NLP
on the basis of proof theory alone. For a truly excellent book on
proof-theoretic semantics, including for natural language, we recom-
mend [82].
28 This fact is discussed in some detail in ref. [19], and is replete
with relevant proofs. As an example, note that the truth or falsity of
“Jones believes that ϕ” is not determined by the truth or falsity of ϕ,
since humans routinely believe that falsehoods hold.
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(see, for example, the schema (2) in Section 3.1).
Step S1(ii) is a necessary, preparatory step for S2.

S2 Delete �; if desired, move selected elements of � into
� , which requires casting these elements as inference
schemata that employ metalogical expressions secured
by prior step S1(ii). S2 reflects the fact that cognitive
calculi have purely inferential semantics, and hence are
aligned with the tradition of proof-theoretic semantics
[55–57]. (In particular, cognitive calculi thus do not
employ possible-worlds semantics for modal operators.
In possible-worlds approaches, e.g., knows doesn’t get
defined as justified true belief; but in general, in the
cognitive-calculus approach, knowledge in a cognitive
calculus holds iff the agent in question believes the
known proposition on the strength of a proof or argu-
ment that constitutes justification; see ref. [51]. As the
alert reader will have noted, the �μ calculus does not
employ an operator for knows, but only for believes,
corresponding to the operator B. The meaning of B in

�μ is all and only expressed by how it can be used in
inference (which is determined by inference schema (2)
in Section 3.1). We might, for instance, wish to include
an inference schema that regiments the idea that an
agent knows that which is provable from what she
knows. Step S2 is the reason why we speak of a cogni-
tive calculus (instead of, e.g., a cognitive logic, or cog-
nitive logical system).

S3 Expand � as needed to include inference schemata
that involve the operators from S1(i). For instance,
where K is the modal operator for “knows” and B for
“believes,”wemightwish tohave this inference schema
in a given �:

ϕ
ϕ

IK
B KB

A.1.1 Automated reasoning in cognitive
calculi

ShadowProver is a fast and consistent reasoner for cog-
nitive calculi that is under continuous development and
available under an open-source license [11].

A.1.1.1 Regarding related work

Much could be said about work/systems that are related
to cognitive calculi, but sustained treatment of this issue
is out of scope in this brief appendix, which is merely
meant to supplement the paper coming before it. We

will say only a few things, and hope they are at least
somewhat enlightening; here goes. The first published,
implemented cognitive calculus, a multi-operator modal
logic (minus, by definition, and as explained earlier in
the present appendix, any model-theoretic semantics)
based on multi-sorted first-order logic, can be found in
refs. [35,58]; the second of these publications is a refine-
ment of the first. Implementation at that point was based
upon Athena, a recent introduction to which, along with
a study of proof methods in computer science, is provided
in the excellent [59]. Related work as cited in this earlier
work remains relevant over a decade later, and in parti-
cular, so-called “BDI logics” (e.g., ref. [60]) are related,
and we applaud their advent – but such logics cover very
few propositional attitudes present in adult and neuro-
biologically normal cognition (e.g., no communication
operators, and no emotional states), and are not based
on purely inferential semantics. Automated reasoning in
the tradition of higher-order logic (HOL) as descended
from Frege, and most prominently from Church, which
is masterfully chronicled in ref. [61], is obviously related
to cognitive calculi; this is especially true since HOL is
now very much on the scene in twenty-first-century AI
(e.g., ref. [62]). In contrast, cognitive calculi, and the
automation thereof, are based on commitments guided
by the study of human cognition; and as we see it, that
cognition for matters formal and extensional is for the
most part circumscribed by natural deduction in third-
order logic in the complete absence of formal semantics
(e.g., consider the raw material in the practice of mathe-
matics that gives rise to the argument and analysis in ref.
[63]) and in matters literary circumscribed by modal
operators mixed with third-order logic (e.g., ref. [64]).
Traditionally, in terms of the Frege-to-Church-to… his-
tory that HOL has, HOL is extensional; in contrast, cog-
nitive calculi by definition cannot fail to have operators
that cover human cognition. The final thing we mention
here is that cognitive calculi are not in any way deductive
and bivalent or trivalent; they can be infused with uncer-
tainty, and have multiple values (e.g., ref. [35]). The paper
that precedes the present appendix shows such values in
action, as the reader has seen.

A.1.1.2 Regarding metatheory for cognitive calculi

Some readers may wonder what metatheoretical proper-
ties cognitive calculi in general have, or what properties
of this sort a particularC has. The metatheory of cognitive
calculi is rich and not uncomplicated. We thus say only
a few words here.
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Standard metatheorems for standard extensional
logics such as L1 include the familiar ones students of
formal logic learn early on: e.g., soundness, complete-
ness, compactness, and decidability. Consider specifi-
cally completeness, which holds for L1, but does not
hold for L2 (second-order logic). This dual fact can only
be expressed (let alone proved) if the logic involved has
both a model theory (according to which a given formula
ϕ can be true on all interpretations) and a proof theory
(according to which a given ϕ can be a theorem, i.e.,
provable from the null set); both L1 and L2 qualify, of
course. However, no cognitive calculus qualifies in this
way: no cognitive calculus can be complete. The reason
should be obvious: a cognitive calculus only permits
semantic meaning of any kind to be defined inferentially.
It thus is nonsensical to say that some C is complete/
incomplete; the same hold for soundness and – once we
take care to isolate a set of relevant formulae to which the
metaproperty is to be applied – compactness. Of course,
there are well-known analogs for the metaproperties of
soundness, completeness, and compactness in the case
of standard intensional logics, such as K, T, S4, and S5.
(For such logics, standard model theory is supplanted
with a different account of TRUE and FALSE, one that often
uses possible worlds (see, e.g., ref. [65] for an introduc-
tion); and precise deduction is augmented with inference
schemata (that in fact often do turn up in the � for a C).
But for exactly parallel reasons, it is nonsensical to say,
on the basis of these definitions for truth and falsity, that
a given C is sound/unsound or complete/incomplete.
After all, and again, all cognitive calculi are exclusively
proof- and argument-theoretic in nature, traceable in this
regard back to the dawn of proof-theoretic semantics.

However, decidability is quite another matter. When
it is (correctly, of course) said that because of Church’s
TheoryL1 is undecidable, this can mean either that the-
oremhood for this logic is Turing-undecidable, or that
necessary truth (validityhood?) is. It is perfectly mean-
ingful to ask, w.r.t. a given C, whether theoremhood is
Turing-decidable. The answer, for �μ and ���� follows
Church’s Theorem and is hence a negative; the proof is
trivial, since these cognitive calculi include L1. What
about the answer for � and �����? This question is
out of scope. Metatheory for inductive logics based only
on extensional formal languages (such as those forL1) is
a supremely technical affair that has become the province
of logicians and mathematician, with most in AI,

behavioral/cognitive robotics, and computational cogni-
tive science having no familiarity with this field; for an
elegant (but not simple) introduction to it, required for
mathematical understanding of �����, see ref. [66].

Two final words: First: Cognitive calculi do in fact
include a formal semantics built upon hypergraphs that
can be fairly viewed as replacing the role of interpreta-
tions in model theory (in the extensional case) and frames,
etc., in possible worlds (in the intensional case). The first
appearance of such hypergraphs in connection with
an informal inductive cognitive calculi is in ref. [67]. Use
of hypergraphs in a manner that allows theorems assert-
ing that in fact, e.g., �μ is sound and complete is out of
scope here. And now the second word, perhaps not insig-
nificant: Bringsjord hereby claims, in keeping with his
announcement at University of Turin on November 14
2016, 200 years to the day after Leibniz’s death, that cog-
nitive calculi, as characterized above, accompanied by the
used-herein machinery for inventing, specifying, and
deploying such calculi in a given domain, constitutes
none other than the arrival of the long-sought dream of
Leibniz et al.: viz., “the art of infallibility” (to use Leibniz’s
French phrase), or his “universal characteristic.” Further
elaboration taking account of Leibniz's writings must wait
for a subsequent occasion.

A.2 Implementation

The scenariowe presentedwas simulated in ShadowProver
[11]. ShadowProver is a quantifiedmulti-modal prover cap-
able of handling reasoning in cognitive calculi [12]. The
inputs toShadowProver are shown inFigureA1. Time taken
to simulate the adjudicator’s reasoning about other agents’
beliefs is shown in Table A1.

Table A1: Time taken for reasoning

Agent Time taken (s)

hdrone 3.52

ldrone1 3.82

radar 2.88

ldrone2 2.87
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A.3 Definitions for �� �

and  �� �

Below is the signature of the standard ����. It contains
the sorts, function signatures, and grammar of this cog-
nitive calculus.

���� Signature



























⩴ | | ⊑ | |

⩴

× →

→

× →

× →

× × →

× × →

× × →

× →

⩴ | | ( … )

⩴

| ¬ | ∧ | ∨ | ∀ ( ) | ∃ ( )

( ) | ( ) | ( ) | ( )

( ) | ( ) | ( ) | ( )

( (¬) ( ( ) ′))

∗

S

f

action
initially
holds
happens
clipped
initiates
terminates
prior

t x S c S f t t

ϕ

q ϕ ϕ ψ ϕ ψ x ϕ x x ϕ x
a t ϕ a t ϕ a b t ϕ a t ϕ
t ϕ a t ϕ a t ϕ a t ϕ
a t ϕ happens action a α t

P K S S
C B D I
O

Agent ActionType Action Event Moment Fluent
: Agent ActionType Action

: Fluent Formula
: Fluent Moment Formula

: Event Moment Formula
: Moment Fluent Moment Formula
: Event Fluent Moment Formula

: Event Fluent Moment Formula
: Moment Moment Formula

: : , ,
: Formula : :

, , , , , , , , ,
, , , , , , ,
, , , , ,

n1

Perceives, Knows, Says, Common-knowledge, Believes, Desires,
Intends, Ought-to.

Next is the standard set of inference schemata for ����.

���� Inference Schemata

( ) ⊢ ≤

( )

[ ]

( ) ⊢ ≤

( )

[ ]

( ( ) → ( ))

[ ]

( ( ) → ( ))

[ ]

( ) ≤ … ≤

( … ( )…)

[ ]

( )

[ ]

≤ ≤

( ( → )) → ( ) → ( )

[ ]

≤ ≤

( ( → )) → ( ) → ( )

[ ]

≤ ≤

( ( → )) → ( ) → ( )

[ ]

( ∀ → [ ↦ ])

[ ]

( ↔ → ¬ → ¬ )

[ ]

( [ ∧ … ∧ → ] → [ →…→ → ])

[ ]

( ) ( → )

( )

[ ]

( ) ( )

( ∧ )

[ ]

a t ϕ t t
a t ϕ

I

a t ϕ t t
a t ϕ

I

t a t ϕ a t ϕ
I

t a t ϕ a t ϕ
I

t ϕ t t t t
a t a t ϕ

I a t ϕ
ϕ

I

t t t
t a t ϕ ϕ a t ϕ a t ϕ

I

t t t
t a t ϕ ϕ a t ϕ a t ϕ

I

t t t
t t ϕ ϕ t ϕ t ϕ

I

t x ϕ ϕ x t
I

t ϕ ϕ ϕ ϕ
I

t ϕ ϕ ϕ ϕ ϕ ϕ
I

a t ϕ a t ϕ ψ
a t ψ

I a t ϕ a t ψ
a t ϕ ψ

I

K
K

B
B

C P K

C K B
C
K K

K

C K K K

C B B B

C C C C

C

C

C
B B

B
B B

B

, , Γ , Γ ,
, ,

, , Γ , Γ ,
, ,

, , , , ,

, , , , ,
, , , ,

, , , ,
, ,

, , , , , , ,

, , , , , , ,

, , , ,

, .

,

,
, , , ,

, ,
, , , ,

, ,

n

n n

n n

a b

1 1 2

2
K

1 1 2

2
B

1

2

1

1 1
3 4

1 2 3

1 1 2 2 1 3 2
5

1 2 3

1 1 2 2 1 3 2
6

1 2 3
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7

8

1 2 2 1
9

1 1
10
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Figure A1: Inputs to ShadowProver to model the scenario.
(a) The adjudicator reasoning about hdrone.
(b) The adjudicator reasoning about the faulty ldrone.
(c) The adjudicator reasoning about information from the radar.
(d) The adjudicator reasoning about the fixed ldrone.
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( )

( ( ))

[ ]

( ( ( ) ′))

( ( ( ) ′))

[ ]

( ) ( ( )) ( ))

( ( ))

[ ]

∗

∗

s h t ϕ
h t s t ϕ

I

a t happens action a α t
a t happens action a α t

I

a t ϕ a t a t ϕ χ a t ϕ χ
a t a t χ

I

S
B B
I
P
B B O O

K I

, , ,
, , , ,
, , , ,
, , , ,
, , , , , , , , , ,

, , , ,

12

13

14

Finally, the following two boxes specify the signature
and inference schemata for �����, respectively. These
specifications enable reasoning about uncertain belief and
knowledge. (For additional information beyond what is
provided in these specifications regarding strength factors,
in connection with the uncertainty system that underlies
the system � used above, see ref. [35].)

Additional Syntax for ����

⩴ { ( ) | ( )

∈ [− − … ]

ϕ a t ϕ a t ϕ
σ

B K, , , ,
where 6, 5, , 5, 6

σ σ

Additional Inference Schemata for  �� �

( ) ⊢ <

( )

[ ]

a t ϕ t t
a t ϕ

I
P

B
, , , Γ

, ,
s1 1 1 2

4
2

P

( ) … ( ) { … }⊢ { … }⊬ ⊢ <

( )

[ ]

( … )

a t ϕ a t ϕ ϕ ϕ ϕ ϕ ϕ ζ t t
a t ϕ

I
B B

B
, , , , , , , , , , , , , Γ

, ,

σ σ
m m m m i

min σ σ
s1 1 1 1

, , B
m

m

1

1

where ∈ [ … ]σ 0, 1, , 5, 6

( ( ) ↔ ( ¬ ))

[ ]

−

¬t a t ϕ a t ϕ
I

B BC , , , , ,σ σ
s
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