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Abstract: The (3 + 1)-dimensional Yu-Toda—Sasa—Fukuyama
(YTSF) equation serves as a fundamental model for intricate
nonlinear wave phenomena observed in various domains,
including oceanography, coastal engineering, plasma physics,
and high-speed fiber-optic communications. This study
derives precise soliton solutions of the YISF problem using
arecently established (G’/(G” + G + A))-expansion approach,
resulting in a comprehensive array of trigonometric, rational,
and exponential waveforms. The resultant solutions include
kink-type, antikink-type, periodic, and isolated solitary waves,
each representing significant real-world phenomena such as
rogue-wave creation, pulse propagation in optical fibers, and
shallow-water wave dynamics. A thorough bifurcation ana-
lysis is performed, identifying important parameter “tipping
points” where solution branches arise, disappear, or alter
stability. This study reveals transitions from stable states to
oscillatory or chaotic regimes, offering a prediction frame-
work for the complex qualitative behavior of the equation.
The two- and three-dimensional visualizations produced with
Mathematica demonstrate the dynamic characteristics of the
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derived solutions for selected parameter sets. The results col-
lectively underscore the practicality, adaptability, and effec-
tiveness of the proposed strategy, while the bifurcation
insights provide a robust framework for predicting and
managing complicated wave patterns dictated by nonlinear
partial differential equations.

Keywords: nonlinear equations, nonlinear evolution equa-
tion, Yu-Toda—-Sasa-Fukuyama equation, (G'/(G' + G + A))-
expansion approach, bifurcation, nonlinear partial differ-
ential equation

1 Introduction

For the purpose of describing complex dynamic occur-
rences, nonlinear partial differential equations (NLPDEs)
are indispensable in a wide variety of scientific and tech-
nical fields, such as fluid dynamics, plasma physics, optical
fibers, and quantum mechanics. The nonlinear interactions,
evolutions, and energy transfers of waves are described by
these equations, which are fundamental to understanding the
systems that exist in the real world. In contrast to linear
equations, which simplify dynamics, NLPDEs provide a
more accurate description of physical processes to the extent
that they capture the complex behaviors that are the result of
nonlinear interactions. One of the most important character-
istics of NLPDEs is the presence of steady soliton solutions,
which are waveforms that are self-sustaining and maintain
their speed and form over time without losing energy. In both
theoretical and applied science, NLPDEs are an essential tool
because they enable researchers to gain a deeper under-
standing of the complex dynamics that are at play in a
wide variety of physical systems through the study and the
solution of these equations [1-9].

In this work, we focus on the following Yu-Toda—
Sassa—Fukuyama (YTSF) equation [10,11]:

Unxxz + Alllyy + 2Uglyy + 3Uyy = 4l = 0. @
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This equation represents intricate wave dynamics in many
physical systems by expanding its classical formulation to
three spatial dimensions and one temporal dimension. This
additional dimensionality facilitates a more authentic
modeling of multidimensional wave propagation, inte-
grating nonlinear, dispersive, and multidirectional phe-
nomena. The investigation of soliton solutions for the
YTSF equation is essential to understand the fundamental
mechanisms of nonlinear wave propagation in complex
dispersive systems. The YISF equation serves as a mathe-
matical framework for modeling various physical
phenomena, including shallow water waves, plasma oscil-
lations, and optical pulses. Solitons are stable, self-con-
tained energy packets that can cross each other without
altering their structure in these contexts. Researchers
establish a crucial connection between the abstract struc-
ture of the equation and observable physical phenomena
by deriving various explicit solutions, including kink, anti-
kink, dark, and periodic solitons. This facilitates precise
predictions of wave behavior, verifies the integrability of
the equation, uncovers its hidden symmetries, and estab-
lishes critical benchmarks for numerical models. The sta-
bility and durability of soliton solutions position them as
viable individuals for various technological applications,
such as wave-based communication, energy transfer, and
signal processing in nonlinear media. In oceanography, it
elucidates the generation and interaction of rogue waves,
unanticipated, substantial waves that provide considerable
hazards to maritime activities, and helps to forecast
shallow water dynamics crucial for coastal engineering.
Nonlinear optics models ultrashort light pulses traversing
optical fibers, which are essential for high-speed data
transfer and contemporary telecommunication systems.
The YTSF equation in plasma physics encapsulates non-
linear wave phenomena, including ion-acoustic waves,
facilitating fusion research and space plasma diagnostics.
It is pertinent to fluid dynamics and meteorology for exam-
ining turbulence and wave propagation in air systems.
Some studies have investigated the behavior and solutions
of the YTSF equation [12-16]. Among them, Du and Pang
[10] investigated localized wave structures and demon-
strated the emergence of rogue waves, breathers, and
lump solitons, signifying the capacity of the equation to
depict real-time wave evolution in actual scenarios. Tan
and Li [11] examined the impact of varied coefficients on
high-order solitons and hybrid wave phenomena, illus-
trating the adaptability of the YTSF equation to varying
physical mediums, especially in nonlinear optical systems.
In recent years, many researchers have developed a wide
range of approaches to derive exact analytical solutions of
the nonlinear evolution equation. Some of the prominent
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approaches include the Riccati-Bernoulli sub-ordinary dif-
ferential equation (ODE) method [17], the Sardar subequa-
tion technique [18], Hirota bilinear transformation method
[19], the modified Sardar subequation technique [20], the
sine-Gordon method [21], the modified exp-function method
[22], the Hirota bilinear method [23], the tanh—coth expansion
method [24], the new Kudryashov approach [25], the modified
Kudryshov method [26], the modified extended direct alge-

braic technique [27], Lie symmetry approach [28], ¢® model

expansion scheme [29], the [%]—expansion method [30],

g

[32], the Jacobi elliptic function expansion [33], and the mod-
ified simple equation method [34]. Among them, Elsherbeny
et al. [35] recently studied the extended quadratic-cubic form
of self-phase modulation and nonlinear chromatic dispersion
to extract perturbed quiescent optical solitons for the Fokas—
Lenells equation. To obtain the solutions, they have used the
projective Riccati equation scheme and the improved Kudrya-
shov’s method. Akram et al. [36] have investigated the extrac-
tion of exact solutions of the nonlinear extended quantum
Zakharov-Kuznetsov equation by utilizing well-established

G 1

G -expansion method

-expansion technique [31], the [

G 1
6’6

techniques such as the [ -expansion method and the

generalized exponential rational function method. For
specific parameter values, solutions for singular, periodic,
hyperbolic, and rational functions are obtained. Using the

G’

generalized E]-expansion approach, Hossain et al. [37]

have examined both soliton and additional closed-form solu-
tions of the Drinfeld-Sokolov—Wilson and Burgers equations.
They have obtained numerous soliton solutions, such as peri-
odic soliton, irregular periodic soliton solutions, kink-shaped
soliton, bell-shaped soliton, singular soliton, and single soliton.

To date, very few studies have focused on the YTSF
equation using modern analytical approaches, and to the
best of our knowledge, no prior work has explored this
equation via any form of expansion method. Therefore,
the main purpose of this study is to derive new closed-
form soliton solutions of the YISF equation using a novel

analytical technique, namely, the -expansion

Yy
G'+G+A
method. This method offers a powerful framework for
building a wide range of soliton solutions, including kink,
antikink, periodic, and solitary waveforms, thus broad-
ening the understanding of nonlinear wave dynamics
[38-42]. This method has proven to be a highly effective
technique, and several authors have made significant con-
tributions to the field of nonlinear dynamics using it. For
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instance, the prior research has shown its success in
yielding diverse novel exact solutions for various wave
models. Mia and Paul [42] have applied it to the general-
ized shallow water wave equation to find periodic and
singular solitary waves, while Tripathy and Sahoo [39]
utilized it to discover a wide range of antikink, dark,
bright, and singular soliton solutions for the ion sound
Langmuir wave model. The method’s utility extends to
higher-dimensional systems as well, having been used by
others [40,41] to derive exponential and trigonometric
solutions for the (4+1)-dimensional Davey-Stewartson—
Kadomtsev—Petviashvili equation and to find exact solu-
tions for the (2+1)-dimensional Kadomtsev-Petviashvili—
Benjamin-Bona-Mahony equation. Building on this estab-
lished track record, our work extends the applicability of
this powerful method to the YTSF equation, with the goal
of constructing a variety of exact traveling wave solutions
to reveal the rich nonlinear wave dynamics inherent in
this high-dimensional model. The novelty of this current
work lies in the ability to generate a wide range of closed-
form soliton solutions, including trigonometric, rational,
and exponential forms, using the proposed technique. Fol-
lowing the completion of a comprehensive bifurcation
study, significant parameter “tipping points” are identified.
These are the locations at which solution branches appear,
disappear, or change stability. In addition, the study
provides comprehensive 2D and 3D wave profiles of the
derived solutions utilizing computational software like
Mathematica, facilitating a thorough comprehension of
their dynamic behavior. The results reported in this study
demonstrate the flexibility, effectiveness, and practical
relevance of the approach to finding novel soliton struc-
tures in complicated nonlinear evolution equations.

The article is organized as follows: Section 2 explains
-expansion method. In Sec-

. G’
the main steps of the |z =7

tion 3, the method is used to extract closed-form solutions
of the governing YTSF model. Section 4 is devoted to the
bifurcation analysis. Section 5 presents the results and dis-
cussion. Finally, Section 6 concludes the study.

2 Brief overview of the
methodology

This is a modern analytical technique for deriving precise
solutions of NLPDEs. It enhanced conventional methods by
incorporating a more adaptable rational form that
included an auxiliary function and its derivative. This
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method facilitated the derivation of various soliton
solutions such as kink, antikink, periodic, rational, and
exponential forms by converting the original partial
differential problem into an ODE and employing a series
solution ansatz. Owing to its universality and efficacy, it
was extensively employed in the simulation of intricate
physical phenomena, including optical solitons, rogue
waves, and shallow water dynamics[38-40,42]. Considered
a general nonlinear partial differential equation of
the form:

Pi(u, uy, Uy, Uy, Uyy, Uyy, Uyy, Uy, Uy -..) = 0, 2

where X, y, and t are independent variables and u is the
unknown function. P; is a polynomial in u and its deriva-
tives, incorporating nonlinear and higher order terms. The
method involved the following key steps:

Step 1: For traveling wave solutions, assumed
X = mux + myy + mgz — wt, where my, my, ms, and w were
constants with the transformation of the dependent vari-
able as follows:

ux,y,z,t) = UQY). ®

By applying this transformation to Eq. (2), we derived the
following ODE:

PZ[U(X): UI(X)) U”(X), U”I(X), ..-] = 0. (4)

Step 2: Assumed a solution form of the transformed
ODE (Eq. (4)) of the form:

U() = 3o, 5)

where H = cfﬁ and G = G(y) are the functions that
needed to be determined that satisfied the following
equation:

G”+ MG+ NG + LN = 0. (6)

where L, M, N, and d; (j = 0, 1, 2, ...,N) were constants.

Step 3: The highest-order nonlinear terms were
balanced with the highest-order derivative terms in the
transformed ODE to determine the degree r of the
polynomial.

Step 4: Eq. (5) is substituted into Eq. (4) to obtain a
polynomial in powers of H. By equating the coefficients
of each power of H to zero, a system of algebraic equations
for the coefficients d; (j=0,1, 2, ...,r) was derived. The
coefficients d; were then obtained by solving the resulting
system.

Step 5: The second-order ODE given in Eq. (6) is solved
to obtain G(x). Finally, the values of d; and the evaluated
form of G(x) were substituted into Eq. (5) to obtain the
closed-form solutions.
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3 Extraction of solutions of the
governing model YTSF

In this section, the aforementioned method was applied to
the YTSF model given in Eq. (1) to extract the wave solu-
tions. The following transformation is considered to imple-
ment the proposed technique:

ux,y,z,t) = U(y), where y = mix + myy + mgz — wt. (7)

The YTSF model given in Eq. (1) is transformed into the
following ODE by employing Eq. (7):

mPmsUY + 6mfmsU’U” + nU” = 0, ®

where 5 = 4myw + 3m. Upon integrating Eq. (8) and
assuming the integration constant as zero, we obtained:

mimzU” + 3mmsU’? + nU’ = 0. 9

By applying the transformation U’ = ¥(y), Eq. (9) is trans-
formed into:

mimgp” + 3mfmay? + ny = 0. 10)

The value r = 2 is obtained by applying the homogeneous
balance principle to Eq. (10). Consequently, the solution is
derived as follows:

Y(x) = ap + ;H + aH. an

Eq. (11) is substituted into Eq. (10), and after collecting all
terms in powers of H, the coefficients of the different powers
of H were set to zero, yielding the following set of algebraic
equations:

don + dymsm3MN - 2dymsmPN? + 2d;msmiN? + 3dZmsmi = 0,
din + dymsm3M? - 6dymsm>MN + 6dymsmiMN + 6d;mzmiN2
- 12dymymiN? + 2dymsm3N + 6dodimsm? = 0,
dyn - 3dimsmM? + 4dymsmiM? + 9d;msmiMN
- 24d;msm3MN + 3dimsmiM - 6d;msmiN? + 24d,msmEN>
- 6dymsmiN + 8dymymiN + 3d2Zmsm? + 6dodymsm? = 0, (12)
2d;msmEM? - 10d,;msm3M? - 4dymsm3MN + 30d,msmMN
- 4dymsmiM + 10d;msmiM + 2d;msmPN? - 20d,msm N2
+ 4dymsmiN - 20d;msmiN + 2dymsm; + 6dydymsm? = 0,
6d,msmiM? — 12dymsm>MN - 12d;msmiM + 6dymsmIN?

+ 12d;msmiN + 6dymsm? + 3dimsmf = 0.

The aforementioned algebraic equations are solved using
Mathematica, which yielded the following two sets of solutions:
Set-I.

n=-(M?- 4N)mms, dy = =2N(-M + N + 1)m,

dy = 2(M? - 3MN - M + 2N% + 2N)my,
d, = —Z(M -N- 1)2m1.

13)

Set-II.
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1
n=(M?*- 4N)mdms, dy = —E(MZ - 6MN + 6N2 + 2N)my,

dy = 2(M2 - 3MN - M + 2N + 2N)my,
dz = —Z(M -N- 1)2m1.

(14)

In the case of Set-I, the closed-form wave solutions
were as follows:
Scenario I: When Q@ = M2 - 4N > 0,

wu()() =-2N(-M + N + h)my

+ 2(M? - 3MN - M + 2N? + 2N)my

CM + JQ) + G(M - JQ)ex'®

G+ V8 ~2) - C(-M + 2 + 2>ew5] (15)
-2(M - N-1)my

GM + Q) + C(M - JQ)exV®

Scenario II: When Q = M% - 4N < 0,

where

Yp()=-2N(-M + N + )m,

GM +JQ - 2) - G(-M + JQ + exv@ |’

+ 2(M? - 3MN - M + 2N? + 2N)my

A cos[

=
2

+ Bsin

e
2

C cos[

e
2

+ Dsin

- 2(M - N - 1my

A cos[

=2
2

-Q

+ Bsin|*——

C cos[

e
2

+ Dsin|*——

A=CM - C-Q, B=C-Q +GM,
C=CM-2)- C2J-Q, D=C-Q + (M - 2).

Similarly, for Set-II:
Case-I: When Q = M2 - 4N >0

1
Un() = =5 (M? - 6MN + 6N? + 2N)my

+ 2(M? - 3MN - M + 2N? + 2N)my
CGM + JQ) + G(M - JQ)ex®

(16)

G(M + JQ - 2) - C(-M + JQ + 2)ex®
-2(M - N - 1’my
G(M + Q) + G(M - JQ)exV®

@an

Case-Il. When Q = M2-4N <0

G(M + JQ = 2) = G(-M + JQ + 2)exV®
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1
() = ‘g(MZ - 6MN + 6N? + 2N)my

+ 2(M? - 3MN - M + 2N?

A cos[“z_

Q] + Bsin

w-e
2

w-e
2

[-Q .
A cos[XVT] + Bsin

+ 2N)my —
XN-Q

C COS[TJ + D sin (18)

Y
P
2

||’
2

-2M-N-1’my —
C cos[%] + Dsin

where

A=CM - Cv-Q,B = G- + CGM,
C=C(M-2)-C+-2,D=C~-Q + C(M - 2).

4 Bifurcation analysis

Bifurcation analysis is essential to understand how the
qualitative behavior of a dynamical system changes signif-
icantly as a parameter is incrementally modified. These
alterations may encompass the emergence or elimination
of equilibrium points, changes in their stability, or the
formation of wholly novel patterns, such as periodic oscil-
lations. Bifurcation analysis elucidates the values of essen-
tial parameters, providing significant information on the
evolution of complex systems and their abrupt transitions
in various scientific and technical fields [43—-46]. For this
analysis, we considered the dynamical system as follows.
Letting

A=mdms, B=3mims, w=n.
Then the normalized equation (Eq. (10) converted into):

AY” + BY? + wy = 0. 19
Introduced:

Y=z

Accordingly, the dynamical system was formulated as
follows:

= ¢// - Z/.

Y=z

1 (20)
7' = ——(By?* + wy).

A
Equilibrium points satisfied:

z=0, —%(sz2 + W) = 0.

That yielded:
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YBY+ =0 > P=0, y=-2. Q)
Jacobian at equilibrium:
0 1
]=—l(ZBl/)+a))0' (22)
A
The eigenvalues are as follows:
.11
A= 111/2(23111 +w). (23)

The bifurcation behavior depended on w, if w > 0: Two
equilibrium points, potentially one center and one saddle.
if w < 0: One saddle and one center. if w = 0: At the bifur-
cation point, the equilibria coalesce (saddle-node or pitch-
fork bifurcation) (Figure 1).

The phase portraits of the YISF equation offered an
extensive qualitative examination of the variations in a
nonlinear wave system in relation to a control parameter,
demonstrating a dominant pitchfork bifurcation with
immediate practical implications. In the scenario where
w < 0, the system exhibited a singular, stable fixed point
at the origin, which, in a physical setting, signified a stable
and predictable state, such as a solitary wave (soliton) pro-
pagating undistorted in an optical fiber or a stable, simple
pattern in a fluid or plasma. As the parameter approached
the critical value of w = 0, this stable condition became
unstable, indicating the emergence of a physical instability
where the simple wave solution was no longer applicable.
For w > 0, the system experienced a significant transition:
the original fixed point at the origin became unstable and
two new stable fixed points symmetrically positioned
arose. This transition signified a fundamental alteration
in physical systems, as an individual stable state evolved
into a multistable regime. This manifested itself as sym-
metry breaking, wherein a uniform state became unstable,
compelling the system to select between two new, stable
patterns; the instability of a traveling wave that resulted in
the emergence of two new stable waveforms; or as the
basic process underlying all-optical switching, whereby a
system was effectively transitioned between two distinct
stable states through slight perturbation.

5 Graphs and discussion

This section presented the physical interpretation of var-
ious soliton solutions of the YTSF equation, which were
obtained by the proposed analytical method. For selected
parameter values, these solutions were illustrated using 3D
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Figure 1: Bifurcation analysis of the given dynamical system.
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Figure 2: 3D and 2D plots of the solution based on ¢,, fort =1, M=1N
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Figure 3: 3D and 2D plots of the solution based on ¢,, fort =1, M =1,N=15,G=0,G=1,and z = 1.5.

and 2D graphical representations, highlighting their spatial
and temporal structures. The final forms of the YTSF solu-
tions were derived by integrating the analytical expres-
sions, providing a comprehensive view of the solitary
wave profiles and their dynamical characteristics
Y11, Yy95 Yy, and ¥, derived in Egs. (15)-(18) with respect
to y. The corresponding 3D and 2D graphical representa-
tions of the solutions are shown in Figures 2-5. For all
plots, we have chosen m; = my = ms = 1. Solutions for Set
I and Q > 0 using Eq. (15) with parameters values t =1,
M=1,N=01=1C=1, and z = 1.5 are displayed in
Figure 2. In Figure 2, part (I) shows the 3D plot and part (II)
presents the 2D plot of the solution corresponding to ¥,,. It
is clear from the figure that this solution varies gradually
in both spatial directions, and it is smooth, continuous, and
non-oscillatory. Also, the 2D plot shows a nonperiodic
structure. From this solution structure, we can say that
the solution is a kink-type solution. In Figure 3, we have
shown the solution based on 1, for Set-I with Q < 0 at the

parameter valuest =1, M=1, N=15,=0,C =1, and
z = 1.5. It is found from the 3D and 2D plots of the solution
that the wave solution is periodic and singular. The solu-
tion corresponding to ¥,, for Set-II with Q > 0 is depicted in
Figure 4 with the particular values of the parameterst = 1,
M=1,N=01,C(=1,C =1, and z = 1.5. From this figure,
it is found that the solution can be described as an anti-
kink-type solution. For Set-II and Q < 0, the final plot cor-
responding to the solution ¥,, is shown in Figure 5 with
parameterst =1, M=1,N=15_C=0,,=1,and z = 15.
From Figure 5, it is clear that the solution is periodic and of
singular type.

The YTSF equation yields a rich array of solutions that
model various coherent wave structures in nonlinear
media. Among these are kink and antikink solitons, which
describe abrupt, front-like interfaces between two separate
equilibrium states, analogous to phenomena like internal
tidal bores in oceanography, switching fronts in fiber
optics, or transition layers in plasmas. The equation also

0o 7
—02¢ (D ]
-04} ]
= 06} ]
08} 4

10} .

Figure 4: 3D and 2D plots of the solution based on ¢,, fort=1,M=1,N=01,G=1,G=1andz=15.
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Figure 5: 3D and 2D plots of the solution based on ¢,, fort =1, M=1,N=15=0,G=1and z=15.

generates periodic solutions, which represent stable, oscil-
latory wave trains resulting from the balance of dispersion
and nonlinearity. These solutions are comparable to
familiar wave packets in internal waves, oscillations in
plasma, and pulse trains in optical systems. This diversity
of solutions demonstrates the YTSF equation’s capacity to
accurately represent a wide spectrum of nonlinear wave
behaviors in different dispersive media.

6 Comparative analysis

Recent research has explored exact solutions to higher-
dimensional YTSF type equation, focusing on the dynamics
and interactions of solitons. A shared methodological founda-
tion, Hirota’s bilinear method, is prevalent across these
studies; however, the specific types and scope of solutions
investigated show considerable diversity. Alternatively, this
research employs a powerful method to derive exact soliton
solutions for the YTSF equation, encompassing kink, antikink,
periodic, and isolated types. A thorough bifurcation analysis

Table 1: Comparative summary of recent studies on YTSF equation

is conducted to identify critical parameter thresholds and
characterize transitions into oscillatory or chaotic regimes.
The study’s use of 2D and 3D visualizations provides a more
comprehensive and predictive characterization of solution
dynamics compared to prior work. Table 1 presents a com-
parative overview of these findings.

7 Conclusions

This study employed the powerful ﬁ -expansion

method to derive a broad class of closed-form soliton solu-
tions for the (3+1)-dimensional YISF equation. The analy-
tical solutions — which included kink-type, antikink-type,
periodic, and solitary wave structures — underscored the
equation’s ability to describe complex real-world phe-
nomena, from rogue waves and optical pulse propagation
to wave dynamics in shallow water and plasma environ-
ments. In addition, a comprehensive bifurcation analysis

References Solution types

Method(s)

Main contribution

Ma et al. [15] N-solitons, localized waves

Kink multisolitons

Hirota bilinear method

Explicit N-soliton solutions and multi-wave
interaction structures

Hu et al. [16]
Guo et al. [13]
generalized

Huang et al. [12]

Present study

Abundant solution families

Lump, soliton, N-soliton, lightest
supersymmetric particle (LSP)
kink, antikink, periodic soliton and
bifurcation analysis

Hirota method, symbolic
computation
Extended bilinear transformation

Bilinear method, spectral analysis

[%J-expansion method

First report of kink-type soliton structures in
YTSF framework

Dynamics of generalized YTSF with broad
solution structures

Combination of lump-soliton interactions
with integrability verified via LSP

Novel exact soliton solutions and bifurcation-
based nonlinear wave dynamics
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was performed, which revealed critical transitional beha-
viors in the system. This analysis highlighted how minor
changes in system parameters could lead to significant
shifts in wave behavior, from stable solutions to oscillatory
or chaotic regimes. The findings provided crucial insights
for understanding and predicting the qualitative dynamics
of these nonlinear systems. Visual representations of the
solutions reinforced the theoretical findings, offering an
intuitive understanding of the waveforms’ evolution
through space and time. In general, this research con-
firmed the effectiveness of the applied method for solving
higher dimensional nonlinear evolution equations. The
diversity of the obtained solutions, which included kink
and antikink solitons analogous to internal tidal bores or
switching fronts, as well as periodic solutions representing
stable wave trains, demonstrated the YTSF equation’s
ability to accurately model a wide spectrum of nonlinear
wave behaviors in various dispersive media. In conclusion,
this work provided a robust framework for future investi-
gations in nonlinear science and applied physics. The effec-
tiveness of the method, along with the detailed analysis of
the rich solution set of the YISF equation, paves the way
for further exploration of similar higher dimensional non-
linear models and their applications.
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