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Abstract: In this article, we present work on collaborating
robot teams that use verbal explanations of their actions
and intentions in order to be more understandable to the
human. For this, we introduce a mechanism that deter-
mines what information the robots should verbalize in
accordance with Grice’s maxim of quantity, i.e., convey
as much information as is required and no more or less.
Our setup is a robot team collaborating to achieve a
common goal while explaining in natural language what
they are currently doing and what they intend to do. The
proposed approach is implemented on three Pepper robots
moving objects on a table. It is evaluated by human sub-
jects answering a range of questions about the robots’
explanations, which are generated using either our pro-
posed approach or two further approaches implemented
for evaluation purposes. Overall, we find that our pro-
posed approach leads to the most understanding of what
the robots are doing. In addition, we further propose a
method for incorporating policies driving the distribution
of tasks among the robots, which may further support
understandability.

Keywords: understandable robots, robot teams, explain-
able Al, human-robot interaction, natural language gen-
eration, Grice’s maxim of quantity, informativeness

1 Introduction

Robots are becoming increasingly autonomous and
capable, which entail that interacting humans need
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to understand the actions, intentions, capabilities, and
limitations of these autonomous robots. The term under-
standable robots [1] refers to the robot’s ability to make
itself understood - implicitly or intentionally and in a way
that interacting humans understand. In other words,
understandable refers to others’ ability to make sense
of, explain, and predict a robot’s behavior. Generally
speaking, robots are not understandable if they act
without considering the effects of their actions on the
interacting human. For example, a robot that does not
act on a human’s request (due to whatever reason) is not
understandable, and so is a robot that performs actions
that are not interpretable by a human. Understandable
robots increase the interaction quality [2] for humans in
terms of both user experience and perception of being
safe around these robots at all times.

In human-robot interaction (HRI), the number of inter-
acting robots and humans may vary. Most work on HRI con-
cerns interaction between one robot and one human only,
even though more complex configurations of humans and
robots are possible [3]. For example, a guiding robot in a
museum may interact with several humans at the same
time. Research on teams of several robots interacting with
one or several humans is still rare, even if such configura-
tions may very well become common in future real-world
applications. For example, the covid-19 pandemic makes it
more likely that groups of robots will be used to monitor
body temperatures and symptoms of visitors in hospitals.

In many of these HRI configurations, humans may
take different roles in the interaction with the robots,
such as operator, supervisor, user, or information con-
sumer [4]; and each role poses specific challenges to the
interaction design.

In this article, we describe work that addresses under-
standable robot teams, where several robots collaborate
with each other and explain their actions and intentions
in natural language, so that human bystanders can under-
stand what the robots are doing. The term human bystanders
refers to humans who are concerned with, but not directly
involved in, what the robots are doing (e.g., supervisors,
people who need to make sure that the robots’ actions
pose no threat to them, or humans in close proximity to
these robot teams).
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Earlier work on verbal communication between robots
and humans most often concerns humans giving verbal
commands to robots [5]. However, also systems with
robots that speak have been developed and studied.
As noted in [6], most such work employs relatively sim-
plistic processes for generating the robots’ utterances.
Still, in [7] a user study confirms that both user experi-
ence and performance increase if a robot gives verbal
feedback on its own and others’ actions to collabor-
ating humans. The authors of [8] investigate a robot
that gives both verbal commands and state-conveying
actions to its human teammate, for example, “Let’s rotate
the table clockwise” and “I think I know the best way of
doing he task,” respectively. In human subject experi-
ments, they show for their scenario that commands,
rather than state-conveying actions, is the most effective
method to retain user trust in the robot. Note, though,
that in our article we are investigating human under-
standing of the robot (not trust in the robot). Generation
of verbal explanations for robot behaviors was also
investigated in [9] and [10], with the aim of making
the robots’ behavior understandable to nonexpert human
users.

The current article addresses two aspects of under-
standable collaborating robot teams. First, it builds on
our work on an architecture for collaborating robot teams
[11], where the robots jointly execute a plan and also
verbally comment on their current and immediate future
actions. The current article outlines how the execution of
actions may be governed by policies, for example, to
evenly distribute work among all robots. Second, and
more importantly, we propose how Grice’s principle of
informativeness [12] can be maintained by a team of
robots that collaborates to solve a task while explaining
ongoing and planned actions to human bystanders.
More specifically, we propose an algorithm to identify
sequences of actions that may be subject to verbal
descriptions that respect this principle of informative-
ness. The algorithm decides on the most informative
content that should be verbalized, where the content
is a piece of information. This content is verbalized
using predefined templates.

To the best of our knowledge, informative verbal
explanations have not previously been addressed for
talking robot teams. We hypothesize that following
such a mechanism in generating verbal explanations
will lead to a better understanding in human bystanders
of what the robots are doing. To investigate this hypothesis,
we evaluated the proposed mechanism in an empirical
study, in which human participants answered a range of
questions about the robots’ explanations generated by
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either the proposed algorithm or one of two other mechan-
isms implemented for evaluation purposes.

The article is organized as follows. Section 2 intro-
duces the previously developed framework for colla-
borative planning and execution of actions. Section 3
describes the policy approach, followed by our approach
for generation of verbal utterances in Section 4. Section 5
presents and discusses the results of the empirical eva-
luation. Section 6 concludes the article and discusses
future work.

2 A collaborating robot team

For brevity, the basic mechanisms of plan derivation and
plan execution are described by referring to an example
with a team of three robots before we introduce our ap-
proach to using policies for task distribution in the fol-
lowing section. For detailed descriptions of plan derivation
and execution, see [11].

Our example consists of a team of three robot agents
A, B, and C that collaborate on planning and solving a
given task, which comprises moving objects R, G, and Y
to a goal configuration in a 3 x 3 grid with cells numbered
1,2,3,4,5,6,7,8,9 (Figures 1 and 2). Each robot can only
reach a limited number of cells. Thus, collaboration is
necessary to reach the goal. First, the robots collabora-
tively derive a plan by taking into account the initial
configuration on the tabletop and their individual cap-
abilities to perform actions [11]. The plan represents the
shortest sequence of robot actions to reach a given goal
following a specific policy (see Section 3). During colla-
borative plan execution, the robots utter natural lan-
guage sentences that explain what they will do or what
they request other robots to do.

AR69

Figure 1: Experimental setup of collaborating Pepper robots moving
objects while explaining their own and others’ actions.
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Figure 2: A numbered grid with three objects: a red glass (R), a green
cup (G), and a yellow duck (Y). The objects are placed in different
initial cells of the grid. Three robots A, B, and C are placed around the
tabletop, and each robot can reach only some of the cells.

Such a tabletop setting presents a rather simple and
somewhat artificial scenario. But this scenario was chosen
exactly because of its simplicity, and because it, therefore,
offers substantial experimental control and proof-of-
concept possibility of the developed methods and algo-
rithms. It also allows for focusing on “high-level” aspects,
such as task distribution or verbalization strategies, without
a large “overhead” resulting from complicated robot opera-
tions or complex environments. Our findings may then be
later transferred to more realistic scenarios, where the un-
derstandability of robot teams becomes more relevant, for
example, in search and rescue scenarios, in exploration (or
cleaning) of hazardous sites, or simply scenarios in in-
dustry or household, where human supervisors need to
be sure that robots indeed execute the intended plan.

Coming back to the example scenario outlined above,
for a goal of moving object R to cell 6, and an initial grid
as illustrated in Figure 2, the following plan s is assumed
to have been derived:

ABR34, ABCR45, AG61, ACR56.

Plan s is a string composed of a sequence of action
templates a; separated by commas: s = a;, ay,..., ay. For
example, the substring ACR56 is an action template,
denoting that either robot A or C would be capable of
moving object R from cell 5 to cell 6. Hence, an action
template may be underspecified in the sense that it
allows different robots to execute the same action. Deciding
on a specific robot to execute the action is denoted as
instantiation of the action template, and the result is an
action with the same form as an action template but with
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only one robot identifier. For example, instantiation of
the action template a; = ABR34 may result in the action
a; = BR34.

3 Policies for instantiating action
templates

For most plans, there will be different possible instantia-
tions of a given plan. Arguably, some of these may be
smarter than others. For example, in a sequence of action
templates, it may be best if a single robot executes as
many actions in a row as possible in order to avoid over-
head in task switching or maybe even to allow skipping
intermediate steps. Given plan s above, in principle robot
A could move object R directly from cell 4 to 6 without
first going through cell 5. Alternatively, it might be best to
avoid having a robot execute more than one action in a
row, for example, to allow for cooldown between action
execution. In this case, an optimal sequence of actions a;
for plan s may be BR34, CR45, AG61, CR56.

More generally, each of the action templates in s may
contain up to three different robots A, B, C that may exe-
cute an action. The task is to find for each action template a;
the best instantiation, i.e., the optimal action a;. However,
how to best instantiate an action template a; may depend
on the choices made for a previous template a;_; or a
coming template a;,;. We use the term policy to denote
the principle that governs the instantiations of action
templates.

A penalty is assigned for each instantiation that violates
the constraints imposed by a given policy. The sequence of
actions with the lowest overall penalty is the optimal one
according to the policy. In our example, the number of pos-
sible instantiations is very limited. There are four action tem-
plates, and each contains at most three different robots, i.e.,
there are at most 3* = 81 possibilities and in practice far less.
Thus, we can simply calculate the penalty for every possible
sequence of instantiations and then pick the one with the
lowest total penalty. If the number of action templates and/
or the number of robots increases, more efficient algorithms
may be used that use look-ahead and backtracking mechan-
isms to find an optimal instantiation (cf. [13]).

In the general case, for a given policy p, the optimal
instantiation of a sequence of action templates ay, a,,
..., ay is the solution to the following minimization
problem:

(q, @g,..., a3y) = arg min penaltyp(I ), 1)
1611X12X..4XIM
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where [; is the set of all possible instantiations of action
template g;, and penalty,(I) is the penalty to perform action
sequence I under policy p. For plan s, I = {AR34, BR34},
L = {AR45, BR45, CR45}, I = {AG61}, I, = {AR56, CR56};
and the optimal I, = (BR34, CR45, AG61, CR56) given a
policy p of uniform workload.

3.1 Potential policies

A range of policies may be implemented. Every robot may
use the same policy, or each may use a different one. Both
the decisions on what policy to use and whether or not all
robots employ the same policy may depend on different
factors, for example, the kind of robots involved, the
tasks at hand, or the environment the robots interact in.
Our approach is flexible in that respect.

- Random: such a (non-)policy randomly picks one of
the robots listed in an action template. There are no
needs or preferences to prioritize one way of executing
actions over any other and, accordingly, no penalties
are applied.

- Least actor changes: aims at minimizing the number
of times action execution switches between robots. In
other words, the policy aims at maximizing the sequence
of actions performed by a single robot. A penalty of 1 is
assigned each time the action execution switches from
one robot to another.

- No repeat actors: this is essentially the opposite of the
previous policy. Each action should get assigned to a
robot different from the one that executed the previous
action. This may be useful if executing an action is
strenuous on the robots or resetting to a pose allowing
to execute the next action takes a long time. A penalty
of 1is applied each time a switch to a new robot is not
possible.

— Highest variation: similar in effect, but different in
intention, this policy aims at including as many dif-
ferent robots as possible in action execution to in-
crease variability. A penalty of 1 is applied each time
a robot that has already been selected to execute an
action gets selected again.

— Uniform workload: aims at engaging all robots to the
same extent. A penalty would be assigned to an entire
sequence of actions to quantify how much, or little, all
robots are engaged, compared to the average robot.
The entropy of the action distribution may be a useful
measure for the penalty in this case.

— Lazy robot: the robot that instantiates the action tem-
plates avoids to perform actions itself. It picks other
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robots to do a task anytime this is possible. This policy
operates locally only on the robot equipped with it. All
other robots might still assign tasks to it without a
penalty.

— Avoid robot: turning the lazy robot policy into a
global policy, where every robot aims not to assign
actions to a particular robot, incurring a penalty of 1
if that robot gets to execute an action. Such a policy
may be useful if one of the robots runs out of battery or
loses some capability to execute actions, for example.

Note that there may be several optimal instantiations
for a given plan and policy. In addition, the policies are
not mutually exclusive; different policies may lead to
identical instantiations. There are other possible policies,
including applying combinations of policies. For example,
combining the uniform workload and avoiding robot poli-
cies would aim at an even distribution of workload among
all involved robots except for one designated robot that
should not do any work.

4 Verbalization of actions

In the following, we describe an algorithm that divides
an instantiated plan into partitions that the robots may
describe verbally. The partitions are created to support
Grice’s maxim of quantity or informativeness [12]: that a
speaker should be as informative as possible, while at the
same time not say more than is required. Generating
utterances this way is motivated by the assumption that
such explanations will lead to a good understanding in
human bystanders of what the robots are doing. The al-
gorithm decides on the most informative content that
should be verbalized, where the content is an abstract
piece of information representing robot actors and spe-
cific objects and from where to where the objects are
moved on the tabletop. The content is verbalized using
predefined templates that specify sequences and sets of
possible words and phrases that a robot can choose from.
Thus, currently we do not utilize the traditional pipeline
of document planning, microplanning, and surface reali-
zation [14].

We assume that the entire plan has been instantiated
according to a chosen policy. This assumption mostly
allows for an easier explanation of the proposed algo-
rithm in the following. It is not a principle restriction of
the presented approach. In fact, equation (1) allows
for incremental and flexible execution of robot actions.
For example, assume that each time only two subsequent
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action templates get instantiated and immediately exe-
cuted by the robots. Then, in principle, the instantiation
of the next two subsequent action templates could be
done according to how the execution of the previous
two actually went, which among others would allow for
adapting the policy used in their instantiation.

However, for simplicity reasons we assume an instan-
tiation of the entire plan according to a chosen policy.
This corresponds to solving the minimization problem in
equation (1) for all action templates, i.e., M = N, where
Nis the length of a given plan s. For understandability,
the relevant information is what is being said (verba-
lized referents or knowledge in a given discourse)
and who is saying it. We distinguish between newly
introduced information and information that does not
change for the next immediate planned action. For
example, if a robot says, “I will move object G” and
another robot then says “I can move it further,” then object
G is nonchanging information; whereas the second robot
speaking is newly introduced information, i.e., a speaker
change. Newly introduced information should be made
explicit, whereas nonchanging information can be referred
to or go unmentioned. This aligns with the above maxim
that an utterance should be as informative as possible
(explicitly mentioning newly introduced referents or speaker
change), while at the same time being concise (assuming
nonchanging information as known and not explicitly ver-
balizing it).

Given an instantiation aj, a,..., ay, each action a;
consists of four information units r;0,f;t;, denoting a robot,
object, source, and destination. For example, the action
CR56 consists of =C, 0;=R, f; =5 and t; = 6. For a
given instantiation, a partition is any substring of succes-
sively concatenated a;, where either the robot r; or the
object o; does not change. The maximum length of a par-
tition is set to 4 in order not to overload a human by-
stander with too much information at once.

Algorithm 1 returns the set of all partitions for a given
instantiation. The algorithm is similar to the Cocke—Younger—
Kasami algorithm [15]. It checks for successive substrings a
whether the acting robot or the object to be moved changes.
Let, for example, AY23, BY36, CG41, AG12, AG25 be an
instantiation. Here, &, @y = AY23, BY 36 is a partition since
the object Y is the same in both a; and a,. Whereas
ay, a3 = BY36, CG41 is not a partition since the robot and
the object is different in a, and in as. Similarly, a, ay, a3 =
AY23, BY36, CG41 is not a partition since neither the
robots nor the objects are the same for all a;, &y, as.
Once the algorithm computes the set of all partitions
for a given instantiation, we pick the partitioning that
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covers the entire plan, consists of nonoverlapping
successive partitions, and has the least changes in infor-
mation units as the optimal sequence. That is, the optimal
sequence is a sequence of successive, nonoverlapping par-
titions that represent an entire sequence of actions where
either the robots or the objects are the same.

The verbalization of the optimal sequence supports
avoiding underinformative and overinformative utter-
ances since newly introduced information is explicitly
verbalized, whereas nonchanging information is not. We
now give the algorithm and exemplify it later with the
instantiation example mentioned above.

Algorithm 1
Input: an instantiation ay, a,,..., @y, where each a; has
four information units r0;f; ;.
Output: the set of all partitions ¢ of the input oy, ay,..., ay.
Method:
1. Let each a; be a partition ¢, 1 <i < N.
2. If for two consecutive actions a;a;,1, 1 <i < N — 1 the
following holds:
i = Tliy1 OF 0 = Oiyg
let ¢;;,, = a;;,1 be a partition.
3. If for three consecutive actions a;a;,1®j,2,1 <i <N -2
the following conditions hold:

(a)
Ii = lis1 = liy2 O Oj = Ojy1 = Ojy)

let ¢, 1;,, = Qi1 be a partition;

(b)
i = Iiy1 O O = Oiyy

let ¢;,,, ¢;,, be the two partitions for a;a;,; and

Qi 2;
(c)

lit1 = liy2 OF,

0i+1 = Oj42,
let ¢, ¢;, ,;,, be the two partitions for a; and a;,1 ;...
4, If for four consecutive actions a;a;, 10 2Qi,3, 1 <1 <
N - 3 the following conditions hold:
(a)
i = liy1 = liy2 = 1143 O 0 = Ojy1 = Ojy2 = 0443
let @, 1110143 = Aiir1®is2®4,3 be one partition;
(b)
Ii = Tis1 = liy2 O O0j = 0jy1 = 042

let @y, 4:,0> P;5 be two partitions for ajaiai.
and ai3;
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(c)
Tis1 = lix2 = Tiy3 O Ojy1 = 0j42 = 0i43

let &, ¢ 003 be
and a,10,2®4,3;

(d)

two partitions for a;

T =iy OF 0; = Oy

and
Iiy2 = 143 OF Ojy2 = 0443

let ¢, @i,0,5 be two partitions for a;a;,; and
Qi Aijy3.

Let us again consider the example instantiation
AY23, BY36, CG41, AG12, AG25. Figure 3 shows the set
of all possible partitions. The smallest number of nono-
verlapping partitions that cover the entire instantiation
constitutes an optimal sequence of partitions. Finding the
optimal sequence can be implemented as a greedy search
or any other suitable approach that sorts and combines
the partitions into the optimal sequence. In our example,
the optimal sequence of partitions is ¢,,¢,,;. The robots
may use an optimal sequence of partitions to generate
natural language utterances that support Grice’s maxim
of quantity. For example, for ¢,, = AY23BY36, robot A
could utter “I can move the yellow object from 2 to 3 and
then robot B can move it from 3 to 6,” robot B could say
“Robot A, move the yellow object from 2 to 3, then I can
move it from 3 to 6,” or robot C could say “Robot A, please
move the yellow object from 2 to 3, then B can move it from
3to6.”

A more flexible verbalization strategy making it pos-
sible to verbalize only the chosen information units (and

@, o, @, ®, @,
AY23 |BY36 |CG4l AGI2 | AG25

Figure 3: A visualization of all possible partitions ¢ for the instan-
tiation AY23, BY36, CG41, AG12, and AG25. A partition is indicated
by successive columns in solid or striped blue.
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not all) could lead to utterances such as “I can move the
yellow object towards robot B,” “Robot A, move object Y
from cell 2 to 3, and then B can move it further to cell 6,”
or “I suggest robots A and B move Y from cell 2 to 6.”
Verbalizing only specifically chosen information units
(e.g., mentioning objects but not all cell numbers) would
most likely impact the conveyed levels of information. In
our experiments, we chose to always verbalize all in-
volved robots, cell numbers, and objects, in order to
have a uniform base for comparison and evaluation as
discussed in the following section.

5 Empirical evaluation

We evaluated the proposed approach to generate verbal
explanations, and in particular the policy of following
Grice’s maxim of informativeness in these explanations,
in an empirical evaluation, in which human participants,
who were naive with respect to our work, answered a range
of questions about the robots’ explanations.

5.1 Methods

We implemented three different mechanisms for gener-
ating verbal explanations on the Pepper robots. The first
(called “optimal” in the following) follows Grice’s maxim
of informativeness [12] and is implemented as explained
in Section 4.

The second mechanism forces robots to verbalize
each action separately. For every action of the plan,
one of the robots is identified to provide a verbal expla-
nation, following the principles explained in Section 2. In
other words, an action gets verbalized and then executed,
then the next action gets verbalized and executed, and so
on. We term this mechanism “single.”

A third mechanism randomly segments actions to be
verbalized. Accordingly, we call it “random.” The robot that
gets to verbalize the next sequence of actions picks between
one to four of the next action templates in the plan, instanti-
ates them, and then verbalizes this part of the plan.

For the evaluation, we fixed the plan to the following
instantiated action templates. We used a fixed plan to en-
sure that any differences in robot behavior would only re-
sult from the different segmentation/verbalization policies.

AR12, AR23, BY 45, BR34, BR47, CR78, CR89  (2)

That is, robot A is to move the red object from cell 1 to
cell 3, then robot B moves the yellow object “out of the
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way” from cell 4 to cell 5, followed by it moving the red
object from cell 3 to cell 7. Finally, robot C moves the red
object from cell 7 to cell 9. This plan instantiation follows
the “uniform workload” policy outlined in Section 3, and
incidentally also the “least actor changes” one.

We recorded several videos of the robots performing
this plan using either of the three different utterance
mechanisms. From those, we selected one video each
and created three variants of an otherwise identical on-
line questionnaire.! In the first variant, questionnaire
A, the participants got to see the video following the
“optimal” mechanism first, followed by the one using
the “single” mechanism, and finally the video with
the “random” mechanism. Variant B showed the “random”
mechanism video first, then the “optimal” mechanism one,
then the “single” mechanism video. Variant C had “single”
first, then “random,” and then “optimal.”

In each variant, participants would watch a video,
followed by a range of questions asking them how they
perceived the robots’ explanations on a scale of 1 to 5
(an “intrinsic” evaluation according to [16]). Each of
these scales would represent an attribute pair following
the Godspeed questionnaire [17]; see Table 1 for all attri-
bute pairs. After answering these questions, participants
continued to the next video. However, after the first
video, we first asked them to write down the plan the
robots executed, which would test for their under-
standing and memory of what had just happened
(a performance evaluation or an “extrinsic” one according
to [16]). After all three video/question sets, we finally
asked participants about their general preferences by
having them rank the three videos from “like best” via
“in-between” to “like least” (an intrinsic evaluation again).
Before submitting their answers, participants also had the
chance to leave some comments, which was optional.

Overall, eight participants replied to the question-
naire variants A and B each, and nine participants to
variant C.

We scored the plans, i.e., the descriptions of what the
robots had been doing, which the participants repro-
duced from memory using the following set of rules:

— Score starts at 0.
— For every correct move (e.g., a move from cell 1 to
cell 2), add 1 point.

The videos can be found here. For the “optimal” condition:
https://play.umu.se/media/t/0_58k7fgma;

for the “single” condition:
https://play.umu.se/media/t/0_rlt6nki9;

and for the “random” condition:
https://play.umu.se/media/t/0_yglw697e.
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Table 1: The different attribute pairs used in assessing participants’
perception of how the robots explained and instructed each other.
On a1to5 Likert scale, a ranking of 1 corresponds to “totally agree”
to the left most attribute of the pair, a ranking of 5 to “totally agree”
with the right most attribute. The order of presenting these pairs
was shuffled for each video and each participant, and they ap-
peared in random order

1 5

Fake Natural
Machinelike Humanlike
Artificial Lifelike
Static Interactive
Inefficient Efficient
Unpleasant Pleasant
Incompetent Competent

Unintelligent Intelligent

— Not specifying intermediate steps was taken to
indicate a correct sequence of moves and would
give full points; e.g., “move from 1 to 3” is seen to
implicitly contain cell 2 as an intermediate step.
Hence, this would give 2 points.

— For every correct assignment of a robot to a move

(e.g., “A moves from 1 to 2”), add 1 point.

— Following the above rule, “A moves from 1 to 3”
would give 2 points.

—  For every correct object assignment to a move (e.g.,

“R is moved from 1 to 2”), add 1 point.

— Again, “R is moved from 1 to 3” would give 2
points.

— For any sequence violation, subtract 2 points.

— For example, “AR13,BR37,BY45” are all correct
moves according to the plan, but the second and
third steps are in the wrong order. Thus, 2 points
would be deduced here.

—  The final score is the maximum of 0 and the accumu-
lated points.

Consequently, the minimum points a participant can
achieve are 0, the maximum 21. These points are then
normalized simply by dividing them by 21. The points
participants achieve reflect their understanding and
memory of what the robots were doing; we term this
memory score in the following.

5.2 Results

In the analysis of the questionnaire data, we are particu-
larly interested in the differences in the ratings of the
different videos, i.e., which explanations by the robots
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participants prefer. Furthermore, differences in how
well participants were able to remember the plan exe-
cuted by the robots are of interest, i.e., differences in their
performance. Tables 2 and 3 show summary statistics for
these two variables (remember that memory scores are
normalized between O and 1). Videos were ranked by
all 25 participants, so the statistics in Table 2 are based
on 25 answers. But each participant only performed the
memory test for the first video they saw. Accordingly, in
Table 3 statistics are based on 8 (for “optimal” and
“random” mechanism, respectively) and 9 (for the “single”
mechanism) answers.

In addition, we asked participants how they per-
ceived the robots’ explanations along different scales
and, accordingly, tested for any differences in these
ratings between the three different videos (again, these
ratings were done by all 25 participants). Finally, rat-
ings of these individual scales might determine (to
some extent) how participants liked the way the robots
explained their actions, i.e., correlate with the overall
ranking. Table 4 shows summary statistics for these
questions.

The ranking (see Table 2) seems to indicate a clear
preference for the “random” mechanism video, followed
by the “optimal” mechanism one, and then the “single.”
Indeed, a significant statistical difference was observed
between them (y? = 14.682, df = 2, p = 0.001).

The memory scores (see Equation 2 for the plan to
reproduce) seem to show differences as well. Here, on
average participants scored highest for the “optimal” me-
chanism video, closely followed by scores for the “single”
mechanism video. Average score for the “random”

Table 2: Summary statistics for ranking the different videos

Statistic Best rank Worst rank Mean St. Dev. Median
Optimal 1 3 2.080 0.702 2
Random 1 3 1.520 0.823 1
Single 1 3 2.400 0.707 3

Table 3: Summary statistics of the achieved memory scores for
reproducing the plan using a normalized score. The column “none”
states for each video the number of participants with a 0 score;
“full” accordingly the number with the maximum score

Statistic Mean St. Dev. None Full
Optimal 0.609 0.365 1 2
Random 0.285 0.377 4 0
Single 0.576 0.455 3 3
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mechanism video is less than half of that for the
“optimal” one. Still no significant difference (y? = 3.123,
df = 2, p = 0.21) was observed, likely because of a large
variety in the memory scores as can be seen in the box
plot of the achieved scores shown in Figure 4 (e.g., for the
“random” mechanism video, the standard deviation is
higher than the average score).

No statistical differences were observed for any of the
behavior questions between the three videos “optimal”
mechanism, “random” mechanism, and “single” mechanism.
Looking at the median values in Table 4, many indicate a
“neutral” rank (3 of 5), with a tendency to perceive behavior
to be rather “machinelike” than “humanlike” and “artifi-
cial” than “lifelike” (median of 2 for several conditions), but
also the robots to rather behave “efficient,” “pleasant,” and
“competent” (median of 4 each). We can also observe
that the mean for all but the second and third questions
is highest for the “random” mechanism video, i.e., in
this condition participants tended to perceive the ro-
bots on average to be (at least slightly) more “natural,”
“interactive,” “efficient,” “pleasant,” “competent,” and
“intelligent.”

A Spearman’s rank correlation analysis shows several
significant correlations between the different questions for
each video. However, no statistically significant correlations
were observed between these questions and the preference
ranking for the “optimal” mechanism video. For the
“random” mechanism video, statistically significant mod-
erate to strong negative correlations were observed between
questions “static-interactive” (p = —0.61, p = 0.001) and
“inefficient—efficient” (p = —0.65, p = 0.000) and the pre-
ference ranking. For the “single” mechanism video, a
statistically significant moderate negative correlation was
observed between question “artificial-lifelike” (p = —0.42,
p = 0.036) and the preference ranking.?

5.3 Discussion

Several insights are to be gained from the results of our
evaluation. First, and most importantly, we can observe a
dichotomy between participant preferences and perfor-
mance. Participants liked the behavior exhibited by the
robots in the “random” mechanism video best; however,
for that video seem to have remembered the least of what
actually happened.

2 Remember that the “like best” ranking is encoded as 1 and “like least”
as 3; a more positive ranking for the mentioned questions seems to lead
to preferring the video more. Thus, a negative correlation emerges.
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Table 4: Summary statistics for the questions regarding people’s perception of the robots’ explanations; “o”: “optimal” mechanism video,

“r*: “random” mechanism video, and “s”: “single” mechanism video

Min Max Mean St. Dev. Median
(] r S o r S (] r S o r S o r S
Fake-natural 1 1 2 4 5 4 3.040 3.240 3.000 0.790 1.052 0.707 3 3 3
Machinelike-humanlike 1 1 1 4 4 4 2.320 2.600 2.640 1.030 1.080 1.075 2 2 3
Artificial-lifelike 1 1 1 4 4 4 2.480 2.560 2.760 0.918 1.044 0.879 3 2 3
Static-interactive 1 1 1 5 5 5 2.960 3.200 3.040 1.136 1.258 0.978 3 3 3
Inefficient—efficient 1 1 1 5 5 5 3.360 3.600 3.080 1.075 0.957 1.256 4 4 3
Unpleasant—pleasant 1 2 2 5 5 5 3.560 3.720 3.640 0.917 0.792 0.952 4 4 4
Incompetent—competent 2 3 2 5 5 5 3.800 4.120 3.880 0.707 0.600 0.726 4 4 4
Unintelligent-intelligent 2 2 1 5 5 5 3.360 3.560 3.240 0.907 0.768 1.012 3 4 3
this. We did not account for this in the scoring, since we
1.00- did not ask for this kind of information in the question-
naire; but it is another clear indication that Grice’s maxim
of informativeness as followed in constructing these
0.75- “optimal” explanations increases understanding and
memory of what the robots are doing.
g The mechanism used in the “single” video seems to
8.0 50 lead to performance in between the other two mechan-
% isms but closer to the “optimal” mechanism one. Here,
° three participants achieved full score but three did not
0.25- remember anything correctly. The systematic and pre-
dictable way of explaining and performing each action
separately likely makes it fairly easy to follow what is
0.00- going on but a little boring to watch; hence, the lowest
0 ; 5 preference ranking despite good memory performance.

groups

Figure 4: Box plot showing the distribution of memory scores
achieved by participants for the different verbalization mechanisms;
0: “optimal,” 1: “random,” and 2: “single.”

While the differences in the memory scores turn out not
to be statistically significant — possibly due to a large variety
in performance — some differences still seem to be obser-
vable. The mean for the “optimal” mechanism group was
more than twice as high, and only one participant in this
group did not remember anything correctly, compared to
four in the “random” mechanism group. Also, two partici-
pants achieved a full score, while none managed to do this
in the “random” mechanism group, pointing to increased
difficulty in remembering events correctly for this group.

In the reproduced plans of the participants in the
“optimal” mechanism condition, many of them also in-
cluded (mostly correct) information on which robot had
instructed which other robot to perform an action. None
of the participants in the “random” mechanism group did

Regarding the rankings along the various behavior
scales, it seems that for the “random” mechanism condi-
tion, the larger variation in the length of the statements
but also the variation in how these cover different, more
varied-seeming parts of the plan lead participants to per-
ceive robot behavior to be more interactive and efficient.
In fact, two of the participants remarked in their comments
that the “random” mechanism video was the only one in
which they thought the robots were really interacting. In the
others, the robots just seemed to follow “a script” (according
to participants’ comments). This perception of “script-like”
behavior may emerge from the fact that the executed plan
is very “linear.” With the exception of moving the yellow
object aside, the red object is passed on from origin to
destination, which is broken into three larger steps exe-
cuted in strict sequence each by one robot. This may
make for very predictable behavior (prediction is to be
tested in further empirical studies), which in the “optimal”
and “single” mechanism conditions is accompanied by a
structured, similarly linear verbalization of what is hap-
pening, thereby stating actions only for a single robot at
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a time. This might lead to better understandability — in our
case better memory for what happened — but also might
lead to the robots’ behavior being perceived as “machine-
like.” Since verbalizations in the “random” mechanism are
more varied, partly covering actions for several robots, this
condition may appear less “script-like” as it may become
less predictable. This unpredictability might lead partici-
pants to experience the robots to be more competent and
intelligent, despite, or maybe rather because of, their
behavior being less understandable, as has been shown in
previous research (cf. [18]).

Overall, we can conclude that in generating explana-
tions about robot behavior following Grice’s maxims,
more specifically, optimizing for providing only relevant
information, seems to lead to a better understanding in
humans about what the robots are doing, but there is also
need for further research in order to gain more conclusive
answers.

6 Conclusions and future work

In this article, we presented an approach to using policies
in distributing tasks among the different robots involved in
robot-robot interaction. This approach is flexible in terms
of the concrete mechanisms used to perform this distri-
bution and also flexible in that different robots may use
different policies in principle. While it is described for a
specific scenario, we believe our approach is generally
applicable for task distribution and verbalization of ac-
tions in many types of sequences of robot actions.

More importantly, we presented an algorithm for par-
titioning sequences of actions to be used for verbalization
in accordance with Grice’s maxim of informativeness.
This mechanism has been evaluated in a human subject
study comparing three different verbalization mechanisms
with respect to participants’ understanding (memory) of
what has happened but also their preferences for these
mechanisms. We find some evidence for the benefits of
Grice’s maxim in terms of understandability; however,
there is also a clear preference among the participants for
the mechanism picking at random which actions to include
in an utterance. This result is in accordance with earlier
work [18], showing that unpredictability of a robot in-
creases anthropomorphism and also acceptance of the
robot.

The ideas presented in this article have possible ex-
tensions along several dimensions. The partitions used
for verbalization consist of four information units repre-
senting the acting robots, objects to be moved, start, and
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end point of the objects. The partitions can be generalized
to any number of information units representing relevant
information for tasks considered. A possible extension is to
integrate microplanning and surface realization and to ana-
lyze trade-offs regarding the complexity of the given parti-
tions, optimal sequences, policies, and verbalization (i.e.,
microplanning and surface realization).? Furthermore, an in-
cremental approach in which planning and verbalization in-
form each other and, thus, affect robot understandability is
possible. Along the same lines, integrating policy determina-
tion in an incremental way may give insight into how the
generation of verbal utterances is affected by a chosen policy
and how this in the end affects robot understandability.

Finally, there is a need for further empirical evaluation
to get a clearer picture of what lies behind the discrepancy
between preference and performance as observed in our
study. The results of our empirical evaluation point to
more work needed to be done to make the explanations
generated following Grice’s maxims to be perceived as
more varied, lifelike, and interactive and, thus, to increase
the user acceptance of such explanations.
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