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Abstract: Intelligent robot companions contribute signif-
icantly to improve the living standards of people in the
modern society. Therefore, humanlike decision-making
skills are sought after during the design of such robots.
On the one hand, such features enable the robot to be
easily handled by its human user. On the other hand,
the robot will have the capability of dealing with humans
without disturbing them by its behavior. Perception of
Behavioral Ontology prior to an interaction is an impor-
tant aspect in this regard. Furthermore, humans make an
instant evaluation of task-related movements of others
before approaching them. In this article, we present a
mechanism to monitor how the activity space is utilized
by a particular user on a temporal basis as an ontological
assessment of the situation and then determine an appro-
priate approach behavior for a proactive robot to initiate
an interactionwith its user. This evaluationwas then used
to determine appropriate proxemic behavior to approach
that person. The usage of activity space varies depending
on the task of an individual. We used a probabilistic ap-
proach to find the areas that are the most and least likely
to be occupied within the activity space of a particular
individual during various tasks. As the robot approaches
its subject after analyzing the spatial behavior of the sub-
ject within his/her activity space, spatial constraints oc-
curred as a result of which robot’s movement could be

demolished. Hence, a more socially acceptable spatial be-
havior could be observed from the robot. In other words,
an etiquette based on approach behavior is derived con-
sidering the user’s activity space. Experiment results used
to validate the system are presented, and critical observa-
tions during the study and implications are discussed.
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1 Introduction

Social robots not only work with us in collaborative work-
spaces, but they accompany us into personal settings
such as home and health care [1,2]. Therefore, simulating
social settings, as humans do, is an emerging require-
ment with the rise of service robots in social domains.
When robots are deployed in social environments, they
are expected to abide by the society’s unspoken social
rules [1]. Respecting human personal spaces is one rule
in this regard. Proxemics has been identified as a person-
ality trait of robots and people’s reactions upon personal
space change in different situations [3]. Familiarity be-
tween people reduces the personal space, and this fact
remains same for human–robot interaction (HRI), ac-
cording to the study in ref. [4]. Displaying appropriate
proxemic behavior has several aspects such as following
societal norms and establishing psychophysical distan-
cing with people, etc. [5]. This further elaborates that
human proxemic behavior is shaped by the individual’s
psychophysical closeness to the other. These two aspects
have to be perceived in order to facilitate effective HRI.
Personality attributes are on top when attention-seeking
features and behaviors displayed by the robots are con-
sidered [6]. Furthermore, humans prefer robots with
humanlike personality attributes in human–robot do-
mains. In such occasions, following such etiquettes, simple
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“robotiquettes” that humans adhered to in social environ-
ment are expected [7].

As modern robots are expected to perceive the un-
certainties of the world without a supervision, limited
access to prior knowledge has become an obstacle for
better performance. To overcome this challenge, robotic
systems have to grasp knowledge on specific scenarios,
individual differences, task-related or environment-
specific uncertainties. Therefore, novel methods for the
perception of these uncertainties and dynamic changes
are required. A hierarchical analysis of comprehending
such information from motion is presented in ref. [8].
Expressive, individual features of motion have been ana-
lyzed through this research. Yet encoding such features
in to human-friendly signatures has become a challenge
and equally important in the advancement of Social Ro-
botics. Authors in ref. [8] have taken an effort to encode
such features to solve tasks in selected human activities.

In order to respect the space acquired by a human
[9], his/her behavior has to be observed. An activity
space is formed by the human while engaged in a certain
activity [10]. Therefore, activity space can be used as a
demonstrator of physical behavior of an individual. Ac-
tivity space is a major domain for ergonomics study of
humans during work [11,12]. Furthermore, activity space
is vividly utilized during different activities. Thus, the
activity space can be used as an observable cue to
monitor human behavior and hence determine appro-
priate proxemic behavior for interaction. Even though
such Ergonomics monitoring of human behavior is pop-
ular in health sector, it is rarely used in designing per-
sonality attributes of robots [13,14].

This study presents how proxemic behavior of a so-
cial robot is determined through a probabilistic evalua-
tion of activity space of a person. Through this work, we
took an effort to minimize the problem of formulating a
relationship between task-related human behavior and
appropriate proxemics for his/her robot companion. This
work includes an analysis of the usage of local areas
within the activity space to determine probable areas to
approach a human without causing any disturbance to
that person. It demonstrates a design space for proxemics
development in Social Robotics.

2 Related work

Researches have been conducted to discover how social
cues displayed by robots are interpreted by humans. Out
of them, cues associated with proxemic behavior were

found to significantly affect human perception of robot’s
social presence and emotional state of that encounter
[15]. On the other hand, proxemics is one aspect in im-
proving robot’s perception on environment where the
robot manipulates the interpretation of distance [16,17].
According to the studies, there are many emotional and
psychophysiological aspects in proxemic behavior such
as gender, social norms, and personality. Therefore, such
aspects have to be taken into consideration before long-
term interaction. For example, according to the study in
ref. [18], social presence of the robot was more appealing
to humans when its behavior was determined by gaze
and proxemic aspects rather than just following its user.
In ref. [19], how the rapport between robot and its user is
shaped through robot’s perception of proxemic behavior
is explained. Therefore, it can be seen how important it is
to maintain appropriate proxemics during HRI, especially
during robot-initiated interaction, when a user is least
expecting the robot. According to ref. [20], proxemic
behavior falls under interdisciplinary taxonomy of social
cues and signals in the service of engineered social
intelligence in robots.

A framework based on affective spaces to model per-
sonality and affect in behavior-based autonomous sys-
tems is proposed in ref. [21]. However, the evaluation of
affect was not used for any proxemic behavior of the
robot. According to the experiment conducted in ref.
[22], there exists an effect of robotic social cues such as
proxemic behavior on interpersonal attributes during
HRI. Therefore, consideration of proxemics by anyone
in a social domain is important in the perspective of
humans. A set of feature representations for analyzing
human spatial behavior (proxemics) motivated by
metrics used in the social sciences are given in ref. [23].
A Hidden Markov Model was trained to recognize spatio-
temporal behaviors that signify transitions into and out of
a social interaction. Here the transitions are initiation and
termination of the interaction. Suchmethods do not cover
smaller movements such as hand tips or elbows although
most of the tasks involve such movements.

Umbrico et al. [24] present a cognitive approach for
robots to personalize assistive tasks. This involves the
integration of holistic knowledge contexts and perspec-
tives which will be used in adaptation. The approach
autonomously recognizes different situations, profiles users,
according to their requirements, and decides upon appro-
priate tasks and how they are executed. A number of
internal and external elements associated with the robot
were taken into consideration during the approach. Onto-
logical perceptive system takes observations upon an
“event” to determine upon the set of activities to be per-
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formed by the robot. Human anatomy and psychophysio-
logical aspects of human have been taken into considera-
tion when building the semantics of an event. These as-
pects have been used formonitoring adults’health but not
adequately utilized in cooperative human–robot colla-
boration in social environments. Therefore, to fill that
gap, friendly robots that are aware of social norms and
human behavior are required.

The work in ref. [25] puts forward a model for com-
munication betweenhuman–robot doubles inpublic space.
This work introduces a functional structure of cognitive
agents. According to that, Knowledge mastering, imita-
tion of activity and behavior models play an important
role in human–robot doubles. Khoshhal et al. [26] de-
scribe a new approach to perceive physical human beha-
vior based on Power Spectrum-based feature extraction.
Probabilistic Laban movement analysis takes a sample of
3D acceleration data of six body parts, namely, head,
center, right hand, left hand, right feet, and left feet, to
derive the behavior of the human subject, bymeans of his/
her actions. Even though various systems are available to
derive human behavior, only limited work uses such find-
ings to generate approach responses. Furthermore, ex-
isting work majorly focuses on continuing an interaction
between a human and a robot once the interaction has
been started, but not on the concerns prior to an interac-
tion. Therefore, there is a requirement of similar systems
for behavior monitoring prior to an interaction.

A probabilistic framework for proxemic control is
used in ref. [27] for mobile HRI. A set of sensory features
experienced by an agent (robot/human) were evaluated
to determine values for the interpersonal distance and
the angle of orientation between robot and its user.
This requires inputs from different places in the setting,
which can sometimes be inconvenient due to physical
and technical constraints. A spatial approach to reach a
walking person has been proposed in ref. [28]. “User una-
ware” failure and confusion regarding the scenario have
been demolished during these two approaches. However,
random human behaviors, which were not preobserved
by the system, cannot be perceived by this method.

A proxemic planner was implemented upon user beha-
vior in ref. [29]. This method involved decision-making re-
garding the approach direction and mutual distance based
onanevaluationof users’movements.Movements included
the distance to the farthest body joint from the spine vertical
and highest joint speed recorded within the period of ob-
servation. These two variables were used as inputs to a
fuzzy system and the output determined the interpersonal
distance. Approach direction was determined as right and
left and the user behavior had no effect upon robots’

orientation. Positioning of body joints which is important
in approaching a person without invading his/her personal
space was not considered in this mechanism. Hence, the
usage of activity space was considered here only in part.

Wrist plays a major part in most activities done by
humans [30]. In addition, it is a highly dynamic compo-
nent during activities. Therefore, we selected wrist move-
ments as an important observation in monitoring human
behavior. We present a geometry-based evaluation of
wrist movements of a human in order to predict the
movements of that human to determine an appropriate
approach behavior for a robot that intends to initiate an
interaction with that human. It was necessary to monitor
the activity of “wrist” joint as it can be farthest from
human body during activities due to its dynamic nature
according to Ergonomics. Unlike most of the present
methods, a robot observes its user for a specific duration
before making decisions regarding its approach behavior
through this method. The approach direction, orienta-
tion, and mutual distance to be kept are included in the
“approach behavior” in this method.

3 Analyzing activity space

3.1 Task vs space

Activities involve various movements in body parts. Of
them, hands are the most frequently used in most of the
tasks. Hand movements will also vary depending on the
handedness of a person who performs the task. Figure 1
illustrates four occasions encountered while making a
call. Positions of the two wrist joints in space were differ-

HR HR HR
HR

HL HL

HL

HL

(a) (c) (d)(b)

Figure 1: An example situation in which an individual is making a
call. The points in space to which the right and left wrists move
within a period are marked in (a) to (d). Variation in the positions of
two joints; right wrist ( )HR and left wrist ( )HL are joined for the ease of
comparison of variation. Shown in yellow and blue are the positions
of right and left wrist, respectively.
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ent in each occasion. Similar to this example, positioning
of major body parts during various scenarios will be dif-
ferent depending on the activity the user engages in.
Therefore, spatial behavior of certain body joints can be
used as a mediator to monitor human behavior. Among
these, wrist plays a dynamic role in most of the activities
of humans and is a great cue for understanding non-
verbal communication [30,31].

In our approach, wrist movements are observed for
an adequate period of time, and the behavior is evaluated
as a whole. To include a set of points into a single space
for the ease of analysis, the space around the user is
divided into smaller regions and the observed points
are analyzed in clusters. The concept of clustered points
within the activity space was developed in a previous
stage of this research [32].

During this approach, front and side personal spaces
of the human are divided into subspaces called “zones,”
which is shown in Figure 2. To increase the accuracy of
evaluation, 50 zones were identified. On the one hand,
when the number of zones is high, the capability of
tracking even smaller movements increases. On the other
hand, handling a large number of variables (zones) for
decision-making is cumbersome. Therefore, an average of
50 zones was selected for the study. The length of the
personal space is divided into six regions, including “far
right,” “right,” “mid,” “left,” and “far left.” Areas that
do not fall under these five labels belong to zone “51,”
which will be defined later in this paragraph. Similarly,
height is divided into levels from “level 1” to “level 5”
and the width is divided into “front” and “far front.”
These are shown in Figure 2(a) and (b). These divisions
make 50 zones around the activity space and the space
excluding all the 50 zones belongs to zone 51. For ex-
ample, the label (level 1, far right, and front) describes
zone 1 and (level 5, far left, and far front) gives zone 50.

Hands are the most utilized body parts during many
day-to-day activities. Handedness of a particular indivi-
dual determines the extent to which he/she uses each
zone during a certain task. Therefore, activity zones oc-
cupied by right and left hands during a certain period
were monitored through this study. In the original re-
search, this tracking process of zones occupied by both
hands during the period of observation, t, was called
“Activity Space Analyzer (ASA).” In ASA, all the regions
occupied by a specific body joint within a period of ob-
servation are recorded. For instance, consider a walking
person. Zones recorded during the walk according to the
ASA were as follows.
‒ Right wrist = {11, 51}
‒ Left wrist = {14, 7}

This idea is illustrated in Figure 3(a). In this example,
the zones recorded for a single hand were 20 and 51.
These zones were visited at least once during the period
of observation. Rest of the zones was not occupied during
the period of observation.

3.2 Quantitative ASA (QASA)

Sometimes, the same zone will be occupied for a number
of times depending on the type of activity. This is common
in repetitive tasks. In QASA, the frequency of visits re-
corded for each zone is considered in contrast to ASA,
where only the visited zones are considered irrespective
of how many times a particular zone is occupied. This is
illustrated in Figure 3(b). The frequency of visits to each
zone was counted at the end of the period and the percen-
tage frequency is calculated accordingly. Of all the visits,
zone 20 was visited 48% of the time and 51 was occupied
52% of the time. The frequency of obtaining data from a
particular user is given under Section 5. The frequency of
visits could be used to differentiate the behaviors in tasks
that occupy the same set of zones but at different frequen-
cies. This approach further allows the robot to give less
priority to random movements, which may record farther
zones for fewer times.

During the period of observation, t, a person might
move both hands into the similar zones repeatedly.

Figure 2: Division of activity space into regions and levels. (a) Front
view of the activity space and (b) side view of the front space.

1 2 3 …......... 20 …….... 48 49 50 51

0 0 0 1 0 0 0 1
Zone

Zone

Visited/not

Percentage 
frequency

(a)

(b)

1 2 3 …......... 20 …….... 48 49 50 51

0 0 0 48% 0 0% 0% 52%

Figure 3: How (a) ASA and (b) QASA records data for analysis is
shown. Here in (a), 1 and 0 represent whether the corresponding
zone is visited or not visited, respectively.
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Sometimes, he/she might not move the hands for the
entire time. The zone that included the subject’s wrist
was recorded in each time unit. Likewise a record of the
wrist positions by means of zones was kept throughout t.
In both the scenarios, a single zone is considered to be
visited more than once. All the zones visited throughout
the period of observation were considered in ASA. At the
end of t seconds, the number of visits to each zone by the
two wrist joints (frequencies) is calculated separately in
QASA as in Figure 3(b). Dimensions of zones were
chosen by trial and error to increase the accuracy of
identifying distinct movements. These dimensions do

not depend on the whole-body movement of the person,
as zones are positioned relative to the lengths of specific
body joints such as the right and left shoulder joints.
The considered body joints and dimensions used are
illustrated in Figure 4. Front and far front regions are
each 0.2 m wide and are measured toward the front of
the individual. Other fixed lengths were chosen, so that
evenmovementsmade over a small range couldbe tracked.

3.3 Probabilistic analysis

After the frequency of visits to each zone is calculated at
the end of t s, the probability of each zone to be visited
during the same activity under same conditions – prob-
ability of occupancy – is calculated. Equation (1) is used
for this evaluation.

=
=

P f
f

_ _
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i

j j
zone

zone

1
51

zoneP
(1)

where i = 1, 2,…,51. Here P _izone is the probability of occu-
pancy of zone i at the end of t s. f _izone and f _jzone denote
the frequency of visits to zone i and j, respectively, during
t. The values obtained for P1 to P51 are compared before
making interaction decisions. Often, only a few zones are
visited during a certain task. Therefore, the probability of
the rest of the zones will be zero. Figure 5 shows the
probabilities of occupancy for each zone visited while
the user was “standing.” In this scenario, zones 11, 36,
and 51 have been occupied for 56, 23, and 21% of the time,
respectively. Hence, Pzone_11 = 0.52, Pzone_31 = 0.23, and
Pzone_51 = 0.21 according to (1). This probability provides
the tendency of the user to initialize the same zone again
during the task.

Shoulder joint-LeftShoulder joint-
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Figure 4: Dimensions and joints used to separate zones are shown
in the skeletal diagram. The distance between right and left
shoulder joints is denoted as l and the height from the floor to face
joint is denoted as h. Values used for length and width are marked.
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Figure 5: Approach of QASA. It records the zones each joint occupies and finally calculates the percentage visit to each zone.
The observation was made upon an individual who was standing, relaxed.
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4 Decision-making criteria

Movements of an individual are recorded in the form of
probabilities calculated using (1) for the ease of figurative
or quantitative comparison.

The distance between robot and user, d, was calcu-
lated with respect to the numerical value of the highest
probability of occupancy after observation. The equa-
tions used to calculate this distance are shown in (2)
and (3). It is assumed that a minimum gap of 1.0 m has
to be maintained in order to follow the social norms. This
marginal value for interpersonal distance − 1.0 m was
chosen as in ref. [33]. If i is the zone with the maximum
probability of occupancy and P _izone is the corresponding
probability of occupancy,

then the highest occupancy is in front,

= + ×d P1.0 _ 1.0 mizone (2)

and the highest occupancy is in far front,

= + + ×d P0.2 1.0 _ 1.0 mizone (3)

These equations were formulated, so that an ade-
quate mutual distance is maintained to least distract
the highly occupied zones.

The orientation of robot after approaching the user is
calculated in a similarmanner. The orientation of the robot,
θ, at two occasions is shown in Figure 6. In ordinary sce-
narios, maintaining an orientation close to °90 is rare.
Therefore, we chose a range from 0 to 80° for θ.

= × °θ P _ 80i max (4)

Here P _i max is the zone recorded with the highest occu-
pancy during observation. This allows the robot to main-

tain an orientation proportional to the highest prob-
ability of occupancy but toward the opposite direction
of mostly obstructed areas around the user. As the robot
positions himself on the side (right/left) of least occu-
pancy, the robot will face toward the zone with highest
occupancy from the side with the least occupancy. This is
similar to the human behavior when dealing with
somebody highly engaged. During such occasions, the
outsider will be cautious about the movements of the
opponent while continuing the interaction. The higher
the occupancy of a region, the greater the robot’s repul-
sion from that region. Furthermore, the higher the occu-
pancy of a region, the lesser the robot tends to choose the
opposite region. θ is measured clockwise or anticlockwise
from the horizontal drawn at °0 head orientation as
marked in Figure 6. From (4), it is expected to scale the
angle of deviation with respect to the occupancy. Hence,
the robot will deviate much from highly occupied areas to
least disrupt the user. Using (2), (3), and (4), the robot
identifies the approach direction, orientation, and mutual
distancing, respectively, by considering the user behavior.
Hence, the robot tries to follow an etiquette-based beha-
vior by respecting its user’s personal space.

The criteria used for making major decisions re-
garding the approach direction, orientation, and mutual
distance to keep between the user and robot are given in
Algorithm 1.

When choosing the direction to approach user ac-
cording to the algorithm, for a maximum occupancy in far
right allows the robot to approach the user from left.
Similarly, if maximum occupancy is recorded in right,
mid left, , and far left, the robot will choose to approach
user from far left far right zone, and 51 from right, and
right, respectively. The gap between the front and far
front regions (0.20m) must be kept if the highest number
of movements was recorded in the far front region. This
way the robot gets the opportunity to avoid highly
engaged areas within the user’s personal space which
makes an interaction adaptive and situation cautious.

5 Results and discussion

5.1 Research platform

Experiments were conducted with the participation of
21 individuals of 25–50 years (mean of 26.3 and standard
deviation of 8.96). A service robot platform called MIRob
was used for the implementation of a proposed system.
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Figure 6: The top view of the HRI scenario is shown. The orientation
of the robot is marked as θ. θ is measured clockwise (if reaching
user from his/her right) or anticlockwise (if reaching user from his/
her left) from the vertical.
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MIRob includes a Pioneer 3DX Mobile Robot platform
attached with a Cyton Gamma 300 Manipulator for as-
sistive tasks and a kinect sensor for vision. Skeletal
representation of the tracked body was extracted as
3D coordinates of feature points in Kinect. The experi-
ment was carried out in an artificially created domestic
environment.

5.2 Previous experiments

We conducted a human study on the nature of robot-
initiated HRI in ref. [34]. We considered a robot could
comprehend observable, nonverbal human cues prior to
a virtual social behavior of a robot in a human–robot
encounter. During the study, we found how important
is the robot’s perception of spatial constraints of an en-
counter, for an interaction to be less or not disturbing to
users. During this study, three human cues, namely,
speed and positioning of selected body joints and fre-
quently occupied areas of space by these body joints,
were considered to generate appropriate responses toward
a particular reason. This work considered the movement

of elbow and ankle joints in addition to the wrist joint
considered in our current work. For simplicity, the space
around a user was divided into three parts as right,
center, and left. A decision grid was created in order to
define which spatial and verbal responses of robot match
the observations well. The robot reaches its user from
the least obstructed side (out of right, center, and left
regions) keeping a calculated interpersonal distance
according to (5).

= +Interpersonal distance 1.2 maximum fanning
of a joint observed in the front region

(5)

The term refers to the distance from the center line of
the body to the considered joint toward one coordinate
system. Here it is measured along the z direction, which
extends from the center line toward the front region of the
user. In addition to proxemics, the robot chose a conver-
sational preference such as no interaction at all, greeting,
delivering a service, and having a small talk.

These responses were generated by means of a wi-
zard-of-oz experiment, considering how dynamic (in-
clined toward a busy state) or static (inclined toward a
relaxed state) a person is. The same social robot we use in
this work was also used to conduct the study and the
platform was visually capable and equipped with a
microphone and a speaker to listen and respond to users.
A set of tasks were selected for users, since their re-
sponses depend on the priority given by him/her to the
task. Robot was remotely navigated toward a user during
observation and interaction.

Results of the experiment confirmed that the spatial
and verbal behaviors of a robot were more socially accep-
table through situation awareness gained by observation
of human cues. In our set of experiments, situation
awareness is confined to the behavior of the user, robot,
and spatial constraints. It was observed that proxemic
decisions were taken, so that highly engaged areas were
least obstructed, received higher feedback scores from
users, upon a static approach behavior.

Furthermore, it could be seen that the decisions made
by such adaptive systems substantially agree with those of
the user. The experiment considered physical, social, and
emotional aspects of human behavior by considering a
limited number of cues. We extended our contribution to
implement such a robotic system to successfully engage
with users without violating their expectations.

Furthermore, we tried to embed nonverbal behavior-
based situation awareness in approach behavior of a
robot. Therefore, proxemic-cautious lively behavior of
the robot was replicated during our current set of experi-
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ments. For that we selected only the critical joints of
human body that contribute significantly to their non-
verbal behavior, and the verbal responses generated by
the robot were omitted as we consider only the robot’s
approach behavior prior to interaction. Age and gender of
users were not considered within the scope of this study.

5.3 Experiment

Tasks encountered in a typical domestic and lab environ-
ments were selected for the study. The list of selected
tasks is shown below. The task names are shortened for
the ease of future reference.
– DES – Engaged in desk activity
– CLN – Cleaning floor
– EXR – Exercising
– WTV –Watching television
– SEA – Seated, relaxing
– LAB – Engaged in lab work
– PHN –Making a phone call
– LAP –Working on laptop
– CK – Cooking
– LEA – Leaning to a wall

Each participant was asked to perform the ten tasks
mentioned above. Hence, 210 different scenarios were
selected during the experiment. First, MIRob was allowed
to approach each user in direction A in Figure 6 where the
orientation is °0 and d = 1.2 m. Then MIRob was allowed
to observe each individual once the activity was started.
After the evaluation of the user behavior according to the
model, robot navigated toward the user keeping an or-
ientation, a mutual distance, and an approach direction
as determined by the proposed model. This approach
behavior of the robot was rated by the participant by

comparing this approach behavior with that in direction
A in Figure 6. Hence, approaching the user from front as
in A is used as the ground truth during this experiment.
User rated the robot’s behavior based on the convenience
or the discomfort he/she felt as the robot approached.
Here the period of observation or t was taken as 10 s.
This value was determined, so that an adequate amount
of data was obtained for the analysis. Visual information
was extracted at a rate of five sets of data per second. This
data included positions of user’s body joints. The face
orientation was obtained at the first instance only in
order to avoid the algorithm becoming computer intensive.
Proxemic decisions were taken, so that highly engaged
areas were least obstructed. To evaluate the performance
of the system, we conducted the same experiment two
more timeswith a gap of 7 and 14 days. The feedback scores
received at each stagewere analyzed. Robotwas allowed to
wander around in a given map and it stopped and started
observation once a human is tracked.

5.4 Observations and discussion

Zones recorded for a single occasion and the calculated
probabilities for each zone during each task are shown in
Table 1. Only the zones with a nonzero frequency of visits
are given. The zones with the highest probability of
occupancy were chosen and the distance from the user
was calculated according to the decision-making criteria.
Figure 7 shows the distances calculated for the ten tasks
in Table 1, considering the highest probability of occu-
pancy. Except for the zones given in Table 1, all the other
zones received a zero occupancy probability since these
zones were never occupied during the activity. After
selecting P _i max for each task, the approach direction,
orientation, and the distance between user and robot

Table 1: The set of zones and their corresponding probabilities of occupancy obtained for each task

Task (I, P_{zone _i})

DES (15, 0.76) (14, 0.24)
CLN (11, 0.01) (12, 0.03) (13, 0.39) (14, 0.19) (15, 0.1) (16, 0.05) (20, 0.06) (36, 0.04) (37, 0.08) (45, 0.05)
EXR (11, 0.06) (13, 0.05) (14, 0.01) (15, 0.06) (16, 0.32) (17, 0.11) (18, 0.05) (19, 0.11) (20, 23)
WTV (11, 0.07) (32, 0.1) (35, 0.02) (36, 0.67) (42, 0.09) (45, 0.05)
SEA (11, 0.04) (32, 0.12) (36, 0.76) (37, 0.03) (42, 0.05)
LAB (7, 0.1) (8, 0.11) (13, 0.3) (14, 0.34) (15, 0.1) (38, 0.05)
PHN (17, 0.12) (18, 0.18) (19, 50) (22, 0.03) (23, 17)
LAP (14, 0.20) (15, 0.80)
CK (7, 0.14) (8, 0.15) (14, 0.30) (15, 0.06) (38, 0.08) (39, 0.04)
LEA (11, 0.50) (20, 0.50)
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were calculated. Results obtained for each occasion are
given in Table 2. The mean feedback score received from
the users at their first encounter with the robot is given
here. The position and orientation of the robot with re-
spect to its user after implementing the model are marked
in Figure 7. Shown in dotted and dashed lines are re-
stricted areas including the region with the maximum
occupancy. Figure 8 shows the implementation of the
model during PHN, as given in Table 2.

According to Tables 1 and 2, while the user was per-
forming a desk activity: DES, zone 15, which is on the
far left region, recorded the maximum probability of oc-
cupancy. Therefore, after implementing Algorithm 1, the
approach direction was obtained as Right. According to
(1), d was calculated as 1.0 + 0.76 × 1.0 m. Similarly, the
orientation was × °0.76 80 . Hence, the figures for d and θ

were 1.76 m and °61 , respectively. Few occasions encoun-
tered during this task is illustrated in Figure 8. Robot
behavior in this situation received an average feedback
score of 8.17 of 10. The reason for the reduction of 2 marks
was that the distance robot kept was too high if the user
wants to ask for a service from the robot or talk to him.
During all the other instances, except WTV and SEA, the
behavior of the robot received feedback scores above 8.
In WTV, the distance kept by the robot was too large,
according to the user. While watching TV, the user pre-
ferred to speak only a few words to the robot or ask for
some service. The distance was too large for both the
preferences. During SEA, the user was relaxed; therefore,
he liked to interact with the robot for a longer duration.
However, as the robot was nearly 2 m away, the occasion
reduced the user’s trend toward a conversation.
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Figure 7: Distances considered maximum occupancy regions of the selected set of tasks are marked here. The red triangle denotes the
position of the user and the other colored triangles denote the position and orientation of the robot during each task. The size of the triangle
is not scaled with the size of the user or robot but the orientation is marked by measuring θ. Colored contours represent the restricted area
for the robot to invade while approaching its user.

Table 2: Results of ten scenarios during the experiment and average feedback score received for each task

Task P _i max, region Approach direction d (m) Orientation (°) Average feedback score (of 10)

DES 0.76, far left Right 1.76 61 8.17
CLN 0.39, mid Far right 1.39 31 9.31
EXR 0.32, far left Right 1.32 26 9.33
WTV 0.67, far right Left 1.87 54 5.83
SEA 0.76, far right Left 1.96 61 6.07
LAB 0.34, left Far right 1.34 27 8.31
PHN 0.50, right Far left 1.5 40 9.50
LAP 0.80, far left Right 1.8 64 9.05
CK 0.53, left Far right 1.53 42 9.30
LEA 0.50, far right Left 1.5 40 8.33
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The feedback scores received when the experiment
was repeated after 7 and 14 days of the first experiment
were given in a box and whisker plot in Figure 9. We
intended to analyze how user acceptance regarding the
behavior of the robot evolve with experience. The mean
values have shown an increase with time as the users get
the experience of this user-aware behavior of the robot.
This could clearly be seen in the tasks: DES, WTV, SEA,
LAB, and LAP. CLN, EXR, PHN, and CK recorded higher
feedback scores from the beginning; and therefore, only
a slight difference was observed between the scores re-
ceived for these tasks afterward.

In DES, the feedback scores increased from 8.17 to
8.36 and then to 8.50 with an overall gap of 0.37 points
in between. The pattern continued in a similar manner in
LAB and LEA with the overall increments of 0.45 and
0.38. CLN, EXR, LAP, and CK recorded slight improve-
ments in the overall scores but still managed to be the
tasks that received the highest scores for robot’s beha-
vior. These four tasks improved the feedback score from
points 0.19, 0.14, 0.21, and 0.07, respectively. Even
though the PHN recorded an overall decrement in scores

by 0.20 points, it still managed to obtain feedback scores
above 9 in all three occasions. The scores were 9.5, 9.26,
and 9.30, respectively, for three occasions. WTV and SEA
recorded the highest improvement in user feedback scores
which were 1.02 and 2.07 points. WTV improved the score
from 5.83 to 6.90 and then lastly to 6.85. SEA improved its
initial score of 6.07 to 7.31 and then to 8.17. A probable
reason for this improvement is that the users first disliked
being disturbed by a robot in their relaxing times. Later
on, they were delighted by the fact that robots learn not to
invade their personal space in such relaxing situations.

Table 3 represents the results of a t test performed to
analyze the differences between the feedback scores re-
ceived by the robot for its approach behavior in initial
and final stages. Initially, it is assumed by the null hy-
pothesis that no significant difference was observed be-
tween the compared groups. From these results, it can be
seen that p < 0.05 in DES, WTV, SEA, LAB, LAP, and LEA.
Hence, it can be deduced that the null hypothesis cannot
be accepted. It shows a significant improvement in the
feedback scores in these sets of tasks. In contrast, for the
tasks p > 0.05 in CLN, EXR, PHN, and CK, the null hy-
pothesis is accepted. Hence, no significant improvement
in the feedback scores. But it can already be seen that the
feedback scores received for CLN, EXR, PHN, and CK are
much higher. In all the cases considered here, dof and
tcritical were 20 and 1.724, respectively.

In general, the minimum feedback scores have been
increasing with time, with an exception in PHN and CK.
Maximum feedback scores either stayed constant or in-
creased with time. From these trends, it can be concluded
that a significant improvement was observed in deter-
mining appropriate approach behavior of a robot, and
the performance of the system could make a positive
effect upon the user’s acceptance of robots as well.

Figure 9: This graph shows the mean values of feedback scores received from users for the acceptance of robot’s behavior in the three
occasions: initial stage, after 7 days of initial stage, and after 14 days of initial stage. The error bars represent the minimum and maximum
scores received.
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Figure 8: Two occasions encountered during PHN in Table 2.
(a) Positions of the robot and the user initially as the robot observes
the user. (b) Positions of the robot and user after approaching the
user. The orientation and the interpersonal distances during these
two occasions are marked.
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6 Implications

6.1 Implications for theory

Findings of this study were mostly based on the fact that
people prefer similar proxemic rules when interacting
with robots as they do while interacting with other hu-
mans. Factors that influence personal spaces such as the
nature of gaze, gender, and familiarity with the robot
were not considered within this context. Therefore, this
method does not replicate all parts of human-human
interaction into the HRI scenario. However, we could
identify several relationships between preferred proxemic
behavior and user experiencewith a robot’s cognition that
hold true for HRI as well. In this study, we assumed that
an individual’s state is affected by his/her task. However,

numerous other factors are not consider during the study.
Social norms in addition to proxemics, cultural values,
personality traits and principles, health condition are
a few such social and psychophysiological conditions.
In addition, no theory combines all these aspects to
model a certain situation. Therefore, development of
such instinct in robots lacks conceptual and technological
basis.

6.2 Implications for design

Based on the findings, we can state that this model can
offer better means of determining a robot’s proxemic be-
havior based on nonverbal human cues such as move-
ments. As humans prefer not getting interrupted by the
behavior of the robot, the first design guideline proposed
by the study is engraving a sense of respecting personal
space based on physical and emotional aspects. It is im-
portant to design social robots that can maintain human
trust. Otherwise the designer has to stress out the user
with a set of rules to follow when using the robot. The
feature of “maintaining appropriate proxemic behavior”
can be used as an “etiquette” for future robots used in
human domains. Even though people have been accus-
tomed to robots in their environment, and will tolerate
behaviors with limited perception capability, such beha-
vior is not acceptable in a dynamic environment such as
shopping malls, hotels, relaxation environments, etc.
Therefore, maintaining etiquettes in behavior can be
stated as the second design guideline for robots. The
third guideline is to consider human cues as much as
possible. During this approach, only the usage of activity
space was considered. Although activity space is a clear
representation of task, often there are occasions where it
is a vague representation of the setting. Therefore, con-
sidering factors in the environment can be a plus for
better perception of the surrounding. An important fact
observed during the experiment was that some people
were restricted to a few zones while some had extended
movements covering a number of zones. Therefore, a zone-
based assessment is advantageous in monitoring human
behavior especially to determine proxemics. This zone-
based assessment is the forth design guideline that can
be highlighted from the results. Body proportions differ
from human to human. This is the reason for determining
dimensions of zones as well as the whole activity space
grid as shown in Figure 4, based on individual body para-
meters. This can be considered as the fifth guideline to
design a proxemic-cautious robot companion.

Table 3: t test for the comparison of user feedback scores in initial
and final attempts

Task t Scores Initial stage Final stage

DES Mean 8.17 8.5
Variance 1.55 0.85
P 0.011

CLN Mean 9.31 9.404
Variance 0.84 0.51
P 0.081

EXR Mean 9.33 9.48
Variance 0.51 0.26
P 0.081

WTV Mean 5.83 6.86
Variance 0.98 1.6
P 0.0084

SEA Mean 6.07 8.17
Variance 0.98 1.68
P 0.0000016

LAB Mean 8.31 8.5
Variance 2.26 1.8
P 0.036

PHN Mean 9.5 9.31
Variance 0.325 0.886
P 0.179

LAP Mean 9.048 9.26
Variance 0.597 0.29
P 0.012

CK Mean 9.31 9.38
Variance 0.562 0.572
P 0.093

LEA Mean 8.33 8.71
Variance 1.28 0.964
P 0.049
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6.3 Limitations

Involuntary responses of humans before the presence of
the robot such as changes in pose and voluntary responses
such as verbal cues were not evaluated during this study.
However, these parameters may have an effect upon the
emotional state of the situationwhich requires adjustments
inproxemic behavior of the robot accordingly. Factors such
as age, gender, and the race of the participants were not
considered within the scope of this study. Therefore, in the
future, it is expected to expand the system to make an
assessment of a situation in various aspects except for phy-
sical behavior of a human. Other than that, cultural con-
cerns and norms confined to certain communities can be
considered in future improvements.

7 Conclusions

Various tasks utilize activity space differently. This fact
was deployed in this research to determine an appro-
priate approach behavior for a robot to suit a situation.
The “approach behavior” included approach direction,
orientation, and mutual distance between the person
and the robot. This study presents a model for the prob-
abilistic evaluation of human activity space. The prob-
ability of a certain region being utilized by a person in
the future is assessed by a robot before deciding to ap-
proach a person from that side. The region with the
highest probability of being occupied by a person is iden-
tified and avoided when approaching that person. This
probabilistic analysis of human activity space was im-
plemented on a social robot in order to determine the
appropriate proxemic behavior to approach humans.
Feedbacks upon robot’s behavior were taken to evaluate
the functionality of the proposed mechanism. Results ob-
tained during various situations in a social environment
were used to validate the system. An etiquette for a robot
based on proxemics is developed in this study with the
feature called “activity zones.” The empirical results of
this study can be used to reveal the human response
toward a robot with proxemic-based etiquettes. Finally
these results were used to propose several guidelines
while deploying robots in social domains.
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