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Abstract: An analytical study of the Rosenau equation,
which is crucial for analyzing wave phenomena in a
variety of physical systems where nonlinear dynamics and
dispersion are significant, includes fluid dynamics, plasma
physics, and materials science. This equation was proposed
to explain the dynamic behavior of dense discrete systems.
We employed the Sardar subequation approach and the
generalized Riccati equation mapping method to derive ana-
Iytical solutions. By applying the fractional wave transforma-
tion and the conformal fractional derivative, we were able to
obtain these solutions. Using these techniques, we obtained a
variety of solutions in the form of exponential, trigonometric,
mixed hyperbolic, rational, and hyperbolic functions. The
solutions include numerous solitary wave solutions, as well
as bright and dark soliton solutions. By varying the parameter
values, the analytical soliton solutions are further visualized
through 2D, 3D, and contour plots using Mathematica 13.0.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) are
powerful mathematical tools for modeling complex and
uncertain natural processes. Many systems in fields, such
as biology [1], engineering [2], and physics [3], rely on non-
linear effects and variables that cannot be adequately
described by linear differential equations. NLPDEs are
widely used in numerous scientific and industrial disci-
plines [4], including materials science [5], astronautics
[6], reaction—diffusion systems [7], chaotic systems [8],
medicine [9], fluid dynamics [10], and wave propagation
equilibria [11]. Although NLPDEs model a vast number of
physical phenomena, these phenomena can only be fully
understood by obtaining their exact solutions [12]. Several
analytical methods have been proposed in the literature,
including the unified algebraic method [13], the modified
subequation extended method [14], the modified Exp-func-
tion method [15], variational principles [16], the tanh—coth
method [17], the generalized Kudryashov method [18], the
new auxiliary equation method [19], the amplitude ansatz
technique [20], the sinh-Gordon expansion method [21], the
first integral method [22], and the Jacobi elliptic function
method [23]. These dynamic approaches [24] have been
developed to effectively solve NLPDEs.

On the other hand, ordinary fractional differential equa-
tions and, more generally, fractional partial differential equa-
tions (FPDEs) have gained significant attention due to their
broad applications in fields such as fluid mechanics, biology,
physics, and engineering [25]. Consequently, solving frac-
tional ordinary differential equations [26], FPDEs, and inte-
gral equations [27] in real-world physical contexts has
become a major focus. Research has shown that FPDEs are
essential for describing a wide range of nonlinear natural and
physical systems. In this context, the present study focuses on
the nonlinear Rosenau equation [28]:

D!P + D,P + Dy, D/P — 30P2D,P + 60P*D,P = 0, (1.1)
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where x represents the one-dimensional spatial position and
t is the time. The operators D, and Dy, are standard integer-
order spatial derivatives, and y is a free parameter. In addi-
tion, D/ represents the fractional derivative operators, where
Y € (0, 1). The precise definition is provided next.

Definition 1.1. Assume b : [0, ©] = R, and y € (0, 1). The
conformable functional derivative is defined as

limg-o(b(@t!Y + t) - ht)
w b

DV(b)(t) = 1.2)

forallt > 0 and y € (0, 1].

The key properties of the conformable fractional deri-
vative are summarized in the following.

Theorem 1.2. Let n and { be functions, and lety € (0, 1]. Ifn
and { are y-differentiable at t > 0, then the conformable
fractional derivative satisfies the following properties:
L D(n*p+{*xq)=p*D'(n) +q=*D¥{), for all
p,q ER.
2.DVtY) =u =t forallu € R.
3. D'(n. ¢) = n * DY({) + {* D().
*DY(n) - n * DY
L Dy[g] - £PWp 20
5. D¥(p) = 0, for any constant function q(t) = p.
6. If q is differentiable, then DY(n)(t) = 17V * %.

Various numerical and analytical methods have been
used to investigate the dynamics of different Rosenau
equations. Park [28] investigated whether the Rosenau
equation can be solved, and he definitely gave the exact
answer. Chung and Ha [29] studied existence and unique-
ness of the exact solutions, as well as the error estimates,
using Galerkin finite element methods for a Rosenau equa-
tion similar to KdV. Zuo [30] employed sine-cosine and
tanh techniques to obtain solitonic and periodic solutions
of the Rosenau-KdV equation. Wang and Dai [31] presented
a numerical solution to the Rosenau-KdV-RLW problem
using quintic B-splines and finite element techniques.

A widely used analytical method for a variety of differ-
ential equations, especially nonlinear equations, is the gen-
eralized Riccati equation mapping (GREM) method [32],
valued for its flexibility and simplicity [33], generality
[34], nonlinearity [35], and the ability to simplify and solve
challenges. GREM allows for systematic treatment of non-
linear PDEs, but its effectiveness depends on familiarity
with the method, the characteristics of the problem, and
an appropriate level of analytical precision. Nonlinear
PDEs have numerous real-world applications. Numerical
models based on complex nonlinear polynomial structures
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are used to generate nightly TV weather reports. It is
important to note that the main advantage of the Sardar
subequation method (SSM) [36] is its ability to generate a
wide variety of soliton solutions, including periodic sin-
gular solitons, combined dark-bright solitons, and mixed
dark-singular solitons. The method is notable for its sim-
plicity, reliability, and adaptability to nonlinear equations.

Before closing this stage, it is worth pointing out that
there are more analytical techniques which have been
used to derive soliton solutions for NLPDEs. For example,
recently, Chatziafratis et al. [37] discovered a novel long-
range instability phenomenon which is a previously
unknown type for the inhomogeneous linear Schrédinger
equation on the vacuum spacetime quarter-plane by devel-
oping the linear Fokas’ unified transform method. Addi-
tionally, by developing the Dbar-steepest descent method,
with respect to deriving the solutions of Wadati-Konno-
Ichikawa equation, the authors of [38,39] have performed
some interesting work. They solved the long-time asymp-
totic behavior of the solutions of the equation, and proved
the soliton resolution conjecture and the asymptotic stabi-
lity of solutions of the equation. Besides, Wu et al. [40]
employed the recursion operator from the bi-Hamiltonian
structure and diagonalized the non-diagonal matrix form
in the second variation of the Lyapunov functional,
thereby proving the stability of exact smooth multi-solitons
for the two-component Camassa—Holm system.

2 Description of methods

In this section, we describe two analytical techniques —
SSM and GREM - for solving the nonlinear Rosenau equa-
tion. The general form of the NLPDE is

A(P,P'P,D,P,D¥P, PP, ..) = 0, 2.1

where A is a polynomial in P and its derivatives. We apply
the transformation:

P(x, 1) = S(¢),

with ¢ =mx + %y and y is the fractional order.
Substituting (2.2) into (2.1), we obtain

B(S, S, S”,8”,..) =0,

2.2)

(2.3)

where B is a polynomial in S and its derivatives.

2.1 SSM

The steps of the SSM are as follows:
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Step 1. Let us assume that Eq. (2.3) has a solution

m
S(@) = Y api(¢), a;#0, 2.4)
j=0
where the coefficients a; (j = 0,1, 2,..., m) are to be deter-
mined later, and y(¢) satisfies the ordinary differential
equation of the form

P(@) = VK + QAP) + YHP). (2.5)
Eq. (2.5) has the following solutions:
*» Casel: If k=0 and Q > 0, then
Ui() = +/-dbQ sechg(+/Q ¢),
¥(9) = £+/-dbQ cschgy(VQ ),
where  sechg = 2(de? + be®)?  and  cschgp¢ =
2(de® - be ®) L,
» Case2 :Ifx = 0 and Q < 0, then
¥y(¢) = £4/-dbQ secy(N-Q¢),
U () = £3-dbQ cscap(v -Q @),
where  secgy¢ = 2(de®® + be™®)™  and  cscqp¢ =

2i(de — be )1,

e Case3: IfQ<0andk = %Z, then

Yi(¢) = i\/g tanhgy \/g¢],
UNOE i\/g COthdb[\/g¢];

B39)= £\~ (tanh(V-229) + Vb secha(V-299)),

UROEE: -% (cothgy(v=2Q ¢) + ~/db cschgy(v-2Q ¢)),
by (9) = i\/g tanhdb[ —% ¢] + cothdb[\/g(p]],

where
de? — be?
tanhg¢ = bel + be
de? + be™?®
cothgyo = W

o Cased: IfQ>0andk = %2, then
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Yio(9) ==+ \/% tangy, \/% ¢],
Yi(@) =+ \/% COtdb[\/g ¢],

Yi(@) =+ \/% (tang,(v2Q ¢) + Vdb secq(v2Q 9)),

Yi(@) =+ \/% (cotg(v2Q 9) + Vdb cscqe(v2Q 9)),

U () = iE \/g¢] + COtdb[\/g¢]],

tang

where
i(de? — be™?)
(AnNed = 4o+ bes
i(de? + be™9)
R = g5 e s

Step 2. Determine the degree m in Eq. (2.4) using the
balancing rule.

Step 3. Substitute (2.4) and (2.5) into (2.3), and expand
the result in powers of ¥(¢).

Step 4. Set the coefficients of like powers of ¥(¢) to
zero to form a system of algebraic equations. Solve for the
unknown parameters ensuring non-trivial solutions.

2.2 GREM method
We propose that the solution to Eq. (2.3) takes the form
S(¢) = 2 ay(9),
j=0

where qg; are the coefficients to be determined. The fol-
lowing simplified Riccati equation requires Y(¢) to
balance the highest order linear term with the nonlinear
term in order to present the solution, which defines the
value of m:

Y(P) =1+ pY(9) + sP*(9), (2.6)

with r,p,s € R. The parameters a; (j =1,... m) and the
function y are determined by substituting Egs. (2.4) and
(2.5) into the relevant ordinary differential Eq. (2.3) and
equating all coefficients of like powers of ¥ to zero. This
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procedure yields a system of algebraic equations. Solving
this system yields non-traveling wave solutions to
the NPDE.

The 27 solutions of Eq. (2.6) can subsequently be
obtained.

Type 1. When d? - 4ef > 0 and either de # 0 or (ef % 0),

we define /p? - 4sr = a;. The solutions of Eq. (2.6) are
given by

@

2 ¢”

pPta coth[%¢]l,

p + a;tanh

1
¢1(¢) = ‘g

1
Y(¢) =~ 9%
1(9) = c[p + a(tanh @) + sech(@g)],

09 =~ c1p + w(cot@g)esch(@h)),

¥s(9) = —% 2p + @y tanh %gb] + coth[%l/)]”,
Y9 = }S[p N +AB521)£(;ZC)IT T
1
1| B - A)a + Ag cosh(ay)
$a(9) =50 7P Asinh(a) + B ’

where A and B are two non-zero real constants such that
B2 - A% > (, and

2r cosh[%w]
ay sinh(a;2y) - p cosh(a2y)’
%)
p sinh(a2y) - a; cosh(a2y)’
2r cosh [%lp]

@ sinh(aqY) - p cosh(ay) + 1y’

¢8(¢) =

-2r sinh

¢9(¢) =

Pio(9) =

2r sinh

)
—p sinh(aq)) + oy cosh(ayy) + a4’

2

l/)11(¢) =

Q;
jzp] cosh

4r sinh

l/)lz((f’) =

Type 2. When p? - 4sr < 0 and ps # 0 (or sr # 0), we define
J4ef - d* = ay. The solutions of Eq. (2.6) are

-2p sinh(ay41) cosh(a4y) + 24 cosh? (wm4dy) - a;
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1
¥s(9) = 5| P + atan| ol
1
Yu(@) == |P + @ cot %lﬁ”

1
Uis(@) = E[—p + my(tan(ax) + sec(ax))],

V@) = = [p + alcot(a) * esclap),

1
(@)= 5|20 + o tan| Z¥

4s
+/(4% - BY) a, - Aay cos(az))

Asinh(ay) + B

+/(4% - BY)a, + Aay cos(az))

Asin(ay) + B

tan

bl

a
- coth[—
co [4lp

bl

1
!/}13(‘1)) = g Pt

1
Vo) = 5| P -

bl

where A and B are two non-zero real constants such that
A2 - B2 > 0. Also,

2r COS[%w]
@) =-4 sin(@,21) + p cos(a2)’
2r sin %l/)]
Yy (@) = —p sin(a29) + a cos(a2y)’
2r cos| Y
Yy(9) = - @ sin(ay) + p cos(ay) + a’
2r sin| 39
Vu) =~ () + @y cos(agd) £ @
4r sin| 79| cos %‘b]
1,,(9) = —2p sin(a41) cos(aA) + 2a; cos? (aAp) - a
Type 3. When r = 0 and ps # 0, the solutions of Eq.
(2.6) are
hys(9) = slg + cosh(g;l,lb))g— sinh(pY)]’
oo [cosh(py) + sinh(py)]

slg + cosh(py) + sinh(py)]’

where g is an arbitrary constant.
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Type 4. When s # 0 and p = r = 0, the solutions of Eq.
(2.6) are

1

U0 ==

where hy is an arbitrary constant.

3 Solutions via SSM

Now, substituting Eq. (2.2) into Eq. (1.1), we obtain the
ordinary differential equation

cm*S™ + ¢S + 12mS5 - 10mS3 + mS = 0. (3D

Applying the homogeneous balance principle to Eq. (3.1),
we find m = 1. Substituting this into Eq. (2.4) gives

S(¢) = ag + ap(¢),

where a, and g; are the constants. Substituting Eq. (3.2) and
its derivative into Eq. (3.1) results in a system of algebraic
equations of the form:

(3.2)

agc + 12aim - 10adm + agm = 0,

12a,ckm* + a;em*Q? + ayc + 60agaym - 30aam + aym = 0,

120ada’m - 30aqa’m = 0,
20a,cm*Q + 120aia’m - 10a’m = 0,
60ayam = 0,

24amcm* + 12a’m = 0.

The system of equations is solved numerically using
Mathematica to find the values of the parameters:

_ S S
“ R "o
(@2 - 121)%4
T

ap =0,

Case 1: If k = 0 and Q > 0, then

i,/—de X
Pi(x, t) = NG sech \/ﬁlm
B (Q2 - 12K)3/4¢ty
7 | (3.3)
i/—deq X ‘
Py(x,t) = T[csch \/ﬁ m

(R - 12134y
2yQ?2

Case 2: If k = 0 and Q < 0, then
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Py(x, t) = sec|./—q

Eia

bl

(@2 - 12134
2yQ?

(34

-d
P(x,t)= T csc

ﬁ[‘*\/szz - 12¢

(@2 - 12Ky
2yQ2

Case3: IfQ<0andk = %2, then
PS(X7 t)

Q- 12;<)3/4ty]

X
V_q[mz—ux Ty
\/E 3

N 3.5
= =4 tanh B3

NN

PG(X, t)

(Q*- 12K)3/4tV]

X
v _q[‘{/gz Sk 9
\/E 3

=1
NP

3.6
coth (36)

i
NN ffir—f

JWﬂmWM+WW

Jde sech

Py(x,t) =

2yQ? NEN)

(@2 - 12)34yy
ez 2yQ° ’

X

tanh

g
N

(@ - 12K)3/4tV]]

Pg(x, t) = Jde csch

\/_\/_ - 12k

N
ZVa

_ (@ - 1234ty
N - 2yQ? ’

2pQ?

X

coth

(Q%-121)%4¢Y
2pQ2

X
ﬁ["vgz—m B
V2

iy
NN

Py(x,t) = tanh

(@2 - 126)34¢Y
2yQ?

iJ=q V_q[‘ml—m -
coth
NN 7
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Case 4: IfQ > 0 and k = @ then The system of algebraic equations was solved numeri-
cally using Mathematica, yielding the following values for

R the parameters ao, a;, m, and c:
= 12K

X
i\/q \/ﬁ[w—m - 2yQ*

——

p
Po(x, t) = tan s ay= —F7—/———,
10( ) \/E\/ﬁ \/E 0 zpz —ars
2s
“T i -srs)
X _ (@ -2y 2 rs
iJjq Vi 492 - 12c 2y 42
Pu(x, t) = cot , ms=———-r,
\/E\/ﬁ x/i 4/_(p2 - 4,»5)2
_ 2
iJq X VN 2
Py(x, t) = Jde sec[ﬁﬁ —_— (p* - 4rs)
2R 4/02
V242 o - Lk We define
- 12k)3/4¢Y \
- y 4
2)/92 a = \/Et + \/EX .
RV P-(p* - arsy - 4-(p? - ars)?
« |tan|v2 /g X e 12K2) t ]]] Next, we analyze each of the possible cases.
4102 —
Ve - 12k e Case 1: When d? - 4ef > 0 and de # 0 or ef # 0,
p 1
12}(‘ (37) 15(X) t) \/zp 8rs \/sz ~8rs
- 12)3/4¢Y a3
- 2)/522 x |q tanh T] +
p 1
(Q2 - 12x)3/4¢y Py(x, ) = -
x ‘COt Jor - e 20 ) J2p? - 8rs  \[2p? - 8rs
o
X (@ - 126)340 x [al COth[% + P],
Pu(x, 0) = iJq \/ﬁ Y- @ ) )
14 B _
\/—\/— NG Pyr(x,t) = \/sz “ors \/sz “ore 4.1
X (@ -1y x (al(tanh(ala3) + sech(am)) + p),
g Vi tg 207 Prs(x, 1) = 1
18\A,
Y o™ NG : sz 8rs  \2p? - 8rs
x (ay(coth(amas) + csch(aas)) + p),
Pig(x, £) = ——2 !
. . 19\A, - -
4 Solutions via the GREM method Jap? - 8rs 2(2p* - 8rs
x |ag tanh %] + coth[%] +2p|,
Applying the balancing principle to Eq. (1.2), we obtain 4 4
m = 1. Substituting this value into (2.4) gives 1
Py(x, ) =
2 _
S(@) = a0+ a(@), &
where a, and g are the constants. Substituting this expres- x ayA? + BZ_ ~ A cosh(aas) - p ]
sion and its derivative into Eq. (1.2) leads to a system of Asinh(aas) + B
algebraic equations of the form: Py, ) = p . 1
21\A -
J2p? - 8rs  J2p? - 8rs
a;cm?*p3r + 8aicm?pris + aoc + 12agm - 10adm + agm = 0, VI + a cosh (@)
A + mA cosh(aas
aiem*p* + 22a,cm*p?rs + 16a,cm’r?s? + ayc + 60agam |~ Asinh(aya) + B ]
- 30ataym + aym = 0, P, )= p . Ars
15a,cm*p’s + 60a;cm?prs? + 120aga’m - 30a,a’m = 0, =5 J2p7 - 8rs  \[2p? - 8rs
50a,cm?p?s? + 40a,cm?rs® + 120ala’m - 10am = 0, h[alas]
cos
60a;cm?ps® + 60agaim = 0,

24acm*s* + 12a;m = 0. o sinh (a,032) - p cosh(aa;2)
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p B 4rs
J2p? - 8rs  \[2p? - 8rs

a3
2

p sinh(a032) - a; cosh(ayas2) |

Py(x,t) =

sinh

p . 4rs
J2p? - 8rs  J2p? - 8rs

a3
2

maz + a; sinh(ayas) - p cosh(ayas) |

Py(x,t) =

cosh

X

p . 4rs
J2p2-8rs  \[2p% - 8rs

aiaz
2

@ + a; cosh(as) — p sinh(ayas) |

Py(x, t) =

sinh

D . 8rs
J2p2-8rs  \[2p% - 8rs

Py(x, t) =

ajaz

sinh 1

alaz
e ] cosh

X

-y + 2a; cosh? (yasz4) — 2p sinh(waz4) cosh (masd) |

Case 2: When p? - 4sr < 0 and ps # 0 or sr # 0, we have

p 1 ( [azas]
Py(x, t) = - @ tan|——| + p|,
7 J2p2-8rs  \J2p* - 8rs lz 2 P
4 1 [azas ]
Pag(x, t) = - a cot|—=| + p|,
# J2p2-8rs  \[2pr - 8rs lz 2 P
1
Pylx, ) = d + (a; tan(ayas) + sec(azas) = p),
J2p2 - 8rs  \J2p% - 8rs
1
Palx, 1) = ——=E— - (ax(cot(@s) + csc(asay) + p),
J2p2-8rs  \[2p% - 8rs
Py(x, t) = P + ! [az tan %] - cot[%
Jop2-8rs  2\2p% - ars | 4

p . 1
J2p2-8rs  \[2p* - 8rs
N VA2 - B - aymA cos(aas) _ pJ

Asin(aas) + B

Pyp(x, ) =

P3(x, 1) = L + !
J2p2 - 8rs  \[2p? - 8rs
e N A% - B% + mA cos(ayas) _
Bsin(aas) + B Py
4rs
Py(x, t) = P

\J2p? - 8rs ) \J2p? - 8rs

axaz
cos (72 )

a sin(aaz2) + p cos(aas2) [

- Zp],

On the derivation of solitary wave solutions == 7

p . 4rs
J2p* - 8rs  [2p? - 8rs

Py5(x, t) =

Qa3

sim TN

a, €08 (aaz2) — p sin(amaz2) [

p _ 4rs
J2p? - 8rs  J2p? - 8rs

a3
2

Py(x, t) =

cos

X

a3 + @ sin(amaz) + p cos(ayas) |

p . 4rs
J2p2 - 8rs  \[2p - 8rs

Py(x, 1) =

Qa3

2

sin

a3 + @y cos(maz) — p sin(ayas) |

4.2)
p 8rs

\J2p* - 8rs ' J2p* - 8rs

a| o [
< cos| 2]

-y + 2a; cos? (aaz4) — 2p sin(a,as4) cos(aasd) |

Pyg(x, 1) =

sin

X

Case 3: When r = 0 and ps # 0, then

p 28p
Py(x, t) = -
o 0 J2p% - 8rs  \[2p? - 8rs
X [ 1
+ sinh(azp) + cosh(asp) |
gp (asp) . (asp) 3
Py(x, t) =

\/sz “8rs \/2p2 - 8rs

sinh(azp) + cosh(azp)
sinh(asp) + cosh(asp) + p |

Case 4: When s # 0 and p = r = 0, then
p

25
J2p* - 8rs  (hy + azs)+/2p? - 8rs '

The solution analysis reveals distinct characteristics
for each method: the SSM generated 14 exact solutions,
while the GREM method produced 27 exact solutions.
Moreover, their solution profiles differ significantly —
SSM yields solutions exclusively in trigonometric and
hyperbolic forms, whereas GREM provides a broader spec-
trum, including trigonometric, hyperbolic, and rational
solutions (Figure 1).

Pu(x,t) =
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0.3

Q1(xy,02

Figure 1: Graphical behavior of Py(x, t) in Eq. (3.3) for the parametersc=-1,y =0.9,d =-0.9,e = -04,x = 0,q = 0.09, and Q = -0.5.

Q) 0

&

\

-10 -5

-10

Figure 2: Graphical behavior of Ps(x, t) in Eq. (3.4) for the parametersc =1,y =0.9,d = 0.9, e =04,k = 0,q = -0.09, and Q = 0.5.

-10 -5 H 5 10

15
Qxy.h 10

0 E 5 10

Figure 4: Graphical behavior of Pyy(x, t) in Eq. (3.7) for the parametersc = -1,y = 0.9,d = -0.9,e = =04,k = 0, ¢ = 0.09, and Q = -0.5.
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Q04 10

L
-10 -5

-10 -5 0 5 10

0.8+

0.6+

0.4+

0.2+

10 -10 -5

5 10

Figure 6: Graphical behavior of Pys(x, t) in Eq. (4.2) with parametersy =16, g=-1,p=04,r =-1,and s = 1.3.

The graphical representations provide valuable insights
into the dynamics of wave propagation. By selecting appro-
priate parameters, we visualize several solution profiles that
exhibit different wave behaviors. Several remarkable pat-
terns emerge: the graphical behavior of Ps(x,t) and
Pyy(x, t) in Figures 2 and 4 displays the characteristic solitary
wave profiles. In Figures 3 and 5, illustrating solutions Ps(x, t)
and Pg(x, t), respectively, the presence of dark solitons
becomes evident. Finally, Figure 6, showing the solution of
P3q(x, t), exhibits a bright soliton profile.

5 Conclusion

In this study, analytical solutions of the Rosenau model were
obtained using two methods: SSM and GREM method. The
mathematical model is a fractional extension [41,42] of the
classical Rosenau equation, and several solutions repre-
senting solitary waves and solitons were successfully derived
in the form of trigonometric, mixed trigonometric, hyper-
bolic, mixed hyperbolic, rational, and exponential functions.
The analytical results include various solitary wave solutions,
as well as bright and dark soliton profiles. Fractional deriva-
tives and fractional wave transformations were employed to

obtain these solutions. By selecting appropriate parameter
values, 3D, 2D, and corresponding contour plots are presented
to illustrate the physical behavior of the analytical results.
This approach provides a versatile tool for research and
experimentation, allowing researchers to adjust parameters
to explore a wide range of wave phenomena.
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