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Abstract: This study explores the bifurcation analysis, sen-
sitivity analysis (SA), stability analysis, and exact solitonic
wave profiles for the time-fractional Benjamin-Ono (BO)
equation, which models internal waves in stratified fluids,
especially where dispersive effects play a significant role.
These solutions are crucial for understanding ocean engi-
neering and mathematical physics phenomena. The BO equa-
tion simulates deep-water waves, making it essential for ocean
engineering applications. We employ some diverse strategies
such as the new extended direct algebraic method, generalized
Arnous method, and ansatz method to extract novel dispersive
wave solutions. These solutions exhibit diverse shapes, such as
hyperbolic, singular periodic, exponential, rational function
solutions and solitary waves including dark, singular, bright,
combo, and complex solutions. Our main goal is to analyze the
dynamic characteristics of the model by conducting bifurcation
and SA and identify the corresponding Hamiltonian function.
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To ensure validity, we also conduct stability analysis using
linear stability theory and outline constraint conditions.
Furthermore, the bifurcation of phase portraits of ordinary
differential equations corresponding to partial differential
equations under investigation is also analyzed. We also demon-
strate the fractional behavior of our results through visualiza-
tions (2D, 3D, contour, and density plots) by selecting suitable
parametric values. Our reported results are verified using
Mathematica to guarantee accuracy and validity. A detailed
comparison with existing results highlights the novelty of our
findings. This research contributes significantly to understand
wave dynamics in nonlinear phenomena and the unique out-
comes explored in this research will play a significant role in
the forthcoming investigation of nonlinear problems.
Moreover, the novelty of this study lies in the fact that the
proposed model has not been previously explored using the
aforementioned advanced methods and comprehensive dyna-
mical analyses. This study pioneers the exploration of the
fractional BO equation, yielding unique analytical results.
Our techniques efficiently identify accurate solitary pulse solu-
tions to nonlinear dynamical models with fractional para-
meters, making them highly successful in modeling deep-water
internal waves. Our computational analytical tools are also
straightforward, transparent, and reliable, reducing com-
plexity while widening applicability. The acquired solutions
are expected to have a profound impact on the study of
wave propagation and related fields, offering new insights
and perspectives that can inform future research and
applications.

Keywords: exact wave structures, Benjamin—-Ono equation,
conformable operator, bifurcation analysis, sensitivity ana-
lysis, stability analysis, efficient analytical approaches

1 Introduction

In this modern technological era, engineers and scholars
have been increasingly interested in obtaining exact

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/phys-2025-0218
mailto:rezapourshahram@yahoo.ca
mailto:minc@firat.edu.tr

2 =—— Muhammad Bilal et al.

solutions to nonlinear partial differential equations
(NLPDEs) using computational tools. These tools simplify
complex mathematical calculations and play a key role in
describing various physical systems and dynamic pro-
cesses in fields such as plasma physics, fluid mechanics,
hydrodynamics, quantum electronics, mathematical
biology, ocean engineering, geochemistry, optical fibers,
physics, and so on [1-5]. The intrinsic nonlinearity of nat-
ural phenomena has long fascinated scientists, who recog-
nize it as a crucial element in unraveling the complexities
of the universe. A plethora of physical phenomena in the
universe, characterized by enigmatic behaviors, inherently
involve nonlinear and dispersive components. The
NLPDEs, effectively model nonlinear physical phenomena
like wave propagation and instability. Mathematicians and
researchers widely use these equations to study complex
nonlinear wave dynamics. A dynamical system is a math-
ematical framework used to describe how a system evolves
over time. The system’s behavior is governed by differen-
tial equations, which capture its time-dependent dynamics.
Dynamical systems are employed across various fields to
analyze the behavior of complex systems. These fields
include mathematical physics, economics, nonlinear
optics, engineering, and many others.

1.1 Background and literature review

In recent years, the pursuit of analytical solutions to com-
plex NLPDEs has emerged as a vital and captivating area of
research. Notably, in the realm of soliton theory within
mathematical physics, the precise solutions of NLPDEs
hold paramount significance. NLPDEs serve as the funda-
mental tool for describing nonlinear phenomena,
providing a profound understanding of their fluctuating
behaviors and oscillatory mechanisms. The study of non-
linear phenomena has become particularly captivating in
modern science. Consequently, there is a growing interest
in utilizing efficient computational packages to secure
exact solutions, thereby alleviating the complexities of
algebraic computations. Various robust, efficient, and reli-
able analytical methods have been established in the
existing literature to explore different types of solutions
for nonlinear physical models [6-13].

Fractional differential equations involve derivatives of
fractional order, adding complexity to the mathematical
models. These equations are prominent in soliton wave theory,
presenting challenges in their analysis. However, they offer a
more accurate representation of real-world phenomena and
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find extensive applications across nonlinear sciences.
Conformable fractional operators, which maintain traditional
calculus properties like Rolle’s theorem and the chain rule,
provide a convenient framework for comparison with existing
fractional operators [14,15]. Their ease of use makes them a
natural choice for practical applications and aids in under-
standing physical phenomena. These operators have diverse
applications in different regions such as nonlinear dynamics,
optical fibers, chemistry, laser optics, biology, computing net-
working, and engineering [16-18]. Their versatility and compat-
ibility with established calculus principles make them valuable
tools in different engineering and scientific fields.

1.2 The studied model

The Benjamin—Ono (BO) equation is a significant nonlinear
model in mathematics that helps to describe one-dimen-
sional internal waves in deep water. It was derived by two
mathematicians named Benjamin [19] and Ono [20]. This
partial differential equation (PDE) illustrates how one-
dimensional internal waves propagate across a two-layer
fluid. It represents the behavior of internal waves existing
in the depths of the fluid. This equation, developed by Ono
and Benjamin T. Brook, is widely used in fluid dynamics
and mathematical physics to study wave interactions, the
evolution of wave behaviors, and wave breaking. The BO
equation [20], which looks like the Korteweg—de Vries
equation, was stated to elucidate internal waves in strati-
fied fluids. It has also been applied to simulate surface
wave propagation on a thinly layered structure [21], using
a surface acoustic wave delay line to launch the waves. The
BO equation plays a crucial role in understanding various
phenomena related to internal waves [22]. In the recent
past, extensive work has been done on a given model. Li
[23] retrieved solutions through the trial equation method.
Taghizadeh et al. [24] found exact traveling solutions with
the aid of the homogeneous balance method. Kaplan et al.
[25] discussed accurate solutions and conservation laws via
the exp(-®(¢))-expansion method and multiplier
approach. Zhen et al. [26] attained different kinds of exact
solutions by employing an improved projective Riccati
equation technique. This study focuses on the conformable
time fractional Benjamin—Ono (FBO) equation [27].

D¥© + BDX©% +yDi@® =0, 0<a<1, @

where D represents the derivative and D?® represents
twice conformable fractional derivative of function
O(x, t) w.r.t t, while § and y are non-zero constants.
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1.3 Research aim and gap of the study

In this article, our main aim is to explore time fractional
(1+1-dimensional BO equation analytically to obtain single
and combined forms of complex wave solutions of the gov-
erning model under specified parametric circumstances by
the new extended direct algebraic method (NEDAM), general-
ized Arnous method (GAM), and ansatz method [28-30],
respectively. A comprehensive review of existing literature
on the BO equation reveals a significant knowledge gap: the
NEDAM, GAM, and ansatz methods have not been previously
utilized, and dynamical perspective of sensitivity, bifurcation,
and stability analyses remains unexplored. This notable over-
sight underscores the importance of our research, which
aims to bridge this gap by applying these innovative methods
to derive novel wave structures and qualitative analyses,
thereby enriching our understanding of the BO equation
and its dynamics. Our current motivation is on leveraging
these advanced methods to systematically investigate dif-
ferent classes of solutions. Furthermore, we have established
a framework to efficiently categorize the solutions acquired
from these innovative techniques. The methodologies
employed in this study offer a significant advantage over
existing methods, as they yield additional computable solu-
tions with extra free parameters. The selection of the NEDAM,
GAM, and ansatz method over conventional approaches such
as the variational iteration method (VIM), Adomian decom-
position method (ADM), and Hirota bilinear method (HBM)
lacks a comprehensive comparative discussion in many stu-
dies. Unlike VIM and ADM, which rely on iterative corrections
and series expansions, these algebraic methods offer a more
direct route to exact solutions without requiring approxima-
tions or decompositions. Compared to HBM, which is limited
to integrable equations and requires bilinear transforma-
tions, NEDAM, GAM, and the ansatz method apply to a
broader class of nonlinear differential equations. Their pri-
mary advantage lies in their efficiency and ability to generate
closed-form solutions, making them particularly useful for
soliton, periodic, and rational wave solutions. However,
they are limited by their reliance on correctly assuming
the solution structure, a challenge not faced by iterative
methods that refine approximations progressively. Addition-
ally, while VIM and ADM provide error estimates and con-
vergence guarantees, these algebraic methods lack inherent
mechanisms to assess accuracy or stability. Despite these lim-
itations, their ability to produce exact analytical solutions
makes them valuable for exploring the fundamental proper-
ties of nonlinear evolution equations, especially in mathema-
tical physics. Notably, many previously obtained solutions
in the literature can be derived as special cases using
these approaches, and importantly, new solutions are also
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obtained. The recommended computational methods are
characterized by their simplicity, clarity, consistency, and
reduced computational complexity, making them widely
applicable. Furthermore, these approaches facilitate the dis-
covery of novel results, furnishing a comprehensive frame-
work for systematically organizing and consolidating these
findings.

1.4 Structure of the study

The article is organized as follows: Conformable fractional
derivative with its features is given in Section 2. Extraction
of diverse traveling wave solutions is given in Section 3. In
Section 4, we will discuss the sensitivity analysis (SA) of the
dynamical model. Section 5 deals with bifurcation analysis.
In Section 6, stability analysis is examined. In Section 7,
results and discussion are represented. In Section 8, the
concluding remarks are revealed.

2 Conformable derivative and its
properties

The widespread applications of conformable derivatives
highlight the need for more accurate mathematical methods
when addressing real-world phenomena. Researchers have
been exploring the behavior of nonlinear fractional partial
differential equations (FPDEs) using innovative forms of frac-
tional calculus operators like the Riemann-Liouville, Caputo-
Fabrizio, and the Beta derivative. These models play a crucial
role in engineering and applied sciences, offering solutions to
complex problems. This particular class of derivatives offers a
potent tool for scholars and practitioners to elucidate and
examine a diverse range of physical, biological, and engi-
neering systems. Among these models, the conformable frac-
tional derivative is notable for its proficiency to reveal the
core of the basic phenomenon.

* Definition: Suppose g: (0,0) — R is a function.
The conformable derivative of g with order a [31,32] is
expressed as

t+ xt™9) - g(t
8 XX) g(), Vt>0and 0 <a<1.

Dfg(t) = lim
x—0
Furthermore, if g is a-differentiable in some interval (0, {)
where (>0, and lim,.qg/(t) exists, we define g'(0) =
lim,..g°g*(t). Some features are presented as follows.

Lemma 1. If g, and g, are a-conformable differentiables for
allt > 0 and let a € (0, 1].
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() Di(big, + bagy) = iD(gy) + b,D{(g,), Vb, b, ER.
(i) D) = qtT% Vq ER.
(iii) DI({) = 0, where g(t) = { denotes a constant.
(iv) D?(glgz) = glﬂa(gz) + gZDa(gl)-

() DY) = EXEEDED provided g, # 0.
2
i) If g is a differentiable function then D{(g)(t) =
tl—a%

ot ”

The choice of the conformable derivative over Caputo or
Riemann-Liouville derivatives reflects a trade-off between cap-
turing memory effects and ensuring analytical tractability.
While Caputo and Riemann-Liouville formulations inherently
model memory through non-local integral operators, their
complexity often complicates analytical solutions, numerical
implementation, and physical interpretation. The conformable
derivative, though lacking explicit memory representation,
offers a local, Leibniz-like structure that simplifies computa-
tions, preserves classical calculus rules, and facilitates explicit
solutions — advantages critical for modeling systems where
memory effects are secondary to simplicity, interpretability,
or real time applicability. This prioritization of tractability
makes conformable derivatives pragmatic for applications
where approximate or efficient modeling suffices. The conform-
able derivative is a type of fractional derivative proposed to
maintain compatibility with classical calculus, particularly the
limit definition. It offers a physically meaningful way to explain
memory and hereditary features in intricate systems. Its sim-
plicity and local nature make it suitable for modeling time-
dependent processes in physics and engineering problems.

3 Diversity of traveling wave
solutions

In this section, we utilize different techniques to earn some
soliton solutions of the studied model. Prior to extracting
the results we present some characteristics and weakness
of the aforementioned mathematical techniques.

The NEDAM is a powerful analytical technique for
obtaining exact solutions of nonlinear evolution equations,
especially soliton and periodic wave solutions. It extends
traditional direct algebraic approaches by incorporating
more general ansatz functions and higher-degree polyno-
mials, allowing for a wider variety of solution forms. This
method is valued for its systematic structure, applicability
to diverse nonlinear PDEs, and ability to generate multiple
types of exact solutions, including dark, bright, combine,
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and rational-type structures. However, it may become com-
putationally intensive for complex equations due to the
algebraic system’s size and complexity.

The GAM refines and extends classical ansatz-based
techniques by incorporating hyperbolic and trigonometric
function expansions to construct more general analytical
solutions. It is particularly effective in generating traveling
wave solutions and is simpler in structure, often reducing
the PDE to an ordinary differential equation via wave
transformation before solving. This method is appreciated
for its simplicity, versatility, and relatively low computa-
tional burden, but it can be limited in scope, often failing to
capture more complex or nonstandard wave structures
that the extended direct algebraic method can handle.

3.1 Application of NEDAM

The NEDAM generates a wide variety of exact solutions for
nonlinear PDEs, offering flexibility and precision. It is
applicable to diverse physical problems and reduces com-
putational complexity. However, this technique has a lim-
itation: it is ineffective when the highest derivative terms
do not uniformly balance with nonlinear terms. To solve
the above system by utilizing NEDAM, we use traveling
wave transformation O(x, t) = Q(n), where n = kx + %t“.
Substituting this transformation in Eq. (1), after twice inte-
gration with constants of integration equal to zero, we
obtain

yk*Q” () + Bk2Q(n)* + 92Q(n) = 0. @

By applying the balance principle to Eq. (2) and equating
the powers of Q(1)? and Q”(n), we obtain n = 2. Thus, Eq.
(2) has the following form of solution:

Q) = by + Y brYK(n. 3)
k=1
Q) = by + byY(n) + by Y2(n). 4)

By substituting Eq. (4) and its derivatives (Y'(n)=
In(B)(u + AY(n) + vY?(n)), B # 0, 1), in Eq. (2), and through
the utilization of symbolic computer algebra software,
Mathematica, we meticulously equate coefficients of
similar powers of Y(n) to zero, facilitating the identifica-
tion and correlation of stable exact solutions to Eq. (1). This
rigorous process ensures the comprehensive establishment
of the solution set, thereby completing the solution estab-
lishment phase of our analysis.
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Family-1. (1) For A2 = 4uv < 0 and v # 0.

The trigonometric solutions
_ F2(kA(A% + 8uv) — JKB(A? - 4uv)?)

0 , 2
2Bk KX~ 4uv)? #?[3tan p %n«/élyv - AZ] + 3]
by = 6k2Av9? ’ 04(x, t) = {- T : (5)
B KB(A% - 4uv)?
N &
2 - —,
JIEO® = 4uv)? 2
g 02‘1 192[3c0t B[%n 4uv - AZ] + 3]
= - . = |- 6
y JKEInt B)(2 - apv)? 02060 2BK? . ®

We construct multiple outcomes to Eq. (1) as follows.

Ol 1) = 9%(3(tan p(n+/4uv - 22) + /pq sec p(ny/4uv = A*))* + 3) .
3(X) )_ Z,Bkz 3
94(3(cot g(n+/4uv = 22) £ /pq csc p(ny/4uv = A%))* + 3)
®4(X’ t) =1 2 ) (8)
2Bk
2
02[3[cot3[%r] 4uv - /12] - tanp %01/4;11/ -2 ]] + 12]
= : 9
@5(X, t) 8ﬁk2 ( )
(2) For 22 - 4uv > 0 and v # 0, some diverse wave solutions are obtained.
The dark solution is as follows:

2

82[3 - 3tanh g %m/lz - 4yv] ]
=1- ) 10
@6(X, t) 2ﬁk2 (10)

The singular solution is as follows:
2

192‘3 - 3coth g %q‘/)lz - 4yv] l
= . 11
@7(X, t) 2[51{2 ( )

The complex dark-bright solution is as follows:
943 - 3(tanh g(nyA2 - 4uv) + i,/pq sech p(n\A* - 4uv))?)

Bs(x, t) = {- 2K . (12)

The mixed singular solution is as follows:

B 9%(3 - 3(coth (N4> = 4uv) + /pq csch p(nyA* - 4uv ))2)’ a3
2K ‘

@9(X, t) =

The dark-singular solution is as follows:

192112 - 3[coth B[iq 2 - 4yv] + tanh p

2
%n«//lz - 4yv]]

@10(X, t)=1- (14)

8pk?
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(3) For pv > 0 and A = 0.
The periodic solutions are as follows:
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(5)For A=0andv = p.
The periodic wave solutions are as follows:

9X(3tan p(nJiv)>* + 1) 9*(3tan g(un)* + 1)
@11()(, t) = ‘ 2ﬁk2 > (15) 921()() t) = 2ﬁk2 ’ (25)
92(3cot g(nJiv )% + 1) 9%3cot gun)* + 1)
= = 26
Op(x, t) = 2B ) (16) B2(x, t) 28K ) (26)
Now, the mixed-trigonometric solutions are as follows: On(x, 0) = [192(3“3“3(2#’7) + /Pqsec p(2un)* + l)l @
23\, - s
2Bk?
Ous(x, ) = [‘92(3“8“ W20 D) £ PG sec o2 IV + ”] a ’
13\A, - )
2pk? O, 1) = [32(3(—cot3(2#n) + /pgesc s2un)* + 1)] 8)
24\A5 - )
2Bk?
9%(3(cot p(2n/v) £ Jpq csc p(2nJuv))* + 1) B
Ou(x, t) = 3 , (18)
2Bk 2
92 3[cot3[”zn] - tang % + 4’
2
192[3[c0t3[%n\/y_v] - tanp %r/\/y_v] +4 Oas(x, ) = 8Bk>2 : 29)
B15(x, 1) = 8pK2 .19
(6) ForA=0andv=-pu.
(4) For uv < 0 and A = 0. Exact wave solutions are as follows:
The hyperbolic solution is as follows: 392(tanh 2_q
O(x, t) = (tan B(!Zm) )’, (30)
9%(1 - 3tanh z(n/~uv)?) 2Bk
@16(X, t) = Zﬁkz . (20) ) 5
39%(coth -1
O(x, £) = [ (co ZB,({ém) )], 31)
The singular solution is as follows: B
_ [9% - 3coth p(n=pv)?) o B8(x, 1)
Oux. 0) = 2B : i [3«9%—1 + (~tanh y(2un) * i/Bq sech B(Zun»Z)] (32)
- 2BK> ’
The different types of complex wave structures are as follows: A
B15(x, 1) Ozs(X; t)2 )
92(1 - 3(tanh p(2n/~v) + i/pq sech 520 /=1v))?) |(22) - 39%((~ coth p(2un) £ \/pq csch s2um)* - D | (33)
i 2Bk ’ 2pK? ’
2
O1o(x, &) 9?2 3[coth B %] + tanh g %]] - 12’
9%(1 - 3(coth p(2n/~uv) + /pq csch g2 /~uv))?) | (23) 0 _
= ) 30(X, ) = G
2BKk2, kBu?v? 8Bk2\ kBu*
B20(x, t)
. . 2 (8) Fory=0and A # 0.
924 - 3[c0th B[E’]\/_IJVJ + tanh g gU\/‘HV]] 24) Combined-hyperbolic solutions are as follows:
8BK> :
ﬁzlvﬁ((cosh 5(An) - sinh g(A))(cosh () - 10p - sinh sAM) +p2) Kt
A%(cosh p(An) + p - sinh p(An))?
O3(x, ) = 35)

2pKS ’
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32[[1 _

12q(cosh p(An) + sinh p(An)) -1
(cosh p(An) + q + sinh p(An))?

®32(Xy t) = Z,Bkz

(9) Foru=0,A=yandv =ry.
Rational function solution is as follows:

Dynamical analyses and dispersive solitons solutions == 7

__log(8)(Ba + 4yk?)

& = B At
log? (8 6yk?
g, = P18 )(f;fz+ LS 2,/yk?10g(8).

At & = e, p = 4A%, we obtain solitary wave solution in the
following form:

(37

O33(x, 1) =

where n = kx + gt“, for all above solutions.

3.2 Application of GAM

The GAM effectively derives exact solutions for nonlinear
equations with strong nonlinearity and dispersion. It trans-
forms equations into simpler forms, yielding explicit solu-
tions, and adapts to various nonlinear evolution equations.
However, this method has a limitation: it is ineffective
when the highest derivative terms do not uniformly bal-
ance with nonlinear terms. In this section, we employ the
GAM to derive solitary wave solutions to the BO equation.
The GAM involves assuming a solution of the form

< & + o (n*
2k
Pl ()

For n = 2, the GAM proposes a solution to Eq. (2) in the
following form:

Q) =&+ (38)

g+ a®() &+ 00(n)?
@(n) @(n)?

By substituting Eq. (39) into Eq. (2) along with its
derivatives (®'(p)? = (<I>(r])2 - p)log (6)), we receive a
polynomial in terms of —— cI)(n) q)(q) Collecting and equating
coefficients, we obtain a system of algebraic equations,
yielding two solution sets

_log?(8)(B, + 4yk?)

(39)

Q) =& +

& = ﬁ ) & = O;
log? (8 6yk?
=p 0g*( )([;0'2+ )4 )’ =0, 19=2\/7k210g(5).
and
& = 0y(-log(8)), & =0,
log?(§ 6yk?
_plog (8)(Ba, + 6yk*) G,=0, 0= Ziﬁkz log(8).

&= ﬁ 5

According to set-1

9%(k*y*(r*(12p* - 12pq + q*)B*X + p* + 2pr(6p - Q)B™) - k*y*(p - qrB™)?*)
2Bk%*k*y*(p — qrB™)? ’

5 of , [2 7Kt _
2yk l3sech lkl" +x]] 2] 40)

01(x, t) = 5
According to set-2
& = 0y(-log?(8)), & =0,
_ plog®(8)(Bas + 6yk2)’ 0= 0, 9= 27k log(5).

B

At § = e, p = 44%, we obtain hyperbolic solution in this
form

6yk?sech 2[kx + zw—k “ ]
B

(41)

QZ(X, t)

3.3 Ansatz method

To construct the solutions, hyperbolic and exponential
ansatz method is used in Sections 3.3.1-3.3.3

3.3.1 Solitary wave solution

For solitary wave solutions, we have

9
O(x,t) = a;sech?n + ap, n =kx+ Et“, (42)

where ag, a; # 0, k, and 9 are the arbitrary constants.
Substituting Eq. (42) in Eq.(2), we secure equations in the
following forms:

16a;yk* - 4aik? - 4apmpPk? - 2a:9% = 0
-136a.yk* + 28a2Bk? + 16a,mfk? + 8a;92 = 0,
240a;yk* - 44a?Bk? - 12ampk* - 6a9% = 0
20a?Bk? - 120a;yk* = 0

(43)

Solving the above equations we achieve
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0 = _Aykt + 9 o = 6yk?
2Bk B

Hence, the solitary wave solution is presented as

9
4yk* - 12yk*sech *(kx + _t%) + §*

0(x, t) = - (44)
(x, t) 25
3.3.2 Dark wave solution
For dark wave solutions, we obtain
d
O(x,t) = aytanh®n + ay, n=kx+ Et“, (45)

where aq, a; # 0, k, and 9 are the arbitrary constants.
Substituting Eq. (45) in Eq. (2), we secure equations in the
following forms:

-16a;yk* + 4agaBk* + 2a,8% = 0,

136a1yk* + 12a2Bk? - 16aompBk? - 8a;92 = 0

5 (46)
- 240a;yk* - 32a{Bk?* + 12a,a,Bk? + 6a,9% = 0,
120a,yk* + 20a?Bk? = 0.
Solving the above system we achieve
9% - 8yk* 6yk?
ag = Z ) m=- V .
2Bk B
Hence, the dark wave solution is presented as
~8yk* + 12yk* tanh? (kx + 2¢) + 9?2
0x,t) = - C
2Bk?
3.3.3 Exponential solution
For exponential solution, we have
a; expn g
= — 4 = + — a 4
G(X’ t) (epr] + 1)2 a, n kx at > ( 8)

where aq, a; # 0, k, and 9 are the arbitrary constants.
Substituting Eq. (48) in Eq. (2), we secure equations in the
following forms:

ayk* + 2a,a,pk? + a,;9% = 0,
ayk* + 2a1a4,pk? + a,;9% = 0,
66ayk* — 12a2Bk? - 12a1a,8Kk? — 6a,9% = 0,
-26asyk* + 4aipk? - 4aya,pk? - 2a,9% = 0,
-26asyk* + 4a2Bk? - 4aya,fk? - 2a,9% = 0.

(49)

Solving the above system we achieve
yk* + 92 6yk?
, Ay = .
2Bk? B

Q= -
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Hence, the exponential solution is presented as

sz 92
0(x,t)= —E - Zﬁkz

3yk?
B[%[e—kx—‘gt” + ekx+%t“] + 1]

(50)

+

4 SA

This section explores the SA of the governing model. SA
[33,34] of dynamical models offers valuable insights into
system behavior, supports model validation and calibra-
tion, aids in risk assessment and management, guides
optimization and control strategies, and contributes to
uncertainty quantification. Our approach investigates the
effects of small perturbations in initial conditions on the
system’s dynamics. We analyze Eq. (2) and transform it into
a dynamical system

G =,

dH
W ==p,0(M)?* - p,Q(n),

(5D

where p, = % and p, = V‘%. The two solution curves are
formulated, which are manifested in Figures 1-4, using dif-
ferent parameter values J =04, =05« =0.6,y =0.7.
Figure 1 displays the two solutions with initial conditions
(Q,H) = (0, 0) in blue curve (solid) and (Q, H) = (0, 0.05)
in yellow curve (dash). Figure 2 exemplifies the two solutions
with initial conditions (Q, H) = (0, 0) in blue curve (solid) and
(Q, H) = (0.08, 0.09) in yellow curve (dash). Figure 3 discloses
the two solutions with initial conditions (Q, H) = (0, 0) in

0.04} 1
0.02 / 1

T 0.00f 1
-0.02f 1
-0.04f 1

0 5 10 15 20

Q

Figure 1: Graphical visualization of SA for Eq. (51) with initial conditions
(Q, H) = (0, 0) in blue curve (solid) and (Q, H) = (0, 0.05) in yellow
curve (dash).
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-0.15

AL

0 5

10 15 20

Q

Figure 2: Graphical visualization of SA for Eq. (51) with initial conditions
(Q, H) = (0, 0) in blue curve (solid) and (Q, H) = (0.08, 0.09) in yellow

curve (dash).

0.2} 1
0.1} 1
& 0.0} ]
-01} ]
-0.2} ]
0 5 10 15 20

Q

Figure 3: Graphical visualization of SA for Eq. (51) with initial conditions
(Q, H) = (0, 0) in blue curve (solid) and (Q, H) = (0.15, 0.05) in yellow

curve (dash).

blue curve (solid) and (Q, H) = (0.15, 0.05) in yellow curve
(dash). Figure 4 personifies the two solutions with initial
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0.5}
x 0.0}
-0.5
-1.0L L 1 1 .
0 5 10 15 20
Q

Figure 4: Graphical visualization of SA for Eq. (51) with initial conditions
(Q, H) = (0, 0) in blue curve (solid) and (Q, H) = (0.45, 0.35) in yellow
curve (dash).

conditions (Q,H) = (0, 0) in blue curve (solid) and as
(Q, H) = (045, 0.35) in yellow curve (dash). The figures
show that a minor adjustment in the initial conditions leads
to a substantial difference in the resulting solution, indicating
that the model exhibits high sensitivity. SA is an essential tech-
nique for comprehending complex systems and making
informed decisions across various fields of nonlinear science.

5 Bifurcation analysis

The primary objective of bifurcation analysis is to compre-
hend how the qualitative behavior of a dynamical system
evolves as a parameter is varied. A bifurcation occurs
when such variations induce substantial changes in the
system, giving rise to new dynamic behaviors. As the para-
meter shifts, equilibrium points, periodic patterns, or other

i
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Figure 5: p, > 0 and p, > 0.
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Figure 6: p, < 0 and p, > 0.
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37]. Using bifurcation theory, we
shall analyze Eq. (1) in this section. It is possible to examine

<0andp,<0.
governing equation as a planar dynamical system by

system features may emerge, vanish, or experience
applying a Galilean transformation.

changes in stability [35-
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Figure 8: p, > 0 and p, < 0.



DE GRUYTER

Dynamical analyses and dispersive solitons solutions = 11

y

70

P
g

60

50t
= 40

30 N

20F N

10} SN

5-5

Figure 9: The dispersion relation between frequency Q and wave number [ of Eq. (60) with the suitable choice of parametric values y = {8.5, 9.1, 8.7};

q, = 0.001; B = {37, 2.5, 4.8}.

The Hamiltonian function for Eq. (52) is

7_{2 QS QZ
7Q, H) = N + p1? + P2y

(53)

The Hamiltonian function plays a crucial role in governing
the dynamics of a system by representing its total energy,
typically comprising kinetic and potential components. In
conservative systems, where the Hamiltonian is time-inde-
pendent, it acts as a conserved quantity, ensuring energy
preservation and constraining phase-space trajectories.
This conservation property directly influences stability,
equilibrium behavior, and integrability, as systems with
a well-defined Hamiltonian often exhibit structured
dynamics, such as periodic or quasi-periodic motion.
Moreover, in canonical Hamiltonian systems, Poisson
brackets govern evolution, ensuring symplectic structure
preservation and enabling the application of powerful ana-
lytical techniques like Liouville’s theorem and integrability
analysis. When the Hamiltonian structure is perturbed or

non-existent, dissipative effects arise, leading to energy
dissipation and potentially chaotic behavior, highlighting
its fundamental role in differentiating between stable
and non-conservative dynamics. To solve system (52), the
system (52) has two equilibrium points, which are listed
below:

wy = (0,0), wy = (—Z—i, 0). For system (52), the Jacobian
matrix determinant is

0 1

We know that

o If D(Q, H) < 0, then (Q, H) is a saddle.

o If D(Q, H) > 0, then (Q, H) is a center.

o If D(Q, H) = 0, then (Q, H) is a cuspidal.

The results that may be achieved by varying the relevant
parameter are listed below.
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Figure 10: Visualization of Eq. (5) reveals the periodic wave structure under different arbitrary values k = 0.5, A = 0.7, 4 = 0.75, = -1.5, 3 = 0.8,

v=17,and B=¢e, ata = 0.98.

Case-1: When p; > 0 and p, > 0.

By picking certain values for the parameters
Kk=2,9=4,y=1=4, we note that (0, 0) is center
whereas (-1, 0) is the saddle, which is illustrated in Figure 5.

Case-2: When p; < 0 and p, > 0.

By setting the parameters k =2,3=4,y=1,5= -4,
we identify that (0, 0) and (1, 0) are two equilibrium points
(Eqps), in which (0, 0) behavse as a center point, as clarified
in Figure 6. Moreover, (1, 0) behaves as saddle point.

Case-3: When p, < 0 and p, < 0.

By taking the parameters k = 2,3 =4,y = -1, f = 4, we
identify that w; behaves as saddle point, whereas w, is
obviously the center point in this case as elucidated in Figure 7.

Case-4: When p; > 0 and p, < 0.

By choosing the parametersx = 2,3 = 4,y = -1, B = -4,
we identify that (0, 0) and (1, 0), and are two Eqps, in which (0,
0) behaves as a saddle point, whereas (1, 0) behaves as center
point as elucidated in Figure 8.

6 Stability analysis

For stability assessment, we utilize the concept of standard
linear stability analysis [38] and here assume a =1 in Eq.
(1). The hypothesis for Eq. (1) is as follows:

0(x, t) = uW(x, t) + q, (55)

where ¢, is the steady state solution for Eq. (1). Steady state
solution is used in stability analysis because it simplifies
the system via linearization and spectral methods, repre-
sents physically meaningful equilibria, enables predictive
insights into long-term behavior, and serves as bench-
marks for bifurcations and phase transitions. For systems
without steady states, stability is analyzed using alterna-
tive frameworks like Poincaré maps or Lyapunov expo-
nents. However, steady states remain foundational due to
their simplicity and interpretability. Substituting Eq. (55) in
Eq. (1), we obtain
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Figure 11: Visualization of Eq. (10) displays the dark wave structure under different arbitrary values k = 0.65, § =2, A = 1.1, u = -0.75, 9 = 0.5,
v=0.7and B=e,ata=091.
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Figure 12: Visualization of Eq. (14) exhibits the dark-singular wave structure under different arbitrary values k = 0.8, A = 0.7, u = -0.65, = 1.1,
9=07,v=12,and B=¢,ata = 0.72.
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Figure 13: Visualization of Eq. (20) exhibits the hyperbolic wave structure under different arbitrary values k = 0.75, A = 1.4, u = -0.95, § = -1.5,
9=13,v=06,and B=e, ata = 0.75.
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Figure 14: Visualization of Eq. (22) shows the bright-dark wave structure under different arbitrary values p = 0.7,v = 0.9, A = 0.7, u = -0.95,q = 0.5,
k=06,=13,9=0.8,and B=e, ata = 0.98.
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Figure 15: Visualization of Eq. (32) exhibits the bright-dark wave structure under different arbitrary values p = 1.7, § = 1.5, 9 = 0.8, u = 0.55,q = 0.7,
k=0.6,and B =e, ata = 0.94.
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Figure 16: Visualization of Eq. (37) shows the plane wave under different arbitrary values p = 0.7, q = 1.7,k = 0.6, r =2, A = 24, y =13, B = 15,
d=14,and B=¢, ata = 0.82.
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Figure 17: Visualization of Eq. (44) shows the bright wave structure under different arbitrary values k = 0.4, 8 = 0.5, = 0.6, and y = 0.2, ata = 0.98.
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Figure 18: Visualization of Eq. (47) shows the dark wave structure under different arbitrary values k = 0.5, = -0.6, 9 = 0.3,and y = 0.4, ata = 0.96.
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Figure 19: Visualization of Eq. (50) shows the exponential wave structure under different arbitrary values k = 0.7, = 1.6, ¢ = 0.9, and y = 0.5,

at a = 0.99.

2BUG We + 2BUPWE + 2BUPW Wy + YW + W = 0. (56)
On linearizing Eq. (56) in terms of u, we retrieve
2BuqyWax + YW + Wt = 0. (57)

For further proceeding, we take the solutions of Eq. (57) as
W(x, t) = Aei&+tQ), (58)

where the normalized wave number and frequency of per-
turbation are denoted by [ and Q, respectively.
By inserting Eq. (58) into Eq. (57), we have

-yt + 2Bl%q, + Q2 = 0. (59)
The dispersion relation, in terms of Q is as follows:
Q = Jyl* - 2Bl%q,. (60)

The dispersion relation obtained in Eq. (60) is illustrated in
Figure 9. If the wave number Q is imaginary, meaning
perturbations grow exponentially, the steady state solution
becomes unstable. Alternatively, if Q@ has a real value, indi-
cating stability against small perturbations and the steady
state remains stable. The sign of Q indicates whether the
solution will amplify or diminish with time. A Qpax of

precisely 0 indicates that the steady state solution is
slightly stable.

7 Results and discussion

In this section, we discuss the outcomes of our proposed
model and provide physical interpretations. It focuses on
finding interesting, more generalized, and novel exact
wave structures, including hyperbolic, trigonometric, com-
plex hyperbolic, rational, bright, dark, singular, and sin-
gular periodic wave behaviors. Dark solitons exhibit
greater stability and resistance to signal degradation

Table 1: Comparative study (Novelty)

References Soliton Stab. SA Bifur.
solutions analysis analysis

In [23] Yes No No No

In [24] Yes No No No

In [25] Yes No No No

In [26] Yes No No No

In current study Yes Yes Yes  Yes
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compared to conventional solitons, despite their higher
complexity in control. Bright solitons, meanwhile, are
exemplified by their highest intensity, which surpasses
the surrounding background levels. Another type, singular
solitons, features abrupt discontinuities — often infinite —
and may correspond to solitary waves with imaginary cen-
tral positions. These singular shapes are particularly sub-
stantial in modeling rogue wave phenomena, where
sudden, extreme amplitude spikes emerge. Moreover, per-
iodic wave solutions characterize oscillatory forms that
repeat at regular intervals, administrated by their wave-
length and frequency. The period (time for one full cycle)
and frequency (cycles per second) are defining parameters
of such waveforms. These solutions have distinct physical
interpretations, and we illustrate them graphically by
choosing appropriate parameter values. These outcomes
serve as inspiration for further research across different
scientific fields, particularly in fluid dynamics. In the
recent past, intensive work has been done on a given
model. Li [23] retrieved solutions through the trial equa-
tion method. Taghizadeh et al [24] found exact traveling
solutions with the aid of the homogeneous balance
method. Kaplan et al. [25] discussed exact solutions and
conservation laws via exp(—®(¢))-expansion method and
multiplier approach. Zhen et al. [26] attained diverse forms
of exact traveling wave solutions by employing an
improved projective Riccati equation method. However,
in this study, by employing the extended NEDAM, GAM
and ansatz methods, we have generated numerous solitary
pulse solutions. These solutions are practical, concise, and
easily comprehensible, making them valuable for applica-
tions in fluid dynamics, ocean engineering, and other deep-
water nonlinear phenomena. Moreover, our solutions
provide insights for further investigation into higher-order
NLPDEs. Graphical representation is essential for accu-
rately depicting nonlinear events and relationships
between variables in a dataset. The accompanying 2D,
3D, and contour plots in Figures 10-19. visually demon-
strate the solutions obtained, facilitating a clearer under-
standing of problem-solving approaches. These graphical
representations are effective tools for conveying complex
concepts and methodologies in nonlinear wave analysis.
The graphics below depict our BO model with fractional
derivatives. The results of this study hold noteworthy
implications across multiple physics domains. The hyper-
bolic tangent function proves crucial for computing mag-
netic moments and relativistic rapidity, while the hyperbolic
secant accurately models velocity profiles in laminar jets.
Besides, the hyperbolic cotangent displays a direct relation-
ship with the Langevin function, an important tool for eval-
uating magnetic polarization. These findings highlight the

DE GRUYTER

central role of hyperbolic functions in modeling various
physical systems. The results computed in this study have
significant physical implications, particularly in the context
of soliton theory and applications in others fields of applied
sciences such as physics, electrical engineering, control
theory, and wave phenomena. Furthermore, computed solu-
tions and dynamical analyses, such as bifurcation analysis,
and SA have diverse real applications across multiple fields.
Solitons, which are stable, localized waves that maintain
their shape over long distances, are crucial in optical fiber
communications for transmitting data pulses without distor-
tion, as well as in hydrodynamics for modeling tsunamis
and tidal bores. Bifurcation analysis helps understand
sudden changes in system behavior, such as in mechanical
engineering for predicting structural buckling, in ecology
for studying population dynamics under environmental
stress, and in electrical engineering for analyzing voltage
collapses in power grids. SA quantifies how variations in
input parameters affect outputs, making it essential in cli-
mate modeling to assess the impact of different factors on
global warming, in pharmacokinetics to optimize drug
dosages, and in financial risk management to evaluate port-
folio vulnerabilities. Together, these mathematical tools
enhance the modeling, prediction, and optimization of com-
plex systems in science and engineering. The results
extracted are exceptional and novel in comparison to pre-
vious findings in the literature. We briefly compare our
obtained solutions with those presented in earlier research.
Our findings lead to the following conclusions, presented in
tabular form, which highlight the novelty of the present
work (Table 1).

8 Concluding remarks

This study has investigated new exact traveling wave pat-
terns for the time-FBO equation by using three efficient
suggested computational techniques. These methods help
us to uncover various exact solutions, including trigono-
metric, bright, dark singular, exponential, and their com-
bined complex forms. We also observe singular periodic,
plane-wave, and exponential solutions. Furthermore, we
conduct stability analysis on the governed BO equations,
confirming their high stability. Also, by amalgamating sen-
sitivity, bifurcation, and stability analyses into our study,
we can gain deeper insights into the behavior of the FBO
equation and further authenticate the efficiency of the
applied methodologies. The enduring stability of solitons,
demonstrated as soliton pulses, travel through ideal loss-
less nonlinear fibers, mathematical physics, fluid
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dynamics, ocean engineering, and other deep-water non-
linear phenomena and highlight their potential integration
into complex communication systems. We validate our
results using Mathematica software, visually representing
certain wave structures through 2D, 3D, contour, and den-
sity graphs with appropriate parameter values. Our find-
ings illustrate the effectiveness of these aforementioned
approaches in enhancing nonlinear dynamical behavior
and suggest their potential application in uncovering
diverse and novel soliton solutions for other NLPDEs
encountered in mathematical physics and engineering.
Through a comparative analysis of our newly developed
solutions, it becomes evident that our proposed methods
offer several advantages. They demonstrate strength, relia-
bility, ease of implementation, and efficiency when applied
to various NLPDEs. This makes it superior to previously
utilized methods. The solutions obtained in this study
will serve as a foundation for enhancing our under-
standing of water wave propagation in both shallow and
deep water. This study displays a robust and methodical
method for solving nonlinear fractional problems, leading
to the discovery of novel exact solutions. Moving forward,
we aim to expand the method’s versatility, with a concen-
tration on tackling highly nonlinear systems, variable-coef-
ficient models, and variable-order FPDEs. Furthermore, we
will plan: (i) to extend these methodologies to other non-
linear fractional PDEs or consider higher-dimensional gen-
eralizations; (ii) to analyze the effects of noise term by
adding the stochastic term in the governing equation;
and (iii) to develop new numerical and analytical methods
to solve FBO equations, enabling more accurate and effi-
cient simulations.
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