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Abstract: This study explores the modified Benjamin–Bona–
Mahony equation using the new extended direct algebraic
approach, a powerful analytical technique for solving
nonlinear partial differential equations. The proposed meth-
odology yields a diverse spectrum of exact solutions, categor-
ized into 12 distinct classes, including rational, hyperbolic,
and trigonometric functions, as well as mixed periodic,
singular, shock-singular, complex solitary-shock, and plane-
wave solutions. These solutions are systematically derived
and validated using Mathematica, demonstrating the relia-
bility and effectiveness of themethod. A comparative analysis
with existing techniques underscores the consistency and
superiority of the proposed approach. Additionally, the
Hamiltonian function is constructed to examine the system’s
conservation properties, ensuring the physical relevance of
the obtained solutions. A comprehensive sensitivity analysis
is performed to assess the model response to variations in
parameters and initial conditions. To further illustrate the
dynamical characteristics of the solutions, three-dimensional,
two-dimensional, and contour plots are presented, offering
deeper insights into their physical behavior. The results con-
tribute to the larger study of nonlinear wave phenomena in
engineering and applied sciences, providing a robust analy-
tical framework for future research in soliton theory and
mathematical physics.

Keywords: modified Benjamin–Bona–Mahony equation,
Hamiltonian function, new extended direct algebraic
approach, sensitive assessment

1 Introduction

The most important component of investigating nonlinear
physical mechanisms is looking into traveling wave solutions
to nonlinear partial differential equations (NPDEs) that can be
developed around the areas of engineering sciences, mathe-
matics, and technological fields. Nonlinear partial differential
equations (NPDEs), including partial differential equations
(PDEs) and ordinary differential equations (ODEs), play a cru-
cial role in modeling significant phenomena in various scien-
tific fields such as chemistry, engineering, biology, and
finance. They are also widely used to describe the physical
properties of different models, as discussed in refs. [1–5]. Non-
linear partial differential equations (NPDEs) have been exten-
sively employed to model significant phenomena and
dynamic advancements across various scientific and engi-
neering fields in recent years [6–8]. Hence, it is also used to
describe the intricate characteristics in these sectors and to
help researchers use them to achieve the most important
objective and systematic advancements. To understand the
course of numerous physical occurrences, the solitary wave
formulations of these kinds of structures play a crucial role.
The wave processes of dispersion, dissipation, diffusion,
response, and convection are important in nonlinear wave
equations [9,10]. Ocean engineering, solitary wave theory, tsu-
nami waves, water waves, hydrodynamics, optical fibers, tur-
bulence theory, chemical physics, chaos theory, and several
other domains are just a few examples of the many applica-
tions in which nonlinear evolution equations (NLEEs) are uti-
lized [11,12]. These types of models have become common in
several fields, such as physics, practical mathematics, and
engineering sciences, and may be used to investigate a wide
variety of nonlinear events that occur in real life [13–19].

At that time, numerous writers who were interested in
nonlinear physical processes looked into the nonlinear evolu-
tion equation’s exact solution. Plenty of scientists and mathe-
maticians have developed and used some significant methods.

The Benjamin–Bona–Mahony (BBM) equation is as
follows:

+ + + =K K KK K 0.t x x xxt (1)
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It was initially developed to represent a surface long-wave
approximation in a nonlinear dispersive medium. This equa-
tion additionally applies to acoustic-gravity waves of com-
pressed water, enharmonic crystal acoustic waves, and cold
plasma hydromagnetic waves. Rogue waves in the water have
been studied using its Peregrine soliton theories plus its BBM
equation. However, rogue waves present a serious hazard to
ships and offshore infrastructure. The study of rogue waves in
the water has made use of the BBM equation and the
Peregrine soliton idea. However, rogue waves can damage
ships, including offshore infrastructure. Freak waves are
abnormally enormous ocean waves that suddenly arise and
can rise significantly higher above the waves around them.
These waves have been seen in a variety of bodies of water,
such as lakes, seas, and especially oceans. For coastal regions,
offshore structures and marine activities pose major risks. In
addition to being created by Peregrine, the BBM equation is
another name for the regularized long-wave equation.

In this article, we take into consideration the modified
BBM equation as follows.

j ℓ+ + + =K K K K K 0.t x
n

x xxt (2)

When =n 1, Eq. (2) is known as the BBM equation, which is
seen as an advancement over the KdV equation, while can be
utilized as an explanation for the long surface gravity wave’s
characteristics, hydromagnetic waves with freezing plasma
plus acoustic-gravity waves for compressible fluids likewise,
the sound waves through a harmonic crystal [20,21].

When =n 2, we have a modified BBM equation, Eq. (2).
Additionally, this is employed throughout the study of
optical illusions, which employs color and light together
with patterning. Pictures that can trick our minds are
made using certain components, like those of Sun et al.
and Coclite et al. [22,23],

j ℓ+ + + =K K K K K 0,t x x xxt
2 (3)

where ( )K x t, is a given function, j and ℓ are nonzero and
real constants, and Eq. (3) is dependent upon the value of n.
To replicate a long surface gravity wave having tiny mag-
nitudes spreading in a (1+1) dimension, the modified equa-
tion was presented. We employ a powerful and practical
method for creating many other soliton solutions for the
modified BBM equation. The new extended direct algebraic
approach [24,25] is used in the construction of the traveling
wave solutions to the modified Benjamin–Bona–Mahony
(mBBM) equation. The modification in the mBBM equation
compared to the mBBM equation allows for the considera-
tion of additional effects or parameters, making it more
versatile in describing the behavior of certain types of
waves. The study of solutions to the mBBM equation pro-
vides insights into the complex dynamics of dispersive

waves and their interactions. The physical significance of
the mBBM equation lies in its ability to model and describe
the behavior of certain types of water waves, incorporating
both nonlinear and dispersive effects. The mBBM equation
is a NPDE, and its study falls within the broader context of
nonlinear science. Understanding the solutions to such
equations contributes to our knowledge of nonlinear phe-
nomena, which is relevant in various scientific disciplines
beyond fluid dynamics. On comparing with other methods,
the proposed method is advanced and new, and by using it
we can obtain various kinds of results.

To give exact traveling wave solutions for NPDEs,
many researchers have recently developed a variety of
techniques. For example, the auxiliary expansion method
[26,27], extended direct algebraic methodology, the tanh
and extended tanh method [28], the expension ′G

G
metho-

dology [29], extended Fan sub-equation methodology [30],
sine-cosine methodology, Jacobi elliptic function method
[31,32], algebraic method [33], variational method, Darboux
transformation, Hirota method, function transformation
method, Lie group analysis, extended simple equation
method [34–37], the tanh–coth method, and the sn-ns
method [38], Hirota’s bilinear method [39], bifurcation ana-
lysis [40], mapping method [41], Jacobi elliptic function
method [42], and multiple exponential-function approach
[43]. The space-time fractional potential Kadomtsev–
Petviashvili equation with the space-time fractional
mBBM equation may both be solved using the modified
Kudryashov method, according to Ege and Misirli [44],
extended F-expansion method [45], modified extended
tanh-function method [46–48], and modified extended
direct algebraic method [49]. For such NPDEs, the general-
ized Kudryashov approach was employed to provide a tra-
veling wave method. More research is necessary for the
numerical analysis of the space-time mBBM-type equations
after reviewing these advancements.

The primary motivation of this study is to derive
traveling wave solutions for the mBBM equation, a funda-
mental NPDE that arises in various physical and engi-
neering applications, including fluid dynamics, shallow
water wave theory, nonlinear optics, and plasma physics.
While numerous researchers have employed different ana-
lytical and numerical techniques to solve this equation, the
new extended direct algebraic approach presents a novel
and powerful alternative, yielding previously undiscov-
ered solutions. This advanced method not only enhances
the depth of analysis but also provides new insights unat-
tainable through conventional approaches, making it a
valuable tool in the study of nonlinear wave phenomena.
The proposed methodology generates a diverse range of
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exact solutions, categorized into 12 distinct classes, each
offering unique mathematical and physical interpreta-
tions. These include rational, hyperbolic, and trigono-
metric function-based solutions, as well as mixed periodic,
singular, and shock-singular solutions, which highlight cri-
tical transitions and singular behaviors within the system.
The study also uncovers mixed complex solitary-shock
solutions, integrating solitary wave dynamics with shock
wave effects, further expanding the understanding of non-
linear wave interactions. Additionally, mixed trigono-
metric, mixed hyperbolic, and mixed plane wave solutions
provide a broader perspective on the interplay between
different functional structures. We also perform a dynamic
investigation for deep understanding. To check the relia-
bility of the model we also perform the sensitivity analysis.
The classification of these solutions significantly enhances
the comprehension of the underlying dynamics of the
mBBM equation, facilitating its application in real-world
scenarios. In optical fiber communication, they aid in the
study of pulse transmission in nonlinear media, ensuring
stable signal propagation. It is also very useful in the
advanced optical system which refers to modern optical
communication and photonic structures where soliton
dynamics play a crucial role. These systems include optical
fiber networks, photonic crystals, nonlinear waveguides,
and signal processing technologies that utilize soliton solu-
tions for efficient data transmission and wave propagation.
By providing a comprehensive framework for exploring
the mBBM equation, this study lays the foundation for
future advancements in applied mathematics, engineering,
and physics, enabling further theoretical and practical
developments in nonlinear wave theory.

PDEs have attracted the attention of technologists
along with biological scholars due to their utility in mod-
eling a range of scientific processes in diverse fields,
including signals alongside the processing of images, math-
ematically based mechanical work, and biochemistry,
which are all areas of study. Because most physical systems
are nonlinear, scientists have been exploring the condi-
tions under which precise solutions to nonlinear partial
differential equations (NLPDEs), in particular nonlinear
evolution equations (NLEEs), can be obtained. Obtained
new solutions to NLPDEs can considerably enhance our
understanding of their physical significance, consistent
with the findings reported by Shakeel et al. [50]. As in non-
linear physical phenomena, different solitons have been
recognized as fundamental components that characterize
the dynamical characteristics of interacting things, parti-
cularly in studies of nonlinear optical fiber, electromag-
netic wave propagation via communicating charged
plasma, especially their occurrence in gravitational waves,

which consolidate their significance from a mathematical
alongside physical points of view [51].

This article is organized as Section 2, clarification
about methods, along with an overview. Section 3 provides
the construction of the soliton solutions as well as
describes the graphic depiction. An illustrated description
is presented in Section 4. Section 5 describes the sensitivity
analysis to verify the model’s sensitivity aspects, and
finally, Section 6 provides the conclusion.

2 Explanation of the analytical method

The suggested approaches are successfully pertinent to
complex nonlinear dominant structures.

Consider a general non-linear partial differential
equation:

�( ) =K K K K K, , , , , … 0,x t xt xx (4)

where � is the polynomial in ( )=K K x t, is an unspecified
function and it’s partial derivatives.

That converts through the ODE:

� � ��( )′ ″ =, , , … 0. (5)

Apply the transformation given

�( ) ( )=K x t ϑ, , (6)

where = −ϑ μx νt.

3 Application of new extended
direct algebraic methodology

To determine the exact analytical solution of the solitary
wave of the mBBM equation, a new extended direct alge-
braic method will be applied [52]. Let us use Eq. (3) due to
its generality. We have

j( ) ( ) ( ) ℓ ( )− ′ + ′ − ‴ =μ ν K ϑ μK ϑ K μ ν K ϑ 0.2 2 (7)

Integrating Eq. (7) with regard to ϑ and the constant is zero,

j( ) ( ) ( ) ℓ ( )− + − ″ =μ ν K ϑ μK ϑ μ ν K ϑ
1

3
0.3 2 (8)

A solution of Eq. (8) is adjusted by a homogeneous balance
parameter

�( ) ( ( ))= +K ϑ e e ϑ .0 1 (9)

By substituting the proposed solution from Eq. (9) into
Eq. (8) and equating the coefficients of different powers,
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we obtain the corresponding algebraic system of
equations.
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The solution of upper model Eq. (10) is acquired with the
support of Mathematica

( ) ( )

( ) ℓ

⎡
⎣⎢

= ± = ±

= ±
−

⎤
⎦⎥

e Q μϖ e Q μλ
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μ
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where

j

ℓ

[ ℓ ( ) ]
=

−
= −

μ Q
ϖ ρλΓ

Π
Π

2 ln
, 4 .

2 2

2 (12)

Substituting Eq. (11) in Eq. (9) for a general solution to
Eq. (1)

�( ) ( ) ( ) ( ( ))= ± ±K x t Q μϖ Q μλ ϑΓ Γ, 3 ln 2 3 ln . (13)

(Class 1): As − <ϖ ρλ4 02 , as well as ≠λ 0, following
that, mixed trigonometric solutions can be acquired,
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⎛
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⎠
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(Class 2): As − >ϖ ρλ4 02 , as well as ≠λ 0, we obtained the
solutions of various kinds as follows.

Shock solution is achieved as

( ) ( ) ⎟⎜= −
⎛
⎝

⎞
⎠

K x t Q μ ϑΓ Π
Π

, 3 ln tanh
2

.Q6 (19)

The singular outcome is derived as

( ) ( ) ⎟⎜= −
⎛
⎝

⎞
⎠

K x t Q μ ϑΓ Π
Π

, 3 ln coth
2

.Q6 (20)

A mixed complex solitary wave outcome is acquired as

( ) ( ) ( ( )

( ))

= −

±

K x t Q μ ϑ
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Γ Π Π

Π

, 3 ln tanh

sech .

Q

Q

7
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The mixed singular outcome is within the shape of

( ) ( ) ( ( )

( ))

= −

±
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The mixed shock singular outcomes are achieved along
with the shape of
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(Class 3): As >ρλ 0 as well as =ϖ 0, the trigonometric
result is

j
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The mixed trigonometric results are derived as

j
( )

ℓ

( ℓ ( ) )
( )

( ( )

( ))

=
+

×

±

K x t
μ Q λρ

Q μ

λρ ρλ ϑ

mn ρλ ϑ

, 2 3
2 1 2 ln

ln

tan 2

sec 2 ,

Q

Q

13 2 2

(26)
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(Class 4): As <ρλ 0 as well as =ϖ 0, solutions within the
shape of shock soliton are obtained as

j
( )

ℓ
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We obtain the singular solution as
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The distinct solutions of complex combo type are
derived as
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(Class 5): As =ρ λ and =ϖ 0, the periodic along with mixed
periodic solutions could be acquired in the configuration of
periodic and mixed periodic class

j
( )

ℓ

( ℓ ( ) )
( )

(( ( )))

=
+

×

K x t
μ Q λ

Q μ

λ λϑ

, 2 3
2 1 2 ln

ln

tan ,Q

21 2 2 2 (34)

( )
ℓ

ℓ( ℓ ( ) )
( )

(( ( )))

= −
+

×

K x t
μ Q λ

Q μ

λ ρϑ

, 2 3
2 1 2 ln

ln

cot ,Q

22 2 2 2 (35)

j
( )

ℓ

( ℓ ( ) )
( )

(( ( ) ( )))

=
+

× ±

K x t
μ Q λ

Q μ

λ λϑ mn λϑ

, 2 3
2 1 2 ln

ln

tan 2 sec 2 ,Q Q

23 2 2 2 (36)

j
( )

ℓ

( ℓ ( ) )
( )

(( ( ) ( )))

=
+

× − ±

K x t
μ Q λ

Q μ

λ λϑ mn λϑ

, 2 3
2 1 2 ln

ln

cot 2 csc 2 ,Q Q

24 2 2 2 (37)

j
( )

ℓ

( ℓ ( ) )
( )

⎜ ⎟

=
+

× ⎛
⎝

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠
⎞
⎠

K x t
μ Q λ

Q μ

λ
λ

ϑ
λ

ϑ

, 3
2 1 2 ln

ln

tan
2

cot
2

.Q Q

25 2 2 2

(38)

(Class 6): As =ϖ 0 and = −λ ρ, single as well as mixed
wave composition is obtained within the following class:
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(Class 7), (Class 8), (Class 9), and (Class 10) offer consistent
solutions.

(Class 11): As =ρ 0 and ≠ϖ 0, a mixed hyperbolic
solution was developed
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(Class 12): As ( )= ≠ =λ pq q ϖ p, 0 , , along with =ρ 0,
plane soliton outcome was obtained as
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4 Graphical explanation

In this section, we present a comprehensive graphical illus-
tration of the obtained soliton solutions by varying key
system parameters. The analysis reveals a diverse range

Figure 1: Three-dimensional, two-dimensional, and contour plots of the dark compacton soliton solution ( )K x t,1 . (a) 3D visualization at =μ 0.1, (b)
contour visualization at =μ 0.1, (c) 2D visualization at =μ 0.1, (d) 3D visualization at =μ 0.3, (e) contour visualization at =μ 0.3, (f) 2D visualization at

=μ 0.3, (g) 3D visualization at =μ 0.6, (h) contour visualization at =μ 0.6, and (i) 2D visualization at =μ 0.6.

6  Dean Chou et al.



of wave structures, including periodic waves, shock waves,
singular waves, and complex solitary shock solutions.
Among these, singular soliton solutions exhibit unique
characteristics that distinguish them from conventional
solitons. Such solutions play a crucial role in describing

wave phenomena that maintain coherence over long
distances, resisting dispersion. These results have broad
applications in nonlinear wave dynamics, including
optical solitons in fiber optics and water solitons in
hydrodynamics.

Figure 2: Three-dimensional, two-dimensional, and contour plots of the dark compacton soliton solution ( )K x t,6 . (a) 3D visualization at =μ 1.1, (b)
Contour visualization at =μ 1.1, (c) 2D visualization at =μ 1.1, (d) 3D visualization at =μ 0.9, (e) contour visualization at =μ 0.9, (f) 2D visualization at

=μ 0.9, (g) 3D visualization at =μ 0.7, (h) contour visualization at =μ 0.7, and (i) 2D visualization at =μ 0.7.
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To effectively demonstrate the behavior of the solu-
tions, we provide a series of graphical representations in
3D, 2D, and contour plots, highlighting their dynamic prop-
erties under different parameter settings. The numerical
values chosen for visualization are ℓ = 0.5, =ρ 0.7, =μ 0.1,

=j 0.003, =L 1.4, =ν 0.2, =m 0.05, =n 0.9, =Q 15, =ϖ 1.9.

Therefore, these graphical representations of our most
recent findings should be beneficial for the scientific ana-
lysis and precise prediction of outcomes for nonlinear
wave problems. Figure 1 expresses the compacton (dark
compacton) of ( )K x t,1 at values of =μ 0.1 as well as
obtaining the combined bright-dark soliton at the values

Figure 3: Three-dimensional, two-dimensional, and contour plots of the combined bright-dark soliton solution ( )K x t,11 . (a) 3D visualization at
=μ 0.05, (b) contour visualization at =μ 0.05, (c) 2D visualization at =μ 0.05, (d) 3D visualization at =μ 0.1, (e) contour visualization at =μ 0.1, (f) 2D

visualization at =μ 0.1, (g) 3D visualization at =μ 0.3, (h) contour visualization at =μ 0.3, and (i) 2D visualization at =μ 0.3.
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of =μ 0.3 and =μ 0.6. Figure 2 expresses the multi-peak
with decay of ( )K x t,6 at value of =μ 1.1 and obtaining the
anti-peaked with decay at the values of =μ 0.9 and =μ 0.7.
Figure 3 expresses the combined bright-dark soliton of

( )K x t,11 at values of = = =μ μ μ0.05, 0.1, 0.3. Figure 4

expresses the multi peak with decay of ( )K x t,16 at values
of = = =μ μ μ0.5, 0.7, 0.9.

These enhanced graphical representations not only validate
the analyticalfindings but also provide a significant contribution
to the study of nonlinear wave propagation. The results are of

Figure 4: Three-dimensional, two-dimensional, and contour plots of the multi peak with decay soliton solution ( )K x t,16 . (a) 3D visualization at =μ 0.5,
(b) contour visualization at =μ 0.5, (c) 2D visualization at =μ 0.5, (d) 3D visualization at =μ 0.7, (e) contour visualization at =μ 0.7, (f) 2D visualization
at =μ 0.7, (g) 3D visualization at =μ 0.9, (h) contour visualization at value of =μ 0.9, and (i) 2D visualization at value of =μ 0.9.
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paramount importance to physicists, chemists, and engineers,
offering valuable insights for industrial applications and advan-
cing research in soliton theory. To further improve clarity and
interpretation, all figures must be optimized to emphasize the
main physical significance of the governing model, ensuring a
clearer understanding of the underlying wave dynamics.

5 Dynamical visualization

This portion presents the dynamical insights of the mBBM
equation. To accomplish this goal, sensitive analyses are
employed. The planar dynamical technique is derived
using the Galilean transformation [53,54],

Figure 5: Sensitivity visualization based on different initial values. (a) Visualizing sensitivity along curve 1 and curve 2 for the points (0.1, 0.09) and (0.1,
0.05), (b) sensitive representation over curve 1 and curve 2, for (0.02, 0.1) and (0.1, 0.05), (c) visualizing sensitivity along curve 1 and curve 2 for the
points (0.02, 0.2) and (0.1, 0.05), (d) visualizing sensitivity along curve 1 and curve 2 for the points (0.02, 0.3) and (0.1, 0.05), (e) visualizing sensitivity
along curve 1 and curve 2 for the points (0.02, 0.4) and (0.1, 0.05), and (f) visualizing sensitivity along curve 1 and curve 2 for the points (0.01, 0.02) and
(0.1, 0.05).
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Particular importance is the fact that the planar dynamical
technique (47) embodies a planar Hamiltonian structure.
Through integration, one can ensure the presence of a
dynamical system’s Hamiltonian function (47),

R
ℓ

( ) ⎟⎜= − ⎛
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− + ⎞
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λ

μ ν
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μK

2

1

2

1

12
.

2

2

2
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One can verify from (48) that

R R
=

∂
∂

= −
∂
∂

K

ϑ χ

χ

ϑ K

d

d
and

d

d
. (49)

As per the argument regarding system (49), the planar dyna-
mical technique for Eq. (47) is a Hamiltonian structure.
Furthermore, system (47) serves as a generalized form
that includes all the traveling wave solutions derived in
this study Asghar et al. [55]. Dynamical visualization gener-
ally refers to the creation and display of visual representa-
tions that convey changes or movements over time.

5.1 Sensitive assessment

This section describes the planer dynamical system’s (47) sen-
sitive behavior to check out the sensitivity of the governing
model. The sensitive analysis is performed taking into account
the parametric values = = = =μ ν l j0.09, 0.1, 15, 0.1.

One can note from Figure 5 that little modifications in
the initial variables have a huge influence on the model’s
behavior. This signifies that the algorithm is sensitive to
the starting value.

6 Conclusion

This study provides a comprehensive analytical investiga-
tion of the mBBM equation, employing the new extended
direct algebraic approach to derive a broad spectrum of
solitonic solutions. The proposed methodology successfully
generates distinct and generalized solutions, categorized
into 12 classes, including rational, hyperbolic, and trigono-
metric functions, as well as mixed singular, shock-singular,
complex solitary-shock, periodic, trigonometric, hyper-
bolic, and plane wave solutions. These analytical solutions
offer deeper insights into the nonlinear dynamics of the
model, reinforcing the significance of algebraic techniques

in solving complex NPDEs. The solutions obtained are cru-
cial for modeling various physical phenomena, especially
in optical pulse transmission interactions. The study also
establishes the conservation properties of the system
through the Hamiltonian function, demonstrating that
the mass and energy remain conserved. Furthermore, sen-
sitivity analysis reveals that the system is highly responsive
to initial conditions, emphasizing the need for precise
parameter selection in practical applications. The propaga-
tion behavior of solitons and the dynamical characteristics
of the model are visually represented through 3D, 2D, and
contour plots. In general, this study contributes to the
growing body of research on nonlinear wave equations,
providing a robust analytical framework for future studies
in soliton theory and mathematical physics.
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