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Abstract: A new four-dimensional hyperchaotic model
(4-DHM) with eight parameters is examined in this work.
Depending on how two of these parameters are chosen, this
model may contain equilibrium points or not. Therefore, we
may choose a value that will make the corresponding attractor
either hidden or self-excited. In this model, we consider the
two scenarios and analyze the dynamics of the two instances.
The numerical simulation of the novel 4-DHM is shown
together with bifurcation diagrams, the Lyapunov exponent,
and an examination of equilibrium and stability. The novel
4-DHMmay be used in many science and engineering applica-
tions, such as electronic circuits and image encryption. A phy-
sical implementation is added to the electronic circuit’s
MATLAB Simulink to confirm that the new 4-DHM can be built.
The results of the numerical analysis and electronic circuit
simulation of our model were in a good agreement. The color
image’s encryption, decryption, histogram analysis, informa-
tion entropy, correlation coefficient, number of pixels change
rate, and unified average changing intensity are examined
using the proposed model.

Keywords: chaotic and hyperchaotic models, hidden
attractors, Lyapunov exponents, nonlinear electronic cir-
cuit, color image encryption

List of Abbreviations

BDs bifurcation diagrams
4-DHM four-dimensional hyperchaotic model
LEs lyapunov exponents
NPCR number of pixel change rate
RGB red, green, blue (color model)
UACI unified average changing intensity

1 Introduction

Since Lorenz [1] discovered the first 3D autonomous
chaotic system, chaos has adapted and grown significantly.
Chaotic systems are important to dynamical systems due to
their fascinating and complex dynamical properties. Some
sciences, including biology, medicine, geology, image
encoding, secure communication, and physics, may benefit
from the study of chaotic systems [2–10]. Classical chaotic
systems have already been identified in a number of
instances over the past few decades [11–14]. Recently, many
scientists have shown an increasing interest in studying
chaotic and hyperchaotic dynamical systems [15–20]. For
applications based on chaotic systems, hyperchaotic systems
contribute to a crucial component [21–27].

Shilnikov’s criteria [28] state that there is a connection
between chaotic attractors and the model equilibrium. In
dissipative dynamical models, the presence of at least one
unstable equilibrium point is a prerequisite for chaos.
However, in order to confirm chaos in light of the finding
of hidden attractors, the traditional Shilnikov criteria must
be used. Attractors can be divided into two categories from
a computational perspective: self-excited attractors and
hidden attractors [29]. If any tiny neighborhoods of a sta-
tionary state are intersected by the basin of attraction of
an attractor, it is referred to as a “self-excited attractor.” If
not, it is called a hidden attraction. Hidden attractors are
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crucial in engineering applications because they enable
unexpected and sometimes dangerous responses to pertur-
bations in a structure, such as a bridge or an airplane
wing [29–32].

Since the creation of Chua’s circuit [33], the study of
chaotic circuits has attracted a lot of interest. Numerous
chaotic (hyperchaotic)-producing nonlinear electronic cir-
cuits have been developed. A chaotic circuit is essentially a
kind of chaotic system, and scholars usually use the elec-
tronic circuits to yield chaotic signals and demonstrate the
physical existence of chaotic systems [34]. Some well-
known examples of chaotic circuits are Chua’s circuit
and the Lorenz system [35]. A hyperchaotic circuit is a
chaotic circuit that has more than one positive Lyapunov
exponent (LE), which means that it has more than one
direction of instability and higher complexity [35].
Hyperchaos can be generated by adding some feedback
controllers or nonlinear elements to the original chaotic
circuits [35,36]. On the other hand, image encryption uti-
lizing chaotic (or hyperchaotic) systems has garnered sig-
nificant attention from researchers in recent years [37–39].
Masood et al. [37] introduced a novel approach for color
image encryption based on DNA computing. Biban et al.
explored image encryption employing an 8D hyperchaotic
system combined with the Fibonacci Q-matrix [38]. Yan
et al. introduced an innovative color image encryption
technique utilizing a new three-dimensional chaotic map-
ping and DNA coding. As a result, applying chaotic
(hyperchaotic) models to engineering practice through cir-
cuit implementation and image encryption has grown to be
a crucial way for transferring chaotic (hyperchaotic)
models from theory to practice. The circuit application
and image encryption of chaotic (hyperchaotic) models
have made significant progress up to this point.

Hu et al. [40] presented and studied a memristor-based
VB2 chaotic model as
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In this work, a new continuous-time, four-dimensional

autonomous system is constructed, and its proposed
scheme is obtained through the use of model (1.1). A new
four-dimensional hyperchaotic model (4-DHM) based on
model (1.1) is defined by
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where ( )=u u u u u, , ,

T

1 2 3 4

are the state variables, a b, , c, d,
e, and k are the positive constant parameters, and h and f

are the constant parameters.
Our goal in this work is to introduce and investigate a

new 4-DHM with self-excited and hidden attractors. The
dynamics of the new 4-DHM with equilibrium or no equili-
brium points are analyzed. Then, the LE, bifurcation dia-
gram (BD), and phase portrait are used to examine the
proposed hyperchaotic model. An electronic circuit for
the new 4-DHM is being designed. The encryption, decryp-
tion, histogram analysis, information entropy, correlation
coefficient, number of pixel change rate (NPCR), and
Unified average changing intensity (UACI) of a color image
are investigated based on the 4-DHM (1.2).

The rest of this work is arranged as follows: Section 2
provides a thorough examination of some basic dynamical
properties of the 4-DHM (1.2). The 4-DHM (1.2) electronic cir-
cuit is found in Section 3. Comparing numerical and simula-
tion findings, a good degree of agreement is obtained. Section
4 provides an analysis of encryption, decryption, histograms,
information entropy, correlation coefficients, NPCR, and UACI
for a color image using the 4-DHM (1.2). The conclusion of this
research study is located in Section 5.

2 Basic dynamical properties of
model (1.2)

In this section, we will study and discuss a few basic prop-
erties of the new 4-DHM model (1.2). Model (1.2) has eight
parameters and nine terms, three of which are nonlinear.
This model may or may not have equilibrium points,
depending on how the parameters h and f are selected.

2.1 Equilibrium points

The equilibrium points of model (1.2) occur when
= = =u u u˙ 0, ˙ 0, ˙ 0,

1 2 3

and =u̇ 0

4

.

( )+ =
+ + =

− + − =
=

au W u u

bu hu f

cu du eu

ku

0,

0,

0,

0.

2 2 3

3 4

2

1 2

2

3

3

(2.1)

2  Tarek M. Abed-Elhameed and Mansour E. Ahmed



Clearly, one may derive = = =u u u 0

1 2 3

from the first,
third, and fourth equations in Eq. (2.1). It is simple to

deduce that = ± −
u

f

h
4

from Eq. (2.1) second equation,

which means that there are no real solutions in (1.2) if
h and f are both positive or both negative. But if h and f

are chosen and one of them is positive and the other
is negative, then model (1.2) has two equilibrium points

( )=E u0, 0, 0, *

1,2
4

and = ± −
u *

f

h
4

. As a result, we confirm

the potential of two different attractors for a fixed set of
parameters in model (1.2), namely, the hidden attractors if
h and f are both nonzero with the same signs and the self-
excited attractors if h and f have opposite signs. While
hidden attractors are associatedwithmodels with stable equi-
libriumpoints or no equilibriumpoints, self-excited attractors
are related to models with unstable equilibrium points.

Remark 2.1. It is observed that one can attain hidden attrac-
tors or self-excited attractors for our model (1.2) by selecting
suitable values for the model’s parameters h and f .

Remark 2.2. Model (1.1) is a special case of model (1.2) for
the choice = = =h f k 0 and =u c

4

, ∈c R.

2.2 Symmetry and dissipation

The new 4-DHM model (1.2) does not have symmetry since
it changes independently of the coordinate transformation.
Model (1.2) is dissipative under the condition >e 0 since
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When ∇⋅ <V 0, the model is dissipative, and the volume of
the phase space gradually contracts to zero at an exponen-
tial rate because the model is dissipative.

2.3 Jacobian matrix and stability of
equilibrium points

It is possible to determine the linear stability of the equili-
brium points by computing the Jacobian matrix ( )J E

1,2

as
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The characteristic equation of (2.3) can be written as:
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It is evident from the Routh–Hurwitz stability criterion

that ( )= −
E 0, 0, 0,

f

h
1

is stable if >h 0 and <f 0, and

( )= − −
E 0, 0, 0,

f

h
2

is stable if <h 0 and >f 0.

2.4 Dynamics of model (1.2) with no
equilibrium points

For the choice =a 0.34, =b 2, =c 12, =d 2.5, =e 1, =h 1,
=f 0.411, =k 0.01, and the initial values ( )2, 0, 1, 0.1 , the

corresponding LEs are =LE 0.0862

1

, =LE 0.0453

2

,
= −LE 0.0746

3

, and = −LE 1.0569

4

. This means that model
(1.2) exhibits hyperchaotic hidden attractor, as illustrated
in Figure 1. The LEs and BDs for the proposed hyperchaotic
(chaotic) model (1.2) are provided for the same initial
values in Figure 1 and the parameter values are

Fix =e 1, =d 2.5, =c 12, =b 2, =h 1, =f 0.05, and
=k 0.01 and vary ( )∈a 0, 0.7 .
By calculating the LEs of model (1.2), it is clear that this

model has chaotic and hyperchaotic solutions, as shown in
Figure 2(a). The BD for the proposed hyperchaotic model is
also provided in Figure 2(b) to indicate the path of chaos.

Fix =e 1, =d 2.5, =c 12, =a 0.34, =h 1, =f 0.05, and
=k 0.01, and vary ( )∈b 0, 6 . We showed the matching LEs

for model (1.2) in Figure 2(c), while the corresponding BD
for this model is given in Figure 2(d).

By the same way, Figures 3–5 show the LEs and BDs for
the reminder parameters of model (1.2).
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Figure 1: Hyperchaotic hidden attractor of model (1.2) in the ( )u u u, ,

2 1 3

space
for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =f 0.411,
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Figure 2: Dynamics of model (1.2) with the same initial values as Figure 1: (a) The corresponding LE for the parameter values =e 1, =d 2.5, =c 12,
=b 2, = = =h f k1, 0.05, 0.01 and for ( )∈a 0, 0.7 , (b) BD for ( )∈a 0, 0.7 , (c) LE for parameters =e 1, =d 2.5, =c 12, =a 0.34, =h 1, =f 0.05, and
=k 0.01 and for ( )∈b 0, 6 , and (d) BD for ( )∈b 0, 6 .

Figure 3: LE and BD of model (1.2) with the same initial values as Figure 1: (a) LE for parameters =e 1, =d 2.5, =b 2, =a 0.34, =h 1, =f 0.05, =k 0.01

and for ( )∈c 5, 16 , (b) BD for ( )∈b 5, 16 , (c) LE for parameters =e 1, =c 12, =b 2, =a 0.34, =h 1, =f 0.05, =k 0.01 and for ( )∈d 0, 5 , and (d) BD
for ( )∈d 0, 5 .
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Figure 4: LE and BD of model (1.2) with the same initial values as Figure 1: (a) LE for parameters =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =f 0.05,
=k 0.01 and for ( )∈e 0, 5, 4 , (b) BD for ( )∈e 0, 5, 4 , (c) LE for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =k 0.01 and for ( )∈f 0, 0.6 ,

and (d) BD for ( )∈f 0, 0.6 .

Figure 5: LE and BD of model (1.2) with the same initial values as Figure 1: (a) LE for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =f 0.05,
=k 0.01 and for ( )∈h 0, 6 , (b) BD for ( )∈h 0, 6 , (c) LE for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =f 0.05 and for ( )∈k 0, 0.2 , and

(d) BD for ( )∈k 0, 0.2 .
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Remark 2.3. Model (1.2) has hyperchaotic solutions, while
model (1.2) has only chaotic one.

2.5 Dynamics of model (1.2) with equilibrium
points

Regarding the selection =e 1, =d 2.5, =c 12, =b 2,
=a 0.34, =h 1, = −f 0.732, =k 0.01, and the same initial

values of Figure 1, the corresponding LEs are
=LE 0.1369

1

, =LE 0.0363

2

, = −LE 0.0857

3

, and
= −LE 1.0876

4

. As shown in Figure 6, this indicates that
model (1.2) displays hyperchaotic self-excited attractor.

The LEs and BDs for the proposed hyperchaotic
(chaotic) model (1.2) are provided for the same initial
values in Figure 1, and the parameter values are

Fix =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =k 0.01,
and vary ( )∈ −f 1, 0 . By computing the LEs of model (1.2),
this model has chaotic and hyperchaotic solutions, as
shown in Figure 7(a). The BD for the proposed hyperch-
aotic model is also investigated in Figure 7(b).

Fix =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =f 0.05,
=k 0.01 and vary ( )∈ −h 7, 0 . Figure 7(c) shows the LEs

for model (1.2), while the BD for this model is given in
Figure 7(d).

By a similar way, the LEs and BDs for the reminder
parameters of model (1.2) can be presented for this
case.
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Figure 6: Hyperchaotic self-excited attractor of model (1.2) in the ( )u u,

2 3

plane for the same initial values and the parameters in Figure 1
except = −f 0.732.
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Figure 7: LE and BD of model (1.2) with the same initial values as Figure 1: (a) LE for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, =h 1, =k 0.01 and
for ( )∈ −f 1, 0 , (b) BD for ( )∈ −f 1, 0 , (c) LE for parameters =e 1, =d 2.5, =c 12, =b 2, =a 0.34, = =f k0.05, 0.01 and for ( )∈ −h 7, 0 , and (d) BD
for ( )∈ −h 7, 0 .
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3 Circuit implementation of
model (1.2)

Examining equations of model (1.2) with =a 0.34, =b 2,
=c 12, =d 2.5, =e 1, =h 1, =k 0.01, and =f 0.411, we can

rewrite it as follows:

= + +
= + +
= − − +
=

u u u u u

u u u

u u u u

u u

˙ 0.34 0.08 0.2 ,

˙ 2 0.05,

˙ 12 2.5 ,

˙ 0.01 .

1 2 3 2
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3

2 3 4

2
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2
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(3.1)

We can implement the electronic circuit in Figure 8 using
model (3.1), and the circuit equations in the Laplace
domain are shown as
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where { }⋅L is the Laplace transform, and the values of the
resistors and the capacitors are = = =R R R 1 MΩ

5 8

,
=R 2.9 MΩ

1

, =R 12.5 MΩ

2

, =R 5 MΩ

3

, =R 0.5 MΩ

4

,
=R 2 MΩ

6

, =R 0.83 MΩ

7

, =R 0.4 MΩ

9

, =R 0 100 MΩ

1

,
and = = = =C C C C 1 μF

1 2 3 4

.

Figure 8: Circuit diagram of model (3.1).
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On the MATLAB Simulink, the circuit implementation and
simulations were performed. The observed circuit simulations
of the chaotic system (3.1) in the ( )u u u, ,

2 1 3

spaces are shown in
Figure 9. For the identical parameters and beginning circum-
stances, these simulations are in good agreement with the
numerical solutions of Figure 1. On the other hand, for the
case = −f 0.732, the value of R

6

will change to =R 1.4 MΩ

6

,
and the third term in the second equation will be negative.
There is agreement between the circuit simulations and numer-
ical solutions, as shown in Figures 6 and 10.

4 Color image encryption using the
hyperchaotic model (1.2)

Using the hyperchaotic model (1.2), the encryption and
decryption process [41] entails a number of systematic
steps to guarantee secure image transformation. Image
preparation is the first step in the process, during which

the color image is read and adjusted for further processing.
Chaotic sequences are then generated using model (1.2)
parameters and initial values, discretizing time for itera-
tive calculations that create hyperchaotic sequences
aligned with pixel positions. Channel-wise encryption fol-
lows, dividing the image into red, green, blue (color model)
(RGB) channels and adjusting the chaotic sequences for
each channel before applying encryption through simple
addition and wrapping operations. Decryption reverses
this process by subtracting the chaotic sequence and
restoring the original pixel values. Image reconstruction
merges decrypted channels to form the complete image.

In the experimental results, we utilize identical para-
meter values and initial values for model (1.2), as shown in
Figure 1, along with the “House” image to evaluate the
effectiveness of the image encryption technique. The ori-
ginal medical image, the encrypted one, and the decrypted
image are shown in Figure 11. Figure 11(a)–(c) demon-
strates how the encrypted image becomes unreadable
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Figure 9: Circuit simulation of model (3.1) in the ( )u u u, ,

2 1 3

plane for
initial values of (2, 0, 1, 0.1) and for parameters =a 0.34, =b 2, =c 12,

=d 2.5, =e 1, =h 1, =f 0.411, and =k 0.01.
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Figure 10: Circuit simulation of model (3.1) in the ( )u u,

2 3

plane for initial
values of ( )2, 0, 1, 0.1 and for parameters =a 0.34, =b 2, =c 12, =d 2.5,

=e 1, =h 1, = −f 0.732, and =k 0.01.

Figure 11: Color image encryption of the “House” image using the hyperchaotic model (1.2): (a) the original image, (b) the encrypted image, and
(c) the decrypted image.
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during encryption and looks entirely different from the
decrypted image. However, when visually compared, the
original image and its decrypted version appear exactly
the same.

Figure 11(a)–(c) shows that the red component of the
encrypted image has a different histogram compared to the
original and decrypted images. Similarly, Figure 11(d)–(f)
displays differences in the green component, and Figure
11(g)–(i) shows changes in the blue component. This makes
it hard for attackers to extract useful information or use
statistical tools to figure out the original image.

The original “House” image has an information entropy
of 7.0686, which indicates that the distribution of its pixels is
very unpredictable. Following encryption, the entropy
increases to 7.9970, which is close to the maximum value of
8 for an 8-bit image. This suggests that the encrypted image is
extremely safe and disordered. After decryption, the entropy
goes back to 7.0686, which corresponds to the original image
and validates that the image was successfully recovered
without any information being lost.

The original “House” image has a correlation coeffi-
cient of 0.9840, which shows that adjacent pixels are
strongly correlated. The coefficient decreases to −0.3221

during encryption, indicating a notable decrease in corre-
lation and improved security; the decrypted image returns
the correlation to 0.9840, verifying that the original struc-
ture was successfully recovered.

The NPCR for the encrypted “House” image is 100, indi-
cating that 100% of the pixels have changed compared to the
original image. This demonstrates the high sensitivity of the

encryption process, ensuring strong security against differen-
tial attacks.

The encrypted “House” image has a UACI of 29.1854,
meaning that there is an average intensity difference of
about 29.19% between the original and encrypted photos.
This value further validates the efficiency of the encryption
process in reaching a high degree of security since it shows
a notable change in pixel values.

While our encryption scheme demonstrates strong
performance in NPCR (100%) and UACI (29%), we acknowl-
edge that a complete cryptographic evaluation requires
additional security analyses. In future work, we will
conduct key sensitivity analysis with finer perturbations,
evaluate resistance to known/chosen-plaintext attacks, per-
form key space analysis with formal entropy measurements,
and benchmark against state-of-the-art chaos-based methods.
These tests will further validate the robustness of our
hyperchaos-driven encryption for real-world applications.

5 Conclusion

A new 4D hyperchaotic model is proposed that can produce
hidden attractors or self-excited attractors depending on the
value of model parameters. For the new 4-DHM model (1.2),
some basic dynamical behaviors are investigated. LEs, phase
portraits, and BDs have all been used to illustrate the new
4-DHM model’s complicated dynamical characteristics.
Remarks 2.1–2.3 show the differences between the new
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Figure 12: Histogram of color image encryption of the “House” image using the 4-DHM (1.2): (a) the histogram of the red component of the original
image, (b) the histogram of the red component of the encrypted image, (c) the histograms of the red component of the decrypted image, (d)–(f) the
histograms of the green components, and (g)–(i) the histograms of the blue components.
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4-DHM model (1.2) and previous work. For the new 4-DHM
model (1.2), an electronic circuit is designed. We think that
our proposed model (1.2) is expected to find widespread use
in a variety of physics, engineering, and computer science
domains, including secure communication, information
science, and laser systems. Figure 8 shows the electronic
implementation of model (3.1). The simulation observations
of our new electronic circuit of the new 4-DHM model (3.1)
and those of numerical calculations were in good agreement,
as illustrated in Figures 1–6 and 9–10. The encryption, decryp-
tion, histogram analysis, information entropy, correlation
coefficient, NPCR, and UACI of the color (“House”) image
are illustrated using the 4-DHM (1.2), and the results are
depicted in Figures 11 and 12.
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