DE GRUYTER

Open Physics 2025; 23: 20250209

Research Article

Wedad Albalawi, Carlos A. Fotsing, Camus G. L. Tiofack*, Alim, Alidou Mohamadou,

Rania A. Alharbey, and Samir A. El-Tantawy*

Nonlinear dynamics of the dissipative ion-
acoustic solitary waves in anisotropic rotating

magnetoplasmas

https://doi.org/10.1515/phys-2025-0209
received March 28, 2025; accepted July 01, 2025

Abstract: This study explores the nonlinear dynamics of
ion-acoustic waves (IAWs) in a magnetized, collisional, ani-
sotropic rotating plasma that includes hot ions, super-
thermal electrons, and positrons. Anisotropic ion pressure
is defined using the Chew-Goldberger-Low theory. Our
linear analysis shows that pressure anisotropy notably
impacts wave frequency, particularly for shorter wave-
lengths, and identifies a threshold wavenumber beyond
which wave propagation is impossible. We derive a nonlinear
damped Zakharov-Kuznetsov equation by applying the
reductive perturbation technique. This equation describes
the phase velocity and profile of ion-acoustic solitary waves,
which are significantly influenced by superthermal, electro-
n—positron temperature ratio, pressure anisotropy, the
Coriolis force, and ion collisions. Our numerical analysis
reveals that IAWs propagate in the plasma in a direction
parallel to the magnetic field with a phase velocity that is
unaffected by the plasma rotation frequency Q, the magnetic
field through w,;, or the perpendicular pressure component
P, . The phase velocity increases with the x index and parallel
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pressure P and decreases with the positron temperature
ratio g. Moreover, it is found that the wave amplitude
decreases with increasing ion pressure (P)) and the electron—
positron temperature ratio (g). On the contrary, the ampli-
tude increases with rising superthermality k, while collisions
cause the wave amplitude to spread. The Coriolis force exclu-
sively affects the width of electrostatic waves. The results of
this study are particularly relevant for understanding wave
behavior in astrophysical and space environments, especially
within Earth’s magnetosphere, where nonthermal electrons
and positrons coexist with anisotropic pressure ions.

Keywords: anisotropic pressure, damped Zakharov—Kuznetsov
equation, ion-acoustic waves, dissipative solitary waves, colli-
sional plasma, kappa distribution, magnetized rotating plasma

1 Introduction

In recent years, the study of ion-acoustic waves (IAWs) in
electron—positron—ion (e-p-i) plasma has garnered signif-
icant attention, enhancing our understanding of nonlinear
phenomena in both space and laboratory settings [1-9].
IAWs are a pivotal feature of plasma systems, distin-
guished by their low-frequency oscillations primarily
driven by ion motion and often accompanied by electron
and positron density fluctuations. Washimi and Taniuti
pioneered the investigation of ion-acoustic solitary waves
(IASWs) in plasma [10], along with Sagdeev’s theoretical
framework [11]. This established a core nonlinear theory
of IAWs, which Ikezi et al [12] later validated through
experiments. Since then, advancements in understanding
IASWs have been noteworthy by many authors [13,14]. For
instance, research on the dynamics of these waves in mag-
netized plasma has revealed both subsonic and supersonic
compressive solitons, using the pseudopotential method to
explore how various plasma parameters influence wave
profiles [15]. Plasma waves have also been investigated in
semiconductor materials during photothermal excitation
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[16,17]. Studies on large-amplitude solitary waves in warm
magnetoplasma have utilized the Sagdeev pseudopotential
approach to examine wave structures across different
amplitudes. Researchers have analyzed the impact of mag-
netic fields and plasma temperatures on the formation and
stability of these waves, showing how factors like ion tem-
perature and Mach number influence soliton behavior [18].
Additionally, investigations into small-amplitude solitary
waves in magnetized ion-beam plasma have highlighted
the coexistence of slow and fast modes under varying con-
ditions [19]. Furthermore, recent studies have delved into
the complex behaviors of nonlinear IAW structures such as
periodic waves, solitary waves, and breathers in auroral
magnetoplasmas [20].

The presence of a strong magnetic field in a collision-
less medium results in plasma anisotropy, where the
plasma exhibits distinct behaviors in parallel and perpen-
dicular directions relative to the magnetic field [21]. The
Chew-Goldberger-Low (CGL) theory [22], formulated in
1956, aptly describes this anisotropy, provided there is no
coupling between the parallel and perpendicular degrees
of freedom [23]. To analyze such plasmas, separate equa-
tions of state are required for the perpendicular and par-
allel ion pressures, denoted as P;; and P;, where P; (Py)
are the perpendicular (parallel, respectively) components
of the ion pressure relative to the ambient magnetic field.
Wave-particle interactions may reduce this anisotropy by
establishing correlations between these directions [24,25].
In space plasmas, phenomena such as plasma convection
cause magnetic compression and expansion along field
lines, leading to variations in the perpendicular and par-
allel temperatures [24]. These anisotropic conditions are
commonly observed in regions like the magnetosphere
and the near-Earth magnetosheath [21,26,27]. Adnan et al
investigated small amplitude ion-acoustic solitons in
weakly magnetized plasma, focusing on anisotropic ion
pressure [28]. Similarly, Chatterjee et al. examined obli-
quely propagating IASWs and double layers in magnetized
dusty plasma with anisotropic ion pressure [29]. Addition-
ally, the effects of pressure anisotropy on nonlinear elec-
trostatic excitations in magnetized e—p-i plasmas were
explored, revealing that anisotropic ion pressure signifi-
cantly impacts the width and amplitude of solitary waves
[30,31]. Furthermore, it was found that the increase in
wave frequency induced by anisotropic ion pressure alters
wave dispersion and enhances wave crest accumulation,
potentially leading to the development of modified
instability modes [32]. A decrease in pressure anisotropy
has also been shown to enhance both the amplitude and
width of dust-acoustic rogue waves [33,34]. Alternatively,
the effect of a magnetic field on the motion of two rigid
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objects traveling linearly through an incompressible fluid
with a couple stress characteristics has been explored [35].

The velocity distribution of plasma particles influences
the behavior of wave motions in plasma. The Maxwellian
distribution has been the standard choice for representing
these particles for many decades. However, due to
advancements in the study of space [36-39] and laboratory
plasmas [40,41], non-Maxwellian particle distributions
have become more prevalent. These distributions more
accurately depict energetic particles with high-energy
(superthermal) velocity distributions, often exhibiting
superthermal tails. The Kappa velocity distribution is par-
ticularly effective in describing these tails. In 1968, Vasy-
liunas [36] introduced the Kappa distribution to match
observational data. Today, this distribution is widely
used to explain various astrophysical and space plasma
phenomena, including those in the auroral zone [42],
Earth’s magnetosphere [43], in the interstellar medium
[44], and in the solar wind [45]. Recent research has delved
into the impact of superthermal electron distributions on
solitary waves [46-49]. Saini et al [50] examined the
dynamics of electrostatic solitary excitations with super-
thermal electrons using a pseudopotential approach, con-
cluding that for a fixed Mach number, the solitary wave
profile becomes steeper and wider compared to typical
plasma structures. Further studies on superthermal parti-
cles’ role in electrostatic wave packets in electron-ion [51]
and e—p-i [52,53] plasmas have shown, using the nonlinear
Schrodinger equation, that superthermality increases the
modulational instability of these wave packets. Singh et al.
[54] recently studied the thermal effects of ions on IAWSs in
magnetized superthermal plasma via the Sagdeev potential
approach, achieving results consistent with Viking satellite
observations in the auroral region.

Wave propagation in plasmas with anisotropic pres-
sure can experience significant changes. When introduced,
magnetic fields induce the Lorentz force, which affects
the motion of charged particles and modifies wave disper-
sion, stability, and energy redistribution [55]. Addition-
ally, plasma rotation brings in the Coriolis force [56],
which alters wave characteristics, especially in rotating
plasma environments like fusion reactors or planetary
magnetospheres [57]. These combined effects create
a complex environment for understanding wave beha-
vior. Theoretical and experimental studies have
shown that even a weak Coriolis force can lead to inter-
esting phenomena in astrophysical environments [57].
Given the Coriolis force’s important role in rotating
space plasmas, many researchers have attempted to ana-
lyze wave dynamics in the presence of the Coriolis
force [58-61].
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In addition to the effects of anisotropy and non-
Maxwellian distributions, ion-neutral collisions play a crucial
role in many plasmas. These collisions introduce dissipation
and damping mechanisms that influence wave stability and
soliton formation, acting as a source of energy loss
and further complicating plasma dynamics. The behavior of
IASWs in such complex plasmas can be described using
extended nonlinear equations, such as the Zakharov-
Kuznetsov (ZK) equation with a damping term. This equation
incorporates the effects of anisotropy, magnetic fields, colli-
sions, rotation, and non-Maxwellian velocity distributions.
The ZK equation generalizes the Korteweg—de Vries equation
to higher dimensions and can describe the evolution of ion-
acoustic solitons under various physical conditions. Several
researchers have recently focused on studying dissipation
phenomena in plasmas [62-64]. Their findings indicate that
dissipation significantly impacts the profile of IASWs in
plasma. While there has been extensive research on the
effects of anisotropic ion pressure, studies on collisional mag-
netized nonthermal e-p-i rotating plasmas with super-
thermal electrons and positrons remain limited. This project
aims to explore the nonlinear dynamics of ion-acoustic
solitons in such a plasma, characterized by anisotropic, mag-
netized, and rotating conditions with a Kappa velocity distri-
bution. The focus will be on understanding the influences of
Coriolis forces, magnetic fields, ion-neutral collisions, and
anisotropic pressure on soliton formation, stability, and pro-
pagation. By deriving and solving the ZK equation under
these complex conditions, this study will deepen our compre-
hension of IAW dynamics in plasma systems with more rea-
listic physical characteristics. These insights are essential for
advancing our knowledge of phenomena in space physics,
fusion research, and astrophysical systems.

This article is organized as follows: The basic gov-
erning equations for describing our anisotropy e-p-i
plasma system are shown in Section 2. In Section 3 linear
structure is carried out. Section 4 contains the derivation of
the damped Zakharov-Kuznetsov (dZK)-type equation
using the reductive perturbation method (RPM). The ana-
lytical solutions representing dissipated solitary pulses are
given in Section 4.1 and numerical simulations are shown
in Section 4.2. Finally, the summary of our research work is
concluded in Section 5.

2 Basic governing equations

We consider a collisional, magnetized, three-component
e-p-i plasma that rotates under the influence of the
Coriolis force. The electrons and positrons in this plasma
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are superthermal, while the ions experience weak colli-
sions with neutrals. These ions are considered inertial
(m; » m, ), having mass m;, velocity u;, charge Ze, colli-
sion frequency v,, and an anisotropic ion pressure tensor
P; modeled by the CGL theory [22]. The magnetic field is

uniform and oriented along the Z-axis (§ = Bye,). The
plasma rotates with a low frequency Q, around the
7 -axis due to the Coriolis effect, with negligible centrifugal
force. We assume that the electrostatic wave propagates in

all three spatial directions, i.e., V= (0y, 9y, 9,). At thermal
equilibrium, the plasma composition is such that
te=1+u, where i, = ng/nj, with ny and ng(s = e, p)
denoting the equilibrium number densities of ions, elec-
trons, and positrons, respectively. The following basic
equations govern the dynamics of IAWs in the current
plasma model [28,30,62]:

omn; + V -(nuy) = 0, @

Zie Zie
du; + (- Vu; + ==V - ——Bu; A e,

m; mic

~ 2

-2u; A Q+ V-P;+vu=0,
in;
Vi = —4me(n, + Zin; — ne), 3)

where e denotes the elementary charge, ny denotes the
number density of particle s(s = e, p,i), and ¢ denotes
the electrostatic potential. P; represents the pressure
tensor. The number densities of electrons and positrons
are defined by [28]

~(ks=1/2)

L] , @
kBTs(Ks - 3/2)

ng = ngol1 +

withg,=eifs=pandq,=-eifs =e.

In this work, the pressure differs between the perpen-
dicular and parallel directions, leading to plasma aniso-
tropy under a strong magnetic field. Consequently, the
pressure tensor takes the form [65]

b; 0 0
Pi=|0 Py O0|=p,T+(Py-Pee, )
0 0 B

where T is the unit tensor and e, is the unit vector along
the magnetic field direction. According to the CGL theory
[22], the scalar pressures P;, and Py are defined as follows:

3
n; n;
Py = PiOL"_i;; Py = Pio[n_ilo] , 6)
where Py (ZinioksTiL) and Py (ZnyksTy) define the per-

pendicular and parallel pressures, respectively, at equili-
brium. In isotropic plasmas, P;; = Py. In the three spatial
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directions (x, y, z) through which the wave propagates, the
plasma dynamics equations are as follows:

o + Ox(Milly) + 0y(Milly) + 9,(Niuz;) = 0, @)

NiOelly + Ni(UxOy + UyOy + U;0;)Uy + N;0, D ®
= (Wei + 2Qo)niUy + P10y + Vol = 0,

N0ty + Ni(WOy + Uydy + U,0,)Uy + Ni0yd ©
+ (Wi + 2Qo)nilly + P 0yn; + vpniuy = 0,
O + (UOy + Uydy + U0 U,

10
+ 0, + Pi”niazni +vu, =0, (10)

2 2 2 1 _ 2 _ 3
(0% + 9y + 05)® +n-1-q® - a9° - az® an
ez 0’

where the coefficients aq, ay, and a3 are functions of the k
parameter given by

-1/2
G=(1+ @+ a)up)%,
2-1/4
w= 1+ (- ) 12
(* - 14)(K + 3/2)

@ =+ A r o)
with k. = k, = k for simplification of calculations.

Here, n; is the ion number density normalized by its
equilibrium value ny, u is the ion velocity considered fluid
and normalized by the ion sound speed Cs(=(ZkT./m;)'/?),
and @ is the electrostatic potential normalized by kgT;/e.
The time variable is normalized by the plasma frequency
wpi(=(4nZinjoe?/m;)"'?). The spatial variables x, y, and z are
normalized by the Debye length Ap;(=(kgTo/4nZin;e?)!?).
Here, kg is the Boltzmann constant, e is the elementary
charge, and o(=T./T,) is the temperature ratio of electrons
to positrons.

3 Linear structure

The analysis involves performing a Fourier analysis of
Egs. (7)-(11), assuming small perturbations of the form

~exp[ j(E - T - wt)] around the equilibrium value, where
j% = -1,k =k} + ki, with k} = k¢ + kj and k{* = k7, and w
represents the perturbation frequency. In the limit of large
wavelength values (k <« 1), the dispersion relation of
waves propagating in a uniform magnetic field with aniso-
tropic ion pressure is obtained and defined as
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1 | (0 + jv)k?
-w + +P
YT g T @ ) - (@ + 2907
) 13)
+ 1 + P ki =
K+a  Nw+j)

where v = v,. In the case of a non-collisional plasma (v = 0)
and low rotation (w. > Qp), the dispersion relation
reduces to

1 |
k2+a1

1 2

(14)
k% + A

=1

+ + P]kl
1

Jo? - W@ w?
Eq. (14) defines the dispersion relation of waves in a non-
collisional and non-rotational magnetized e-p-i plasma
with anisotropic ion pressure. In this limiting case, Eq.
(14) aligns with Eq. (21) in Adnan et al [30] and Eq. (32)
in Ullah Khan et al [66]. Solving Eq. (14) reveals two ion
oscillation modes within this model: the slow or acoustic
mode, characterized by the frequency w-, and the fast

mode, characterized by the frequency w. such that

1 1
w?= JFt E\/FZ - 4C, (15)
where F = kzkfzal + Pk} + Pk + wczi] and C = [kz%al + PH]k”wa,».

Next, we will examine the behavior of ion oscillations in
both the perpendicular and parallel directions of the mag-
netic field.

3.1 Parallel component

To consider the propagation of the wave in the direction of
the magnetic field, we set k, = 0 and kj = k. Consequently,
Eq. (13) becomes

w? + jvw - (16)

1
Fra o

The solution to this equation is complex and expressed as
W = Wy t+ jwin, given by

an

Ion damping occurs due to collisions between ions and
neutrals. For large wavelengths (k < 1), there is a
threshold value k; for the wavenumber below which the
wave is damped. Consequently, ion oscillations occur in the
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medium when ks < k (w2 > 0). In this context, k, is defined

as
% [06]
k=< | A
s 2701+ (11P||

For kg > k, ion oscillations cease, and the medium becomes
strongly dissipative.

We will now numerically analyze the behavior of the
dispersion relation in Eq. (16) for various values of the
spectral parameter (x), the positron concentration (i,),

(18)

the pressure (P)), the temperature ratio (o), and the colli-
sion frequency (v).

Figure 1 depicts the linear properties of the dispersion
concerning the wavenumber k. Figure 1(a) demonstrates
that the frequency of ion oscillations increases with both
the wavenumber k and the spectral parameter. The super-
thermality of the plasma induces ion instability at low

0.7
—_— Ky =Ke = B,
0.6 1 poe o
—-—= Kp=Ke=3 /."{Q’
Ry td
059 —- kp=kKe=4 e’
s
044 Kp =Ke = “/_;{/
5 7
cd
0.3 1 27
”
S
”
0.2 27
,\a“’
0.1 A
0.0 F———7T——"—7——— 77T 7T
00 01 02 03 04 05 06 07 0.8
k
(a)
Loy —py=0
-
——- Py=0.03 e ey
0.8 ! et e
—-- P, =0.06 .“/‘_:/;/ —-
06 Py =0.1 “.:2;‘4;,
[ L2
3 5P
0.4 e
0.2
0.0 T T T T T T T
0.00 0.2 0.50 0.75 1.00 1.25 150 1.75 2.00
k
(b)

Figure 1: Plot of the real part of wave frequency w, versus
wavenumber k (a) for different values of the spectral parameter k
with Uy = 04,0 =105, Py=03, and v = 0.02 and (b) for different
values of parallel component of anisotropy pressure P with

ty, = 04,k =3,0=02,and v = 0.04.
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wavenumbers. The spectral index k does not affect the
imaginary part of the wave frequency.

Figure 1(b) illustrated the variations of the real part of
the oscillation frequency w, as a function of the wave-
number k, for different values of the anisotropic pressure
(Pp. The oscillation frequency increases with both the
wavenumber k and the anisotropic pressure (Py). The pres-
sure anisotropy does not affect the oscillation frequency
for large wavelengths, where the oscillation frequency
remains nearly constant. For short wavelengths, the pres-
sure anisotropy increases the oscillation frequency. The
pressure anisotropy does not impact the imaginary part
of the oscillations w;y,. Figure 2 illustrates the parameter
o and positron concentration , effects on the ion fre-
quency wr. It shows that the ion frequency decreases
with increasing temperature ratio o (panel (a)) and
increasing positron concentration , (panel (b)), while it

increases with the wavenumber k. Like the spectral

— 0=0.2
084 ——=- 0= 0.5
—= 0=0.8
064 o=1
o
3
0.4 4
0.2
0.0 L LI R B R RELEL R B B B BB R B R B R
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
k
(a)
1.04
— Up=0.2 —==
o
0.8~~~ Hp=04 o
—- Hp=06 rOAS
R
0.6 IJPZO'S ,’/T:""
Ao
0.4 1 g
/o
0.2 i
0.0 T T T T T T T
0.00 0.2 0.50 0.75 1.00 1.25 150 1.75 2.00
k
(b)

Figure 2: Plot of the real part of wave frequency w,: (a) for different
values of ratio temperature g with Uy = 0.5 and (b) for different values of
concentration of positron iy with g = 0.5 where k = 4, P = 0.06,

and v = 0.02.
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parameter k and anisotropic pressure (P, o and u, have
no effects on the imaginary frequency wip.

Figure 3 demonstrates that the imaginary part of the
oscillation frequency is negative and consists of two
regimes: the transient regime (0 < k < 0.04) and the
permanent regime (k > 0.04). The transient regime corre-
sponds to the decreasing variations of the imaginary
frequency (win). This is because for some values of the
wavenumber below the threshold wavenumber k; (Eq.
(17)), the real part of the frequency becomes imaginary.
This transient regime results from damping oscillations,
i.e., the wavenumber is below the threshold wavenumber
(k < kg). The threshold wavenumber is ks = 0.04. The per-
manent regime (k > 0.04) is constant and corresponds to
wim = —Vv/2. An increase in collision frequency leads to
strong attenuation of oscillations in the plasma.

We have demonstrated that the parallel component P,
of the anisotropic pressure increases the ion oscillation
frequency without affecting the damping of these oscilla-
tions. Now, let us consider the influence of the perpendi-
cular component P, on ion oscillations.

3.2 Perpendicular component

In the direction perpendicular to the uniform magnetic
field, we assume the wavenumber in the parallel direction
to be zero (kj = 0) and the wavenumber in the perpendi-
cular direction to be k, = k. Thus, Eq. (13) reduces to:

. 1
W + 2vw? - | i a + Pl]k2 + (W + 2Q)% + V2w
1
(19)
{1 +P|vk?=0
] k2+ (11 1 - V.
0.000
EN — v=0.01
N == 1V=0.02
=0.0051 "3\ —= 1=0.03 1
NN e v=0.04
£ -0.0101 \ N e mmm e
3 2\
3\
_0015 - "." \ ——————————————————————————— —
_0_020 A
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

k

Figure 3: Plot of the imaginary part of frequency versus wavenumber k
for different values of collision frequency v with parameters fixed:
Uy = 0.4,k =5,0=0.5, and P = 0.05.
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The complex solutions (wr;w;p) of this Eq. (19) are obtained
by the Cardan method and are given by

3
wr=——(r+r),
1 bo

Win =5 =17) = =,

— 1 2 4 3
B LA
1 4
r =3\/§[—%+ N El’og]

1
4= E(—Zbg + 9cobg — 27d),

(20)

where

1 (21)
pO = §(3C0 - b(%))

1
= 2
dO [kz + al + I)J.]vk )

%{W+m
bo =2v.

+ Pi]k2 + (wei + 2Q0)* + V2,

Assuming no collisions (v — 0), low plasma rotation
(wei > ), and cold ions (P, = 0) in a Maxwellian plasma
with ne, = nyo and T, = T, Eq. (19) becomes

kZ

2 _ -
¢ K2+ (L+ o),

wk + = 0. (22)

This Eq. (22) is similar to Egs. (30) and (21) in previous
studies [62,67], respectively. The difference lies in the nor-
malization condition and the distribution function used.
The numerical study of the dispersion relation in the
direction perpendicular to the magnetic field is presented
in the following paragraph. As with the parallel compo-
nent, we will investigate the impact of plasma parameters
(x, Uy T, Qo, P, v) on ion oscillations. Figure 4 shows the
variation of the frequency as a function of the wave-
number k. Figure 4(a) illustrates the variation of the real
part of the frequency as a function of the wavenumber k
for different values of the spectral parameter k. The oscil-
lation frequency increases with the wavenumber k. An
increase in the spectral parameter leads to a rise in the
oscillation frequency. For zero wavenumber, the fre-
quency is non-zero (w = 0.63), indicating the existence of
electrostatic waves. Figure 4(b) indicates that an increase
in positron concentration leads to a decrease in ion fre-
quency, resulting in greater stability for these ions. Con-
versely, the frequency increases with the wavenumber k.
Higher wavenumbers correspond to higher frequencies of
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Figure 4: The variation of wave frequency versus wavenumber k. (a) Real
part frequency w, for different values of the spectral parameter k with
Uy, = 0.2,0 = 0.8, P, = 0.06, Q = 0.05, w; = 0.3 and v = 0.03. (b) Real
part frequency w, for different values of concentration positron u, and
(c) imaginary part for different values of concentration positrons y, with
0=05k=4,P =04,Q=0.6, w; =03, and v = 0.08.

ion oscillations. The positron concentration raises the
frequency of electrostatic waves (w = 0.84; k —~ 0) com-
pared to the influence of the spectral parameter
(w = 0.63; k — 0). Figure 4(c) illustrates the decrease in
the imaginary part of the ion frequency with the
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wavenumber k. We observe that an increase in positrons
leads to a reduction in the damping of oscillations in the
transient regime k < 2.3, thereby diminishing the effect of
energy dissipation in the plasma.

For k > 2.3, the frequency w;, becomes constant (per-
manent regime). The frequency w;, remains negative, indi-
cating the damping of ion oscillations in this plasma
model. Just as with positron concentration, a decrease
in positron temperature (o) reduces the oscillation fre-
quency w,. Notably, the frequency w, increases when
k=0 (wr = 122 when k = 0) compared to the parameters
t, and k (curve not shown).

In Figure 5, we investigate the effects of plasma
rotation on the real and imaginary components of the dis-
persion relation. Figure 5(a) shows that the frequency of
electrostatic wave oscillations and the wavenumber k
increase with an increase in the plasma rotation fre-
quency. For infinite wavenumbers, the oscillation fre-
quency becomes linear and is no longer affected by plasma

1.00 1.25 1.50 1.75 2.00

k
(a)

0.00 0.25 0.50 0.75

0.00

—0.01 -

—0.02 -

m

3 -0.03]
-0.04 1

—0.05 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Figure 5: The variation of wave frequency versus wavenumber k. (a) Real
part frequency w, and (b) imaginary part for different values of
plasma rotating frequency Qq with parameters fixed g = 0.5, k = 4,

P =04, by = 0.6, w;; = 0.3 and v = 0.08.
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rotation. Therefore, the plasma rotation frequency does
not influence wave oscillations at short wavelengths.
Figure 5(b) shows that the imaginary part of the frequency
is always negative due to the effects of oscillation damping.
The frequency w;, decreases as a function of the wave-
number k and passes through a critical value k. (which
varies depending on the values of Q), then changes con-
cavity and becomes constant beyond a particular value of
k. Additionally, as the plasma rotation frequency increases,
the frequency w;, decreases, indicating that the oscilla-
tions become less damped. The permanent regime is char-
acterized by the wavenumber values where the frequency
wim remains constant and negative.

The collision frequency does not affect the real part of
the frequency (curve not shown). The variation of the ima-
ginary part of the wave frequency as a function of k is
always negative. It presents two zones: a decreasing part
(transient zone) and a part where the frequency remains
constant (permanent regime), as shown in Figure 6. How-
ever, the collision frequency strongly affects the imaginary
component w;,. The higher the collision frequency, the more
wim decreases, making the wave oscillations more damped.

In Figure 7, we have plotted the real and imaginary
components of w as a function of the wavenumber k for
four different values of the perpendicular component of
the anisotropy pressure. Figure 7(a) shows that for short
wavelengths, the growth rate of the ion acoustic frequency
wy increases with the wavenumber k and with increasing
values of the anisotropy pressure P,. The increase in ion
pressure P, leads to instability of IAWSs. Pressure aniso-
tropy does not affect waves at low wave numbers, ensuring
stability. It should be noted that in the absence of aniso-
tropy pressure (P, = 0), the frequency of ion waves tends
to a constant limit value. Figure 7(b) shows that w;,
decreases as a function of k up to a critical value of the
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Figure 6: Plot of the imaginary part of the frequency as a function of k
for different values of v with 0 = 0.8, k = 2, P, = 0.006, Uy = 0.2,
we; = 0.3, and Q = 0.05.
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Figure 7: Variation of the real part w, (a) and the imaginary part w;, (b) of
the wave frequency against the wave number k for different values of P,.
Along witho = 0.8,k = 2, v = 0.04, u, = 0.2, we = 0.3, and @y = 0.05.

wavenumber (k < k), then changes concavity (k > k) and
becomes constant at higher wavenumbers. For k < k., the
increase in ion pressure anisotropy decreases the ima-
ginary component of the frequency, causing the oscilla-
tions to become more damped. Conversely, for k > k., the
anisotropy increases the frequency w;, reducing the
damping effect.

4 Nonlinear structure

In this section, we transform Eqs (7)—(11) into a single non-
linear equation that encapsulates the dynamics of IASWs.
This transformation will be accomplished through the
RPM, which effectively examines the nonlinear properties
of finite-amplitude waves. We can streamline the system’s
complexity by utilizing the concept of stretched coordi-
nates. The independent variables are defined as follows:

X=¢"%, Y=gV, Z=¢eV2(z-vt), T=¢&'% (23)
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with 0 < € « 1 as the parameter indicating the weakness of
nonlinearity, and v, representing the phase velocity of the
wave. We will expand the perturbed quantities in terms of
a power series in € around their equilibrium values as
follows:

n=1+en®+en®+ e+
ey = e52ul) + eu®) + 5@+
— 1 2 3
Uy = eu® + eu® + u® + - | (24)
P = edD + 2@ + 3@ +... ,
Vv, = 832y,
Considering Eqs (23) and (24) in Eqs (7)-(11), we derive at
first order in €

1+Pmy

®=_ [6))

u oydW,

T g+ 29

u)()l) - ﬂaxq)(l)’

wei + 220 (25)

1 P,

ul® = vn® = —oO + _Hni(l))
Vp Vp

n® = qd®.

By combining the components u{” and n", we derive the
phase velocity v, of IAW propagation

(26)

Notably, the phase velocity v, is independent of the per-
pendicular pressure component P,. Instead, this speed is
influenced by the spectral parameter k, the positron
concentration u, through a;, and the parallel pressure com-
ponent Pj. The phase velocity v, increases with both the
parallel pressure component and the spectral index k, as
illustrated in Figure 8(a). Conversely, this speed decreases
with increasing ratio temperature o, as shown in Figure
8(b). It is also noteworthy that for k = 3/2, the phase velo-
city is not defined. As k — o, the phase velocity reaches a
steady state, rendering the waves stable. Therefore, IAWs
achieve stability exclusively in Maxwellian plasmas. Pro-
ceeding with the development to second order in €'/, we
obtain

1+Pa
@y = " 52 s
u v 07xdW,
X p(wci + 290)2 (27)
1+Pa
u® = v,———=1-p2 o0,

Y P (g + 290)?

as well as at second order in ¢ of the Poisson equation,
we have

(0% + 82 + 02)0M + n® - O - @dW' = 0. (28)

Nonlinear dynamics of the dissipative ion-acoustic solitary waves

-_ 9

1.05 9
1.00 4
0.95

o 0.901
0.85 1
0.80 1

0.75 1

0.70

(b

Figure 8: Plot phase speed v, versus the superthermality index k for
different values: (a) of anisotropy pressure parallel component P where
¢ = 0.8 and (b) of concentration positrons g where P = 0.5 with para-
meter fixed i, =04.

At third order in the £!/2 expansion for the continuity
equations and the z component of the momentum equa-
tion, incorporating Eqs (25)-(27) and combining them with
the derivative with respect to Z of Eq. (28), we derive the
following nonlinear differential equation:

aT(D(l) + Aq)a)azq,(l) + Baz(a§{ + a%)(p(l) + Ca%q)(l)

(29)
+vo® = 0,
with
A=Claf(3 + 4aiP)) - 2],
1+ aqP)A + ayP
B=C1+( 1P( 21J_)’
(wci + 290)
c 1 (30)
24 af’(l + (11P||) ’
)
R

Eq. (29) is recognized as the dZK nonlinear equation,
which incorporates the nonlinear coefficient A, dispersion
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coefficients B, C, and dissipation v, all defined in Eq. (30).
Our results align with previous works regarding the
limiting cases discussed. For example, in the absence of
collisions (v = 0) with neutrals, positrons u, = 0, and the
Coriolis force Qy = 0, Eq. (30) matches Eq. (33) from the
study of Adnan et al [28]. In the case of a non-collisional
e—p-i plasma with low rotation (w.; > Q) within a uni-
form magnetic field, where propagation takes place in
the (y; z) plane, Eqgs (29) and (30) are equivalent to equa-
tions (39) and (40) found in the study of Adnan et al. [30].

4.1 Solitary pulse solution

To model the existence of electrostatic waves qualitatively,
we typically consider a solitary wave solution of the dZK
Eq. (29), analogous to the KdV equation. However, the dZK
Eq. (29) is a non-integrable system due to collisions
between ions and neutrals (97E # 0). We will simplify
this by adopting an approximate solution of Eq. (29),
neglecting collisions, and introducing the independent
variable:

{=LX+ LY+ LZ - uT, &)

where [, I, and I, are the direction cosines of the wave
vector k such that I + I + I} = 1, ug the constant propaga-
tion velocity of the soliton. By neglecting collisions, we
obtain the standard ZK equation given by [68]

0rd® + AdWa;dM + Bo,(9% + 05)dD + Ca30M
= 0.

(32)

By introducing the variable defined in (31) into Eq. (32), we
obtain the following energy density:

2

1| do®
- V(@W) = 0, (33)
2 ac | FV@D
where V(®D) is the pseudo-potential defined by
1 Up
V(q)(l)) =-=
2 L[12c + B(IZ + 12)]
zltz X 'y (34)
x a1 - A pm|
3110

Figure 9 shows the impact of P,, P, and Q, on the pseudo-
potential V. This potential exhibits a compressive solitary
wave structure with a single well. It is shown that as P and
P, grow, the potential depth decreases (Figure 9(a) and (b)),
leading to a reduction in both the amplitude and width of
the compressive solitary waves. In contrast, Figure 9(c)
demonstrate the opposite behavior where it is observed
that the amplitude and width of the corresponding
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Figure 9: Variation of pseudo-potential V against ®® for different values
of parallel pressure component Py (a) with @y = 0.1 and P = 0.1, per-
pendicular pressure component P (b) with ¢ = 0.1 and P = 0.06,
Coriolis force parameter (c) with P, = 0.1 and P = 0.03. Parameters
fixed: x = 3, Uy, = 0.6,0=10.2, and w, = 04.

compressive soliton become greater as €, enhances.
The integration of Eq. (33) provides the soliton solution
described by

oW({) = of’sech?({/L), (35)
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where CDBD denotes the amplitude and L represents the
width of the soliton, defined by

3u
o = 2o
07 AL
36
4lZ[ClZ2 + B(lf + lf,)] (36)
= e )

The approximate solution of Eq. (29) is derived by applying
the conservation of momentum [62,69,70], resulting in

E=[6Vd] and osE = -2uE.

—00

(37

From Eq. (35), we derive the approximate solution of the
dZK equation in the following form

3Y(() = & sech? (/). (38)

Here, &)él) = EDBD(T) and L = L(T) represent the amplitude

and width of the soliton, respectively, both dependent on
time. By substituting Eq. (38) into Eq. (37), and applying the
condition v = 0, we determine the amplitude and width of
the soliton as defined by

50 _ 3
®o = LA’
(39)
: \/4lZ(B(lf + 1)+ ClD)
- - ,

with @ = uee™” and { = LX + ,Y + [,Z - GT. Thus, the
approximate solution of the dZK equation is:

. 3u
W = 0 p-vTgech?

-3T¢| - (40
LA e 21| - (40)

Up
\/412(3(13 + lyz) + Cl2)

4.2 Numerical analysis

In this section, we will numerically analyze the effects of
plasma parameters on the occurrence and propagation of
solitary waves in the plasma, specifically focusing on P, P},
Qo, and 4, Figure 10 presents the influence of supertherm-
ality on the coefficients A, B, and C for varying values of
the parallel pressure component. We observe that for small
values of the spectral parameter k, A decreases while P,
increases, B rises with k and P, and C increases with x but
decreases with P;. Superthermality diminishes the non-
linear effects, whereas anisotropy in pressure enhances
the nonlinear effect. The medium exhibits increased dis-
persion with higher levels of superthermality. Like the
parallel pressure component, the positron concentration
exerts the same influence on nonlinearity (coefficientA)

Nonlinear dynamics of the dissipative ion-acoustic solitary waves
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Figure 10: Variation of coefficient (a) 4, (b) B, and (c) C against k for
different values of parallel component pressure Pj. Parameters fixed:
wei = 04,9)=03,0=1, and Uy = 0.7.

as Py (curve is not shown). The coefficients A and C are
independent of the parameters P, and Qg, and the magnetic
field, as indicated in Eq. (30). Figure 11 depicts the effect of
the parallel (P)) and perpendicular (P,) pressure compo-
nents on the width of solitary waves propagating in the
plasma. Figure 11(a) and (b) reveals that increasing aniso-
tropy pressure leads to an increase in soliton width. This
width also rises with the spectral parameter. For high
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values of k (k — +0), the soliton width tends to stabilize at
a constant value. Anisotropy pressure thus increases the
width of IASWs in this plasma model.

We recall that, unless otherwise stated, we have taken

I, =03,1,=05,and I, = \/1 - I} - [} Figure 12 illustrates
that in the absence of collisions (v = 0), the amplitude of
solitary waves decreases as the parallel pressure compo-
nent P and the electron—positron temperature ratio o
increase. Conversely, the amplitude increases with super-
thermality, eventually stabilizing as k — +o. Consequently,
Maxwellian plasmas solitons exhibit higher amplitudes than
those in superthermal plasmas. It is important to note that the
coefficient A in Eq. (30) is unaffected by the perpendicular
pressure component’s soliton amplitude.

In the presence of collisions, the amplitude of the waves
diminishes exponentially over time, as illustrated in Figure 13.
The wave energy dissipates, leading the wave to become eva-
nescent. This amplitude decreases with an increase in the
parallel pressure component and increases with

(®)

Figure 11: Variation of width L versus k for different values of P with
P = 0.8 (a) and P with P = 0.01 (b). Parameters fixed: uy = 02,0=0.2,
we; = 0.4, Qy = 0.05,uy=0.3,and v = 0.
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Figure 12: Variation of amplitude ®{" versus k for different values of B
with o = 0.2, Uy = 0.2 (a) and o with P = 0.6, Uy = 0.2 (b). Parameters
fixed: ug = 0.3 and v = 0.

superthermality k. In the absence of collisions (v = 0), we
will now present the numerical study of the behavior of the
parameters P, P, k, and Q, on the electrostatic potential that
characterizes the propagation of electrostatic waves in the
plasma. Figure 14 illustrates the variations of the electrostatic
potential @ as a function of the independent variable .
Figure 14(a) reveals that for various values of superthermality
K, the amplitude and width of the soliton increase with rising
values of the spectral parameter k.

Superthermality decreases nonlinearity by enhancing
the dispersion effect of the plasma. As k — o, the ampli-
tude tends to a constant value. Figure 14(b) illustrates that
for various values of the parallel component Py, the ampli-
tude of IASWs decreases while the soliton width increases.
Consequently, the parallel component of anisotropy pres-
sure reduces wave amplitude and increases the width
of these waves, making the plasma more nonlinear and
dispersive. Therefore, increasing anisotropy pressure
tends to lower the system’s energy and stabilize the waves.
Additionally, anisotropy pressure elevates the amplitude of
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Figure 13: Variation of amplitude (i)f,l) versus T for different values of
superthermality k with Py = 0.6 (a) and parallel component pressure P
with x = 4 (b). Parameters fixed: U, = 06,0=02,uy=03andv=04.

solitary waves compared to superthermal plasma. Figure
15 illustrates the effect of the perpendicular pressure com-
ponent P, on the propagation of solitary waves. It shows
that while the amplitude of electrostatic waves remains
unchanged, the width of the waves increases. Thus, an
increase in anisotropy pressure in the perpendicular com-
ponent enhances the dispersiveness of the plasma medium
while maintaining the nonlinear effect. Consequently, the
waves propagate perpendicularly to the magnetic field
with constant energy.

When considering the low rotation of the plasma with
a frequency Qp around the magnetic axis, known as the
Coriolis effect, it is evident that as the frequency Qq
increases, the electrostatic waves maintain their amplitude
while the soliton width decreases, resulting in a pointed,
spiky soliton profile. This is depicted in Figure 16. This
implies that the rotation of the plasma and its coupling
effect with the magnetic field through w,.; impact the dis-
persive properties of the wave profile. This finding aligns
with the results of Farooq and Mushtaq [62]. When the

Nonlinear dynamics of the dissipative ion-acoustic solitary waves
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Figure 14: Plot electrostatic potential ®© against space variable { for
different values of superthermality k with P = 0.3, 0 = 0.5, u,, = 0.6 ()
and parallel component pressure with k = 5, 0 = 0.8, i, = 0.4 (b) with
other parameters fixed at:Qy = 0.1, . = 0.1, up = 0.3, and w,; = 0.4.

¢

Figure 15: Plot electrostatic potential ®® against space variable ¢ for
different values of perpendicular component pressure P, with other
parameters fixed at: P = 0.6,k = 5,0 = 0.8, M, = 04,20 =0.1,uy = 0.3,
and w,; = 0.4.
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parallel component of the magnetic field aligns with the
rotation, leading particles to follow the field lines (strong
field), the magnetic effect is amplified.

In a non-conservative plasma, dissipative solitons can
form due to the balance between loss and gain terms,
alongside the balance between dispersion and nonlinear
effects. Additionally, the interaction between dispersion
and dissipation effects can give rise to shock waves. In
Figure 17, we illustrate the evolution of IASWs in the
plasma by numerically plotting the solution of the ZK equa-
tion given in Eq. (40). Figure 17(a) demonstrates that in a
non-collisional magnetized plasma (v = 0), the electrostatic
waves maintain stability over time, with the amplitude and
width of the soliton remaining constant as they propagate.
Conversely, Figure 17(b) explores the solitary wave solu-
tion of Eq. (29) propagating in a collisional magnetized
plasma (v = 0.04) in the absence of anisotropy pressure
(P =P = 0) to highlight the effect of dissipation due to
collisions. In this scenario, we observe that the amplitude
of IASWs decreases while the width increases over time, all
while conserving their fundamental properties. Figure
17(c) shows the combined effects of collisions and aniso-
tropy pressure. We observe that coupling anisotropy pres-
sure with collisions decreases the soliton amplitude by
about twice as much as when considering the impact of
collisions alone. The wave attenuates rapidly over time.

An increase in collision frequency results in the for-
mation of a shorter and wider dissipative soliton in the
magnetized e-p-i plasma. The soliton amplitude signifi-
cantly decreases with rising collision frequency while the
soliton width sharply increases, as shown in Figure 18.
Based on the numerical results in Figure 18, it is observed
that at higher collision frequencies compared to

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 16: Plot electrostatic potential ®® against space variable { for
different values of low frequency Q, with other parameters fixed at:
Pj=06,k=50=08 ,=04 P =01,u=03,and w; = 0.4.
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Figure 17: 3D plot of electrostatic potential &Y versus space variable {
and time variable T with (a) v = 0, P. = 0.1 and P = 0.6, (b) v = 0.04 and

P =Pj=0and(c)v=0.04, P = 0.1 and P = 0.6. Parameters fixed:
K =4, u, = 04,0=102,2=0.3, w; =04, and uy = 0.3.
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Figure 18: 3D plot of electrostatic potential &Y versus space variable {
and collisional frequency v. Parameters fixed: k = 4, Uy, = 04,0=0.2,
Q=03,w;=04,P =01 P =06T=22 anduy = 0.5.

dispersion, the formation of a shock wave in the magne-
tized e—p-i plasma can be expected.

5 Conclusion

In this study, we conducted analytical and numerical inves-
tigations into the linear and nonlinear propagation of elec-
trostatic excitations within a collisional, magneto-rotating
e—p-i plasma. This plasma is notable for its anisotropic ion
pressure, ion collisions with neutrals, and the presence of
superthermal electrons and positrons, characterized by a
k-distribution function. The anisotropic nature of the
plasma is described by an asymmetric ion pressure tensor
and is modeled using the CGL theory [22]. We have derived
the dispersion equation, breaking it into components par-
allel and perpendicular to the magnetic field. The solution
of this equation is expressed as a complex function,
(w = wy + jwiy). The oscillation of IAWSs characterizes the
parallel component, while the oscillation of electrostatic
cyclotron waves characterizes the perpendicular compo-
nent. The linear regime can be summarized as follows:

1) In the parallel component of the magnetic field in the

dispersion relation:

a) We have demonstrated that there is a threshold
wavenumber kg, below which the real part of the
frequency w, becomes imaginary, (w? < 0). This con-
dition implies ks > k and w, = 0 when k = 0, indi-
cating the existence of IAWSs.

b) The growth rate of the real frequency w, for ions
increases with both superthermality k and the

2)
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c)

d)

e)

g)
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wavenumber k. Consequently, ions exhibit
instability at shorter wavelengths.

The anisotropic pressure P affects ion oscillations in
this plasma model by increasing their frequency. A
rise in Py leads to the instability of ion waves within
the plasma.

The real part w, of the ion frequency increases with
the wavenumber k and decreases with both the elec-
tron-positron temperature ratio o and the positron
concentration 4,. Consequently, an increase in posi-
tron concentration y, or a decrease in the positron
temperature o leads to a reduction in the frequency
of ion oscillations, thereby stabilizing them.

The imaginary part w;n, of the frequency is negative
and decreases with increasing wavenumber k, indi-
cating damped ion oscillations and the propagation
of evanescent waves. The damping of oscillations is
unaffected by o, [y, and P However, the damping
increases with rising collision frequency v, as illu-
strated in Figure 3.

We can predict that in the parallel component to the
magnetic field, the waves propagate at the

1/2
. . |1
speed v, = limy o7 = [a—1 + PH] )

The collision frequency v does not affect the wave
propagation speed in the plasma.

In the perpendicular component of the magnetic field of
the dispersion relation

a)

b)

c)

For low collision frequencies v <« 1, the frequency of
ion oscillations is not zero when k = 0. In this case,
the frequency is approximately w, = wy + 29,
which characterizes the presence of electrostatic
waves.

The growth rate of the frequency w, for ion oscilla-
tions on the phonon branch increases with the
superthermality k of the plasma and with the wave-
number. At infinite wavenumbers, ions become
highly agitated and unstable due to their high
frequency.

The frequency w, of oscillations increases with the
wavenumber k and decreases with the positron con-
centration y, and the electron—positron tempera-
ture ratio 0. An increase in 4, or o stabilizes the
ions. On the contrary, an increase in the plasma
rotation frequency Qo leads to a rise in the perturba-
tion frequency of the ions. As shown in Figure 5(a),
for short wavelengths (k >1), the dispersion
becomes linear, and the Coriolis effect diminishes
due to the anisotropic nature of the plasma.
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d) The imaginary part w;, of the perturbation fre-
quency decreases as a function of the wavenumber
k and remains consistently negative. It exhibits
a transient regime and a steady-state regime.
Numerical analysis indicates that increasing the
positron concentration i, (or the electron—positron
temperature ratio o), as well as the plasma rotation
frequency Qo, causes the growth rate w;, of the fre-
quency to increase and approach zero, as shown in
Figures 4(b) and 5(b). Additionally, the increase in
the effect of the Coriolis force leads to a reduction in
damped oscillations, thereby promoting wave
propagation.

d) Increasing the collision frequency v > 0 between
ions and neutrals leads to a reduction in the growth
rate w;m(<0) of the frequency, which causes the
damping of waves in the plasma, preventing
propagation.

e) The oscillation frequency w, increases with increasing
anisotropic pressure P, . This pressure anisotropy only
affects waves at short wavelengths, where ions are
highly excited and their frequency is proportional to
the wavenumber (w, = k). Conversely, in the absence
of pressure anisotropy (P, = 0) and ask — +o, w, = 1,
indicating that ions reach a permanent oscillation
regime with a constant frequency. In the dimensional
case (w, — w'/wy), this constant frequency is the

plasma frequency (w’ = a)pi(=\/47rZini0e2/ m;)). Note
that an increase in the perpendicular pressure compo-
nent P, leads to the damping of waves in the medium.

The dZK equation, which models the evolution of
IASWs, is derived using the RPM. The nonlinear and dis-
persion coefficients depend on various factors, including
the k index of superthermality, the parallel P, and perpen-
dicular P, pressure components, the plasma rotation fre-
quency o, the positron concentration 4, and the electron
positron temperature ratio g. The damping coefficient,
however, remains constant and is solely dependent on
the collision frequency v. The summary of the nonlinear
regime is as follows:

1) TAWSs propagate in the plasma in a direction parallel to
the magnetic field with a phase velocity that is unaf-
fected by the plasma rotation frequency Q,, the mag-
netic field through wy;, or the perpendicular pressure
component P,. The phase velocity increases with the
index and parallel pressure P and decreases with the
temperature ratio g.
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2) The nonlinear effect increases with the parallel pres-
sure component P and decreases with higher values
of the k index of superthermality of electrons and posi-
trons. In the parallel direction to the magnetic field, the
dispersion effect decreases with the parallel pressure
component P; and increases with the perpendicular
pressure component P, in the perpendicular direction
to the magnetic field.

3) Ion pressure anisotropy has a significant impact on the
amplitude and width of IASWs. The wave amplitude
decreases with increasing ion pressure (P) and the elec-
tron—positron temperature ratio (o). On the contrary, the
amplitude increases with rising superthermality . As for
soliton width, it increases with higher anisotropic pressure
components (P. and P)). The higher the ion pressure, the
more the solitary waves spread.

4) The Coriolis force, expressed through Q, exclusively affects
the width of electrostatic waves. With increased plasma
rotation, the width of the waves becomes narrower.

5) Collisions between ions and neutrals greatly affect the
propagation properties of solitary waves in the plasma.
Our analysis reveals that as the collision frequency v
increases, the medium becomes more strongly damped,
resulting in an exponential decrease in the amplitude of
solitary waves. Over time, the wave spreads while con-
serving its properties. When anisotropic pressure is
combined with collisions, the soliton amplitude is
reduced by approximately twice as much compared to
the effect of collisions alone.

6) An increase in collision frequency results in a shorter
and broader dissipative soliton in the magnetized e—p-i
plasma.

In summary, our work offers a qualitative description
of solitary wave observations in rotating space plasmas
and astrophysical environments with high magnetic fields,
such as the magnetosphere and the vicinity of Earth’s mag-
netosheath, where nonthermal electrons and positrons
coexist with anisotropic pressure ions.

6 Future work

In this study, the small-amplitude ion-acoustic dissipative
solitons have been investigated by analyzing the damped
ZK equation. Some discrepancies may appear between the-
oretical and practical observations, which requires some
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processing of the theoretical model to achieve complete
agreement between theoretical results and experimental
observations. To this end, in future works, we can follow
the same work in the literature [71-75] by including the
fifth-order dispersion in the governing equations to study
the properties of large-amplitude dissipative nonlinear
structures that can arise and propagate in the current
plasma model or in any other model can describe by these
equations. Additionally, the fractional calculus has played
a vital role in recent times due to its ability to analyze
various types of fractional evolutionary wave equations
(EWEs) that can be used to model many different phe-
nomena in many scientific disciplines [76-79]. Further-
more, studying the fractional EWEs is of great benefit in
providing explanations for some unknown phenomena
while studying these phenomena using the same EWEs in
their integer forms. Therefore, in our future works, we
intend to study the same current model in its fractional
form to investigate the dynamics of propagation of the
dissipative ion-acoustic solitary and cnoidal waves under
the influence of fractionality. To do this, we will use the
most recent methods discovered in analyzing fractional
differential equations, such as the Tantawy technique
and the new iterative method, and the residual power
series method which have proven effective in many appli-
cations [80-84].
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