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Abstract: In this study, we deal with multiplicative equiaf-
fine plane curves. First, the concepts of multiplicative
equiaffine arc length and multiplicative curvature are
introduced. Multiplicative equiaffine Frenet formulas and
an analog of the fundamental theorem are established.
Finally, multiplicative equiaffine plane curves with con-
stant multiplicative equiaffine curvature are classified.
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1 Introduction

The foundational framework of classical analysis, which is
extensively used in modern mathematical theory, was first
developed by Leibniz and Newton toward the end of the
seventeenth century, focusing on differential and integral
calculus notations. Classical analysis builds upon core
topics in trigonometry, algebra, and analytic geometry,
encompassing key ideas such as limits, differentiation,
integration, and series expansions. These operations are
often viewed as basic and fundamental, akin to addition
and subtraction, which is why classical analysis is some-
times referred to as summational analysis. Its applications
are extensive, spanning a wide range of disciplines where
precise mathematical modeling and the pursuit of optimal
solutions are of great importance.

However, when dealing with phenomena governed by
proportional change, scale invariance, or multiplicative
growth and decay, the additive framework of classical ana-
lysis may not be the most natural or effective choice. This

creates a gap in geometric modeling where multiplicative
structures could provide a more accurate representation.

Despite its broad utility, classical analysis has limita-
tions in certain mathematical contexts. Consequently,
alternative frameworks have been developed that are
founded on various arithmetic operations while main-
taining classical analysis as a foundation. For example,
during 1887, Volterra and Hostinsky introduced a novel
analytical approach termed Volterra-type or multiplicative
analysis, which is grounded in multiplication rather than
addition as the primary operation [1]. In this framework,
the operations of multiplication and division replace the
roles traditionally assigned to addition and subtraction in
classical analysis, offering a novel approach to mathema-
tical modeling. This shift represents a fundamental
rethinking of conventional analysis, where the relation-
ships between variables are governed by multiplicative
rather than additive structures. Between 1972 and 1983,
Grossman and Katz expanded upon Volterra’s earlier con-
tributions by formulating what became known as non-
Newtonian analysis. This new analytical framework intro-
duced innovative definitions and concepts, redefining how
mathematical operations could be applied across various
domains [2,3]. Collectively, these methodologies are known
as geometric, bigeometric, and anageometric analysis, each
offering unique perspectives and tools for addressing pro-
blems where classical approaches prove inadequate.

Multiplicative analysis, presented as a counterpart to
classical analysis, has garnered increasing interest in the
mathematical community, spurring further research and
development. These alternative methods have shown
potential in addressing a range of mathematical problems
by exploring new structural frameworks. Consequently,
they have enriched the scope of mathematical analysis
and found applications in various fields.

In particular, the need to extend classical geometric
frameworks – such as equiaffine differential geometry –

into the multiplicative setting is motivated by the lack of a
comprehensive theory that unifies multiplicative opera-
tions with affine invariance. Existing studies address either
multiplicative analysis in general or classical equiaffine
curves separately, but there is no systematic development
of multiplicative equiaffine Frenet formulas, arc length,
and curvature theory.

Meltem Ogrenmis: Department of Mathematics, Faculty of Science,
Firat University, Elazig, Turkey, e-mail: mogrenmis@firat.edu.tr



* Corresponding author: Alper Osman Ogrenmis, Department of
Mathematics, Faculty of Science, Firat University, Elazig, Turkey,
e-mail: aogrenmis@firat.edu.tr

Emad E. Mahmoud: Department of Mathematics and Statistics,
Collage of Science, Taif University, Taif, Saudi Arabia,
e-mail: e.mahmoud@tu.edu.sa

Open Physics 2025; 23: 20250212

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2025-0212
mailto:mogrenmis@firat.edu.tr
mailto:aogrenmis@firat.edu.tr
mailto:e.mahmoud@tu.edu.sa


The recent surge of interest in multiplicative analysis
is reflected in numerous mathematical studies. While a
comprehensive listing is beyond the scope of this discus-
sion, previous studies [4–8] have provided substantial con-
tributions to the field. More recently, differential geometry
has also incorporated multiplicative analysis. Notably,
Georgiev advanced the study of multiplicative analysis
with the publication of three key works [9–11]. These pub-
lications, particularly [10], are regarded as foundational
texts in multiplicative geometry. They provide novel defi-
nitions and theorems that connect fundamental geometric
structures with the principles of multiplicative analysis. In
addition, these works highlight the relationships between
multiplicative geometry and other mathematical fields,
thereby providing valuable insights for researchers
working in various areas of mathematics.

Furthering the development of geometric analysis,
Nurkan and collaborators made significant advancements
by applying geometric calculus to the derivation of Gram-
Schmidt vectors [12]. In a related study, [13], spherical indica-
trices and helices in non-Newtonian (multiplicative) Eucli-
dean spaces are analyzed, offering new characterizations
and examples. On the other hand, Aydın et al. provided a
classification and visualization of rectifying curves within
multiplicative Euclidean space, employing multiplicative
spherical curves to illustrate their findings [14]. The study
by Ceyhan et al. [15] extends these ideas to investigate tube
surfaces using the algebra of multiplicative quaternions.

Other recent studies continue to apply non-Newtonian
analysis to various branches of geometry. For instance, Has
et al.’s work explores geometric approaches in the Lorentz-
Minkowski space L

*

3 using non-Newtonian techniques [16].
Meanwhile, Özdemir and Ceyhan examined the use of multi-
plicative hyperbolic split quaternions and their role in gen-
erating geometric hyperbolic rotation matrices [17]. In
another study, Has and Yılmaz studied non-Newtonian conics
through the lens of multiplicative analytic geometry [18]. Es
[19] focused on the use of homothetic multiplicative calculus
to derive new kinematic expressions in the study of plane
kinematics. Later, the research conducted by Has and Yılmaz
[20] examined the behavior of magnetic curves in multiplica-
tive Riemannian manifolds using non-Newtonian analysis.
Finally, Aydin defined [21] multiplicative rectifying submani-
folds of multiplicative Euclidean space. Broscăţeanu et al. [22]
analyzed the infinitesimal bending of rectifying curves, Bur-
lacu and Mihai [23] investigated applications of curve theory
in road design, and Jianu et al. [24] explored a surface asso-
ciated with the Catalan triangle.

On the topic of affine geometry, extensive research has
been conducted on affine spaces and their properties. For
an in-depth exploration of both fundamental and

advanced topics within this domain, readers may refer to
works such as [25–28], which offer detailed discussions of
classical and modern perspectives on affine geometry.

Besides differential geometry, there are applications of
multiplicative calculus in dynamical systems [29,30], in
eco-nomics [31,32], and in image analysis [33,34].

In addition to its intrinsic mathematical elegance,
equiaffine differential geometry holds significant relevance
in various physical contexts. The equiaffine framework,
which preserves volume under affine transformations,
naturally aligns with the modeling of physical systems
where volume preservation or density invariance is
critical. For instance, in fluid mechanics, the behavior
of incompressible flows can be more accurately described
using equiaffine invariants. Similarly, in continuum
mechanics, equiaffine structures provide a geometric
interpretation of stress and strain in materials that
undergo deformation without volume change.
Moreover, affine-invariant quantities appear in general
relativity and gauge theories, where they are associated
with affine connections and energy-momentum distribu-
tions. These examples illustrate that equiaffine geometry
is not merely an abstract mathematical construct but also
a powerful analytical tool with substantial applicability in
theoretical and applied physics.

The aim of this study is to bridge the gap between
multiplicative analysis and equiaffine geometry by devel-
oping a complete multiplicative equiaffine framework for
plane curves. The main contributions can be summarized
as follows: (1) defining multiplicative equiaffine arc length
and curvature, (2) deriving multiplicative equiaffine Frenet
formulas and an analogue of the fundamental theorem,
and (3) classifying plane curves with constant multiplica-
tive equiaffine curvature. Such a framework is expected to
have applications in modeling scale-invariant geometric
phenomena in physics, continuum mechanics, and data
science.

This study is organized as follows: first, the founda-
tional concepts of multiplicative calculus are introduced.
Next, essential aspects of equiaffine geometry relevant to
the analysis are presented. Finally, the curvature of a mul-
tiplicative plane curve is computed, and curves with con-
stant curvature are characterized.

The novelty of this study lies in the systematic devel-
opment of a full-fledged differential geometry framework
within a multiplicative equiaffine setting. Unlike prior stu-
dies, we provide explicit Frenet equations, arc-length for-
mulations, and curvature characterizations based on mul-
tiplicative operations. This presents a foundational shift
that invites new geometric intuition and theoretical
development.
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2 Preliminaries

In this section, we introduce two essential topics. The first
subsection presents the basics of equiaffine plane curves,
focusing on the determinant in the affine plane and the
equi-affine arc-length. The second subsection introduces
the concept of multiplicative analysis. We explore multi-
plicative operations and structures, including multiplica-
tive addition, multiplication, and derivatives. Additionally,
we define the multiplicative determinant as a logarithmic
analogue of the classical determinant.

2.1 Basics of equiaffine plane curves

In this section, we will briefly discuss the fundamental
concepts of equiaffine plane curves without going into
detailed explanations.

Let R2 be the affine plane with the determinant

∣ ∣ = = −
u u

v v
u v u vuv ,

1 2

1 2

1 2 2 1
(2.1)
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1 2

2.
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The arc-length parameter s is chosen so that
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. A regular curve c is parameterized by the

equi-affine arc-length if it satisfies ( ( ) ( ))′ ″ =s sc cdet , 1 for
all s. We denote ( ) ( )= ′t s sc and ( ) ( )= ″n s sc . Then,
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where ( ) ( ( ) ( ))= ″ ‴κ s s sc cdet , . The function κ is referred
to as the equi-affine curvature of the curve c.

According to the fundamental theorem of equiaffine
plane curves, a smooth function ( )κ σ , for ∈σ I , defines a

unique equiaffine plane curve y, up to an equiaffine trans-
formation of �2. This curve is parametrized by σ as the
equiaffine arc-length and κ as the equiaffine curvature.
Moreover, if κ is constant, then y corresponds to either a
parabola ( )=κ 0 , an ellipse ( )>κ 0 , or a hyperbola ( )<κ 0 .

These curves are represented by the equations =y x
1

2

2 for
the parabola and ( )+ =κx κy 1

2 2 for the ellipse or hyper-
bola [28].

2.2 Multiplicative analysis

In this section, we outline fundamental definitions and
principles concerning multiplicative analysis, drawing
insights from Georgiev’s works [9–11]. Following this, we
will discuss multiplicative equiaffine plane curves.

Let ( )= ∞R
*

0, . In R
*

, we define multiplicative
addition, multiplication, subtraction, and division as
follows:
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These operations form a multiplicative structure
denoted by ( )+ −R

*

,

*

,

*

. Each x
*

in R
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plicative number, where ( )=x x
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For ∈k N, the power k
*

of a multiplicative number x

is defined as follows:
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The multiplicative sine (sin

*

) and cosine (cos

*

) func-
tions are defined as follows:
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Similarly, multiplicative hyperbolic functions are given by
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Let ∈A R
*

and f be a first-order continuously differenti-
able function. The first-order multiplicative derivative of f ,
denoted by ( )f x* , is defined as follows:
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where ′f is the classical derivative of f .
For ∈a b R,
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, the multiplicative inde-
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( )

( )

( )

( )

∫

∫

∫

∫

⋅

⋅

f x d x e

f x d x e

Integral type Multiplicative 

operations

Result

MII

*

* *

MCIl

*

* *

.

f x x

a

b
f x x

log d

log d

x

a

b

x

1

1

(2.10)

Moreover, for two vectors ( )= x xx ,
1 2

and ( )= y yy ,
1 2

,
the *multiplicative determinant* is defined as follows:
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This represents a multiplicative analogue of the clas-
sical determinant and is defined in the space R

*

2 using
logarithmic operations.

3 Multiplicative equiaffine plane
curves

In this section, we develop the theory of multiplicative
equiaffine plane curves by defining the multiplicative affine
plane and the multiplicative determinant, which generalizes
area calculations. We also introduce key concepts like multi-
plicative linear independence, the multiplicative equiaffine
group, and the multiplicative arc length. Furthermore, we
present the multiplicative Frenet apparatus and the corre-
sponding Frenet equations, which describe the curvature
and frame transformations of these curves.

Definition 3.1. The multiplicative affine plane R
*

2 is a two-
dimensional affine space equipped with a multiplicative
structure, rather than the usual additive structure. In this
context, the space retains a constant area form ( )⋅ ⋅det

*

, ,
which serves as a generalized determinant for calculating
the “area” between two vectors. This area form is defined
multiplicatively as follows:
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* * *

,
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where ( )= x xx ,
1 2

and ( )= y yy ,
1 2

are vectors in R
*

2 .

Proposition 3.2. For vector fields ( )= x xx ,
1 2

and
( )= y yy ,

1 2
, the following equality
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is satisfied.

Proof. Let’s assume ( )= x xx ,
1 2

and ( )= y yy ,
1 2

are two
vector fields. Now, consider x and y as ×2 2 matrices
with the vectors as rows

= [ ] = [ ]x x y yx y, .1 2 1 2 (3.3)

Then, the determinant of the matrix formed by x and y,
denoted as ( )x ydet , , is given by:
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Now, let’s multiplicative differentiate this expression, then
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*
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is obtained. By using multiplicative derivative rule, we
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The right side of this expression is written as follows:
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Therefore, we have proved the result. □

Definition 3.3. A pair { }x y, of vectors in �
*

2 is said to be
multiplicatively linearly independent if the equation

⋅ + ⋅ = =λ λx y
* * *

0

*

1
1 2

(3.9)

holds only when = =λ λ 1
1 2

. Otherwise, if there exist
�∈λ λ,

*
1 2

, not both equal to 1, such that Eq. (3.9) holds,
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then x and y are said to be multiplicatively linearly
dependent.

Definition 3.4. A multiplicative nondegenerate smooth
parametric curve in �

*

2 , ( ) ( ( ) ( ))= =t c t c tc c ,
1 2

, �∈ ⊂t I
*

is defined by
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for any t .

Definition 3.5. Themultiplicative equiaffine arc length func-
tion ρ for the curve c is defined as follows:
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where ( )c cdet

*

*, ** is the multiplicative determinant of the
first and second multiplicative derivatives of the curve c.

Proposition 3.6. The multiplicative equiaffine curvature κ of
c at ρ is given by

( )=κ v vdet
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2 2

(3.12)

Proof. Consider ( )= ρv c*
1

and ( )= ρv c**
2

. Then, it follows
that
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(3.13)

for all ρ. Here, ρ represents the parameter defining
the multiplicative equiaffine arc length. The vector
fields v

1
and v

2
are the multiplicative tangent vector

and multiplicative Blaschke normal vector of c,
respectively.

If we differentiate Eq. (3.13) with respect to ρ, we
obtain
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, * 0
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Therefore, we conclude the proof. □

Definition 3.7. Let c be a multiplicative nondegenerate
smooth curve in �

*

2 parameterized by the multiplicative
equiaffine arc length ρ. Then, the set { }κv v, ,

1 2
is called the

multiplicative equiaffine Frenet apparatus of c.

The multiplicative Frenet equations in the equiaffine
sense are as follows:
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It is obvious that the following occurs

+ ⋅ =κv v*

* *

0

*

.
2 1

(3.17)

The relations between the multiplicative equiaffine
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4 Plane curves of constant
multiplicative equiaffine
curvature

In this section, we classify the plane curves with constant
multiplicative equiaffine curvature. Let ( )= sc c be a multi-
plicative nondegenerate smooth curve in �

*

2 parameter-
ized by the multiplicative equiaffine arc length parameter,
and let { }κv v*, *,

1 2
denote the multiplicative equiaffine

Frenet apparatus.
We seek to construct a curve c in �
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2 with constant
multiplicative equiaffine curvature =κ λ, where �∈λ
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.
Thus, the following vector ordinary differential equation
results:
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into Eq. (4.1), we obtain:
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To solve Eq. (4.2), we examine different cases:
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for a constant vector �∈l
*

.
2 With respect to a convenient

coordinate system, one can choose
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and Eq. (4.10) is
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*

cosh

* * * * *

sinh

* * *

.* * (4.13)

Analogously by similar approach with the previous case,
we obtain

( )

( )

( )

=
⎛

⎝
⎜

−

−
−

⎞

⎠
⎟

−

−

s

λ
e

λ
e

c

1

log

,

1

log

.

λ s

λ s

sinh log log

cosh log log

(4.14)

Thus, we have briefly proven following theorem.

Theorem 4.1. Let y be a parameterized curve byα-equiaffine arc
length parameter. If y has constantα-equiaffine curvature, then it
is given by one of those indicated by Eqs (4.7), (4.12), and (4.14).

Then, the graphs of Eqs (4.7) and (4.12) are shown in
Figures 1 and 2.

5 Multiplicative equiaffine
curvature of plane curves with an
arbitrary parameter

In the preceding section, plane curves parameterized
by arc length were considered. Here, we generalize the
setting and compute the multiplicative equiaffine curva-
ture for plane curves equipped with an arbitrary para-
meter. A proposition is provided to facilitate the computa-
tion, and illustrative examples are given to clarify the
method.

Proposition 5.1. Let c be a multiplicative plane curve given
with an arbitrary parameter t. Let ρ be the arc-length para-
meter defined by Eq. (3.11). Then, the multiplicative curva-
ture κ of c with respect to ρ is given by

Figure 1: The curve describes a multiplicative parabola arising from the condition = =λ 0

*

1, exhibiting quadratic behavior in the multiplicative
sense.
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( ) [ ( )] [ ( )]

[ ( )] [ ( )]

[ ( )] [ ( )]

= ⋅ ⋅

+ ⋅ ⋅

+ ⋅ ⋅

−
⎛
⎝−

⎞
⎠

⎛
⎝−

⎞
⎠

⎛
⎝−

⎞
⎠

κ ρ e

e

e

d d d d

d d d d

d d d d

*

det

*

*, **

*

det

*

*, ***

* *

det

*

*, **

*

det

*

**, ***

* *

det

*

*, **

*

det

*

*, **** ,

2

*

*

*

5

9

8

3

4

3

5

3

1

3

5

3

(5.1)

where ( ) ( )=t ρd c .

Proof. Let ρ be the arc-length parameter defined by Eq.
(3.11). If ( ) ( )=t ρd c is taken, then

( ) ( ) ( )⋅ =ρ ρ t td d*

*

* * (5.2)

is obtained. Here, ( ) ≠d ddet

*

*, ** 0

*

holds. From Eq. (3.11),
we have

( ) [ ( )]=
⎛
⎝

⎞
⎠ρ t d d* det

*

*, ** .
*

1

3 (5.3)

Thus,

( ) [ ( )] ( )= ⋅
⎛
⎝−

⎞
⎠t ρd d d d* det

*

*, **

*

*
*

1

3 (5.4)

is obtained. That is, ( ) ( )=t ρd c* * .
Now, let us compute the multiplicative curvature ( )κ ρ

of the curve c, namely,

( ) ( )=κ ρ d ddet

*

**, *** . (5.5)

From Eq. (5.4), that is, from

( ) [ ( )] ( )= ⋅
⎛
⎝−

⎞
⎠t ρd d d d* det

*

*, **

*

* ,
*

1

3 (5.6)

taking the multiplicative derivative once more yields

( ) [ ( )] [ ( )]

[ ( )]

= ⋅ ⋅ ⋅

+ ⋅

−
⎛
⎝−

⎞
⎠

⎛
⎝−

⎞
⎠

t ed d d d d d

d d d

**

*

det

*

*, **

*

det

*

*, ***

*

*

*

det

*

*, **

*

**

*

*

1

3

5

3

2

3

(5.7)

is obtained. Taking the multiplicative derivative once again
gives

( ) [ ( )] [ ( )]

[ ( )] [ ( )

( )]

[ ( )] [ ( )]

[ ( )] [ ( )]

[ ( )]

= ⋅ ⋅ ⋅
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+ ⋅

+ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅

+ ⋅

−

−

− −

− −

−

t e

e

e

e

d d d d d d

d d d d

d d d

d d d d d
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*
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*

det

*

*, ***
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*

* *

det
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det

*

**, ***

*

det

*

*, ****

*

*

* *

det

*

*, **

*

det

*

*, **

*

**

* *

det

*

*, **

*

det

*

*, ***

*

**

*

det

*

*, **

*

***

3

*

2

2

*

*

2

*

*

2

*

1

*

5

9

1

3

1

3

2

3

(5.8)

is obtained. Substituting Eqs (5.7) and (5.8) into Eq. (5.5) yields
Eq. (5.1), and thus, the proposition is proved. □

Example 1. Let ( )( )t ec ,
tlog

3

be a multiplicative plane curve
with an arbitrary parameter. Considering Eq. (5.1), the mul-
tiplicative curvature κ of c is given by

( ) ( ) ( ( ))= ⋅ ⋅ −
κ t e20

* *

.
e tlog

*

6

8

3 (5.9)

The graph of this curve is shown in Figure 3.

Example 2. Let ( )e ec ,
t t t tlog cos log sin be a multiplicative plane

curve with an arbitrary parameter. Considering Eq. (5.1),
the multiplicative curvature κ of c is given by

( ) = ⋅ ⋅ −−
κ t e e e

* *

.
2

t40

9

8

3

4

3
(5.10)

The graph of this curve is shown in Figure 4.

Example 3. Let ( ( ) )( ) −e tc , ln
tlog

1

3

3 1

3 be a multiplicative plane
curve with an arbitrary parameter. Considering Eq. (5.1),
the multiplicative curvature κ of c is given by

( ) ( )= − ⋅ −
κ t e e

* *

.
t2 log

2 (5.11)

The graph of this curve is shown in Figure 5.

Example 4. Let ( ( ) )( ) ( ) ( )−e e tc , . ln
t t tlog log log

2

3

3

2

4

9

3

2

2

3

3

2 be a multi-
plicative plane curve with an arbitrary parameter.
Considering Eq. (5.1), the multiplicative curvature κ of c

is given by

Figure 2: A multiplicative ellipse corresponding to constant multiplicative equiaffine curvature > =λ 0

*

1, based on multiplicative trigonometric
functions.
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( ) ( )= − ⋅ −
κ t e e

* *

.
tlog

1

4

2 (5.12)

The graph of this curve is shown in Figure 6.

6 Discussion

Although this work is formulated in a purely mathematical
framework, the use of multiplicative structures aligns with
modeling approaches in physics, particularly in scale-invar-
iant systems, exponential decay/growth models, and systems
governed by proportional change. Such frameworks may
appear in thermodynamics, population dynamics, or
quantum models involving exponential operators. Potential
applications of the proposed geometric model include areas
where traditional additive calculus fails to provide natural
descriptions – such as biological growth, economic systems
under compounding interest, or dynamical systems charac-
terized by proportional (rather than incremental) evolution.
In addition, the structure can be useful in data science con-
texts involving multiplicative noise. Compared to classical
equiaffine differential geometry, where additive operations
govern the frame evolution, the proposed multiplicative
approach replaces these operations with their exponential-
logarithmic analogues. For instance, the multiplicative curva-
ture is derived from logarithmic determinants, which offer a
different perspective on area preservation and invariance
under the multiplicative group �( )SL

*

2, . These distinctions
introduce new phenomena not captured by traditional affine
curvature theory.
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Figure 5: The curve ( ( ) )( ) −e tc , ln
tlog

1
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3 1

3 represents a multiplicative plane
curve with an arbitrary parameter.

Figure 6: The curve ( ( ) )( ) ( ) ( )−e e tc , . ln
t t tlog log log

2

3

3

2

4

9

3

2
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3

2 represents a
multiplicative plane curve with an arbitrary parameter.
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