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Abstract: This study investigates the variable coefficient
cubic–quintic nonlinear Schrödinger equation, which models
the propagation of ultrashort femtosecond pulses in optical
fibers and three-body recombination losses in Bose–Einstein
condensates. Using a mapping technique combined with an
extended chirp wave transformation, 20 chirp wave solutions
were derived, including bright and dark solitons, kink waves,
periodic and singular waves. These solutions encompass pre-
viously reported results and introduce novel ones. Three-
dimensional plots illustrate the soliton and kink chirp wave
solutions for both constant and exponentially varying group
velocity dispersion (GVD) and Raman effect parameters.
Analysis reveals that the sign of the Raman effect parameter
influences the soliton type, yielding bright solitons for posi-
tive values and dark solitons for negative values.
Furthermore, both GVD and Raman effect significantly
impact the wave shape, inducing oscillations in the case of
exponentially distributed fiber. The stability of the soliton
wave solution is also analyzed. These diverse wave profiles
have potential applications in nonlinear optics and plasma
physics.

Keywords: variable coefficients cubic–quintic nonlinear
Schrödinger equation, mapping method, stability analysis,
chirp waves

1 Introduction

The variable coefficient nonlinear Schrödinger (VCNLS)
equation is a generalization of the nonlinear Schrödinger
(NLS) equation that allows for the coefficients to vary with
position and time. This makes it a more versatile equation
for modeling a wider range of physical phenomena. It can
be used to describe the propagation of light pulses through
optical fibers and other nonlinear materials with varying
properties [1], the behavior of ultracold atoms trapped in
inhomogeneous potentials [2], the dynamics of plasma
waves in nonuniform plasmas [3], and the propagation of
sound waves through nonlinear materials with variable
properties [4]. This equation, which generalizes the NLS
equation by allowing for variable coefficients, is essential
for studying the complex interactions between waves and
their environments [4–10]. The VCNLS equation can be
written as:

( ) ( )∣ ∣+ + =iψ α x ψ β x ψ ψ 0,
x tt

2 (1)

where ψ is the complex-valued wave function that can
represent the envelope of an electric field, t is the time, x
is the distance, ( )α x is the variable group velocity disper-
sion (GVD) coefficient, and ( )β x is the variable nonlinear
in optics. The amplitude ∣ ∣ψ 2 denotes the intensity or optical
power. The linear terms in the VCNLS equation represent the
dispersion of the wave, while the nonlinear term represents
the interaction between the wave and itself. The variable
coefficients allow for the modeling of inhomogeneous media
and time-dependent effects [1–10].

One of the very important VCNLS equations is the variable
coefficients cubic–quintic nonlinear Schrödinger (VCQNLS)
equation, which can be used to describe the ultrashort optical
pulses obtained by increasing the intensity of the incident light
field in the presence of higher-order nonlinear terms, like self-
steepening and self-frequency shift [11,12]. Additionally, the
existence of quintic nonlinearity is vital for studying three-
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body recombination losses in the circumstances of Bose–
Einstein condensates [12–17]. Therefore, in this work, we
are going to study the VCQNLS, which is given by

( ) ( )∣ ∣ ( )∣ ∣ ( )(∣ ∣ )+ + + +

=

iψ α x ψ β x ψ ψ γ x ψ ψ iδ x ψ ψ

0.

x tt t
2 4 2

(2)

By comparison between Eqs (1) and (2), we can see that
there are two additional terms, the quintic term (∣ ∣ )ψ ψ4

corresponding to three-body interatomic interactions with
coefficient, ( )γ x , representing the non-Kerr nonlinearity in
optics, which allows for a more accurate description of the
nonlinear effects in non-Kerr media. This is particularly
important for ultrashort optical pulses, where the intensity
can be very high [11,12]. While ( )δ x accounts for the Raman
effect, which causes self-frequency shift. Eq. (2), where α β γ, , ,

and δ are constants, was originally discovered by Kundu
while he was studying gauge connections between general-
ized Landau–Lifshitz and higher-order NLS systems, so it is
called in many context Kundu Eckhaus (KE) equation [12–24].
This equation accurately models the propagation of ultra-
short optical pulses in nonlinear optics and analyzes the sta-
bility of Stokes wave in weak nonlinear dispersive matter
waves and many recent studies were done for the constant
KE equation [12–24].

The VCQNLS Eq. (2) was investigated byWang et al. [11]
using a similarity transformation. They converted it into
the KE equation with constant coefficients and employed
known solutions from the literature to derive one and two
soliton solutions under specific conditions on the variable
coefficients. Subsequently, Xie and Yan [12] utilized the
bilinear form to construct one and two soliton solutions,
albeit under different relationships between the variable
coefficients.

However, the mentioned research works focus on
soliton wave-type solutions, and to the best of our knowl-
edge, other wave solutions like kink and periodic types
have not been obtained before. From our review on con-
stant coefficients version of Eq. (2) [12–24], we have found
that chirp wave solution was obtained, and this inspired us
to generalize the chirp wave transformation to be depen-
dent on variable functions and combined it with the map-
ping method [26–28] to be able to find different chirp wave
solutions for Eq. (2). Moreover, it was the first time the
mapping method was applied to nonlinear partial differ-
ential equations (NPDEs) with variable coefficients like the
VCQNLS equation.

This study is devoted to five sections, Section 1 gives the
introduction and literature review, Section 2 describes meth-
odology, in Section 3, the application of the methodology and
novel wave solutions are given, then in Section 4, physical
applications containing dynamic behavior of some chirp

wave solutions and its stability are given, and, finally, conclu-
sion and important remarks are given in Section 5.

2 Methodology

In recent times, numerous novel techniques have been
explored for solving NPDEs [29–31], then mean focusing has
been done on extending and generalizing these methodolo-
gies to address NPDEs with variable coefficients [27–31]. One
of those techniques is the mapping method introduced by
Zayed et al. [26–28], it stands out as one such technique
with extensive applications in NPDEs featuring constant coef-
ficients. However, its generalization to solve NPDEs with vari-
able coefficients is yet to be realized. Based on our literature
review of the constant KE equation [21–25], we have devised a
generalization of the traveling wave transformation pre-
sented therein. This generalization enables us to derive chirp
solitary wave for the VCQNLS, as follows:

(1) If a complex NPDE defined as

( ) =P x t ψ ψ ψ ψ, , , , , , … 0,
x t xx (3)

where x t, are the independent variables and ψ is the
dependent variable. To reduce Eq. (3) to a nonlinear
ordinary differential equation (NODE), use the following
extended traveling wave transformation [21–25]:

( ) ( ) ( ( ) ( ))= − +ψ x t P η e, ,i r x qt f η (4)

where ( ) = −η x t t kx, , ( )P η is the amplitude real function,
( )f η is also a real function representing the nonlinear

phase and =k
v

1 is the inverse velocity. Moreover, ( )r x is
an arbitrary function of x and q is a real constant repre-
senting the frequency shift.

(2) By using transformation (4) in Eq. (3), it trans-
formed to an NODE in ( )P η as

( )′ ″ =P P PΩ , , , … 0, (5)

(3) If

( ) ( )∑=
=

=

P η B Ϝ η ,

j

j M

j
j

0

2

(6)

where ( )Ϝ η is given from the solution of the first-order
NODE equation

( ) ( ) ( ) ( )′ = + + +Ϝ η aϜ η
b

Ϝ η
c

Ϝ η d
2 3

.
2 2 4 6 (7)

The positive real number M can be determined by balan-
cing the linear and nonlinear terms in Eq. (3). Eq. (7) has
known solutions with established relationships between
the real constants a b c, , , and d. Furthermore, the constants
Bj can be calculated by substituting Eqs (6) and (7) in
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Eq. (5), equating the coefficients of different powers of F to
zero, and solving the resulting algebraic system using the
Maple program.

3 Novel solitary waves for the
VCQNLS

To derive solitary and periodic chirp wave solutions, wemust
employ the transformation defined by Eq. (4) to convert the
VCQNLS into an NODE. Subsequently, we separate the NODE
into its real and imaginary components as follows:

( ) [( ( )) ( ) ] ( )

( )

″ + ′ − ′ − ′ − +

+ =

α x P kf r x α f q P β x P

γ x P 0,

2 3

5

(8)

[ ( )( ) ] ( ) ( )′ − − ′ + ′ + ′ =′
α x f q k P δ x P P α x f P2 2 0.2 (9)

By integrating Eq. (9) for η variable, assuming a zero
integration constant, we obtain the following equation:

( )

( )

( )
′ = + −f

k

α x
q

δ x

α x
P

2 2
.2 (10)

Substituting Eq. (10) in Eq. (8) yields the following NODE:

( )
( )

( ) ( )

( )
( )

⎜ ⎟

⎜ ⎟

″ +
⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

− ′
⎤
⎦⎥

+

+ ⎛
⎝

− ⎞
⎠

=

α x P k
k

α x
q r x P β x P

γ x
δ

α x
P

4

4
0.

3

2

5

(11)

Divide all terms of Eq. (11) by ( )α x

( ) ( )
( )

( )

( )

( )
( )

( )

⎜ ⎟

⎜ ⎟

″ +
⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

− ′
⎤
⎦⎥

+

+ ⎛
⎝

− ⎞
⎠

=

P
α x

k
k

α x
q r x P

β x

α x
P

α x
γ x

δ

α x
P

1

4

1

4
0.

3

2

5

(12)

Then, assume that the variable coefficients are nonzero

constants ( )
( ) ( )

= ⎡
⎣⎢

⎛
⎝ + ⎞

⎠ − ′ ⎤
⎦⎥C k q r x ,

α x

k

α x1

1

4

( )

( )
=C ,

β x

α x2 ( )
=C

α x3

1

( ( ) )
( )

( )
−γ x

δ x

α x4

2

. Based on the aforementioned analysis, the

following integrability relations emerge:

( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

∫ ⎜ ⎟=
⎡
⎣⎢
⎛
⎝

+ ⎞
⎠

−
⎤
⎦⎥

= = +

r x
k

α x
q k α x C x

β x C α x γ x C α x
δ x

α x

4
d ,

,
4

.

1

2 3

2

(13)

We can see that all variable parameters depend on only
two variables ( )α x , the GVD coefficient, and ( )δ x , the self-
frequency shift or Raman effect. Now, Eq. (12) becomes

″ + + + =P C P C P C P 0.1 2
3

3
5 (14)

From Eq. (6), we should first determine the value of M

from the balance between the terms ″P and P5, which we have

obtained as =M
1

2
. Therefore, (14) has a solution in the form

= +P B B Ϝ ,0 1 (15)

where B0 and B1 are arbitrary constants. By substituting
Eq. (15) in Eq. (14) and applying Riccati Eq. (7), we obtain a
function on Fi, =i 0, 1,…, 5. Setting all coefficients of this
function to zero yields the following equations:

The coeff. of Ϝ5: + =C B cB 0,3 1

5
1

The coeff. of Ϝ4: =C B B5 0,3 0 1

4

The coeff. of + + =Ϝ B b C B C B B: 10 0,3
1 2 1

3
3 0

2

1

3

The coeff. of + =Ϝ C B B C B B: 3 10 0,2
2 0 1

2
3 0

3

1

2

The coeff. of + + + =Ϝ B a C B C B B C B B: 3 5 0,1 1 1 2 0

2
1 3 0

4
1

The coeff. of + + =Ϝ C B C B C B: 0.0
1 0 2 0

3
3 0

5

Upon solving the preceding system, we arrive at the
following values:

= = ± − = = −A A
b

C
a C c

b C

C
0, , , .0 1

2

1

2
3

2

2
(16)

Using the 20 values of Ϝ from previous literature [26–28],
we obtain the following solutions to the VCQNLS equation.

)(= ± −

⎛

⎝

⎜
⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝ + ⎞

⎠

⎞

⎠

⎟
⎟⎟

> > =

P
b

C

C ε η

b ε η

C b C
C

C

4

tanh

3 3 tanh

,

0, 0,
3

16
,

C

C

1

2

1
2

3

2

3

1 3

2

2

1

1

1

1

2

(17)

( ( ))= ± − ⎛
⎝ + − ⎞

⎠ <

= =

P
b

C

C

b
ε C η C

C
C

C
d

2
1 tanh , 0,

3

16
, 0,

2

2

1

1 1

3

2

2

1

1

2

(18)

⎟⎜

= ± −

⎛

⎝

⎜
⎜
⎜

⎛
⎝

⎞
⎠

⎛
⎝ + ⎛

⎝
⎞
⎠
⎞
⎠

⎞

⎠

⎟
⎟
⎟

> > =

P
b

C

C ε η

b ε η

C b C
C

C

4

coth

3 3 coth

,

0, 0,
3

16
,

C

C

3

2

1
2

3

2

3

1 3

2

2

1

1

1

1

2

(19)

⎟⎜

= ± −

⎛

⎝

⎜
⎜
⎜

− ⎛
⎝

⎞
⎠

⎛
⎝ − ⎛

⎝
⎞
⎠
⎞
⎠

⎞

⎠

⎟
⎟
⎟

< > =

−

−
P

b

C

C ε η

b ε η

C b C
C

C

4

tan

3 3 tan

,

0, 0,
3

16
,

C

C

4

2

1
2

3

2

3

1 3

2

2

1

1

1

1

2

(20)
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⎟⎜

= ± −

⎛

⎝

⎜
⎜
⎜

− ⎛
⎝

⎞
⎠

⎛
⎝ − ⎛

⎝
⎞
⎠
⎞
⎠

⎞

⎠

⎟
⎟
⎟

< > =

−

−
P

b

C

C ε η

b ε η

C b C
C

C

4

cot

3 3 cot

,

0, 0,
3

16
,

C

C

5

2

1
2

3

2

3

1 3

2

2

1

1

1

1

2

(21)

( ( ))= ± − ⎛
⎝ + − ⎞

⎠

< = =

P
b

C

C

b
ε C η

C C
C

C
d

2
1 coth ,

0,
3

16
, 0,

6

2

1

1

1 3

2

2

1

1

2

(22)

( )

( ( ))
⎜ ⎟= ± −
⎛
⎝

−
+ + −

⎞
⎠

< =
−

=

P
b

C

C b C η

b C c ε C η

C C
C c

b
d

6 sech

3 4 1 tanh
,

0, , 0,

7

2

1
2

1

2
1 1

2

1 3

2

2

2

1

2

(23)

( )

( ( ))
⎜ ⎟= ± −
⎛
⎝

− −
+ + −

⎞
⎠

< =
−

=

P
b

C

C b C η

b C c ε C η

C C
C c

b
d

6 csch

3 4 1 coth
,

0, , 0,

8

2

1
2

1

2
1 1

2

1 3

2

2

2

1

2

(24)

( )

( )
⎜ ⎟= ± −
⎛
⎝

−
+ − −

⎞
⎠

< =
−

=

P
b

C

C C η

b C c C η

C C
C c

b
d

6 sech

3 4 3 tanh
,

0, , 0,

9

2

1
2

1

1 1

1 3

2

2

2

1

2

(25)

( )

( )
⎜ ⎟= ± −
⎛
⎝

− −
+ − −

⎞
⎠

< =
−

=

P
b

C

C C η

b C c C η

C C
C c

b
d

6 csch

3 4 3 coth
,

0, , 0,

10

2

1
2

1

1 1

1 3

2

2

2

1

2

(26)

( )

( )
⎜ ⎟= ± −
⎛
⎝ +

⎞
⎠

> =
−

=

P
b

C

C C η

b C c C η

C C
C c

b
d

6 sec

3 4 3 tan
,

0, , 0,

11

2

1
2

1

1 1

1 3

2

2

2

1

2

(27)

( )

( )
⎜ ⎟= ± −
⎛
⎝ +

⎞
⎠

> =
−

=

P
b

C

C C η

b C c C η

C C
C c

b
d

6 csc

3 4 3 cot
,

0, , 0,

12

2

1
2

1

1 1

1 3

2

2

2

1

2

(28)

( )

( ) ( )
⎜ ⎟= ± −
⎛
⎝

− −
− + −

⎞
⎠

< =
−

=

P
b

C

C ε C η

M M b ε C η

C C
C c

b
d

2
3 sech

2 3 sech

0, , 0,

13

2

1
2

1

2
1

1 3

2

2

2

1

2

(29)

( )

( ) ( )
⎜ ⎟= ± −
⎛
⎝

− −
+ − −

⎞
⎠

<

=
−

=

P
b

C

C ε C η

M M b ε C η
C

C
C c

b
d

2
3 csch

2 3 csch

0,

, 0,

14

2

1
2

1

2
1

1

3

2

2

2

1

2

(30)

( )

( ) ( )
⎜ ⎟= ± −
⎛
⎝ − −

⎞
⎠

> =
−

=

P
b

C

C ε C η

M M b ε C η

C C
C c

b
d

2
3 sec

2 3 sec

0, , 0,

15

2

1
2

1

2
1

1 3

2

2

2

1

2

(31)

( )

( ) ( )
⎜ ⎟= ± −
⎛
⎝

−
− +

⎞
⎠

> =
−

=

P
b

C

C ε C η

M M b ε C η

C C
C c

b
d

2
3 csc

2 3 csc

0, , 0,

16

2

1
2

1

2
1

1 3

2

2

2

1

2

(32)

( )
⎜ ⎟= ± −
⎛
⎝

−
− −

⎞
⎠

> =
−

=

P
b

C

C

ε M C η b

C C
C c

b
d

2
3

cosh 2 3

0, , 0,

17

2

1

1

1 3

2

2

2

1

2

(33)

( )
⎜ ⎟= ± −
⎛
⎝

−
−

⎞
⎠

> =
−

=

P
b

C

C

ε M C η b

C C
C c

b
d

2
3

cos 2 3

0, , 0,

18

2

1

1

1 3

2

2

2

1

2

(34)

( )
⎜ ⎟= ± −
⎛
⎝

−
−

⎞
⎠

> =
−

=

P
b

C

C

ε M C η b

C C
C c

b
d

2
3

sin 2 3

0, , 0,

19

2

1

1

1 3

2

2

2

1

2

(35)

( )
⎜ ⎟= ± −
⎛
⎝

−
− − −

⎞
⎠

> =
−

=

P
b

C

C

ε M C η b

C C
C c

b
d

2
3

sinh 2 3

0, , 0,

20

2

1

1

1 3

2

2

2

1

2

(36)

where = + = ±M b C c ε6 48 , 12
1 . Through back-substitution

of the relation provided by Eq. (13) in Eq. (4), numerous
novel chirped solitary waves,ψ

i
, =i 1,…, 20, are discovered

for the VCQNLE.

4 Physical applications

Chirp waves, whose frequency changes over time, and soli-
tons, self-reinforcing solitary waves, have a complex inter-
play. Chirp waves can compress solitons, generate new
ones, and influence their dynamics [32]. This interaction
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is crucial in various fields, including optical communica-
tions, nonlinear optics, and plasma physics. By under-
standing and controlling chirp wave-soliton interactions,
researchers can advance technologies such as high-speed
data transmission, laser systems, and plasma-based energy
generation [33–35]. We calculate the chirp for our problem
using the following equation:

( ( ) ( ))= −
∂
∂

− +δω
t

r x qt f η . (37)

From Eq. (10),

( )
( )

( ) ( )
= −δω x t

δ x

α x
P

k

α x
,

2 2
.2 (38)

Using P1 and P2 as examples, we can calculate the chirp
using the following formula:

( )
( )

( ) ( )
= −

⎛

⎝

⎜
⎜⎜

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟⎟

−δω x t
C δ x

C α x

ε η

ε η

k

α x
,

8

3

tanh

3 tanh
2

.

C

C

1

1

2

2

3

2

3

1

1

(39)

( )
( )

( ) ( )
⎟⎜ ⎜ ⎟= −

⎛
⎝

+
⎛
⎝

⎞
⎠
⎞
⎠

−δω x t
C δ x

C α x
ε

C
η

k

α x
, 1 tanh

3 2
.2

1

2

2 1 (40)

4.1 Dynamic behavior of solutions

Nonuniform management system refers to a system where
the control parameters are not uniform, leading to a more
complex and realistic scenario. Therefore, this variability
in the VCQNLE coefficients allows it to effectively model
the dynamics of nonuniform management systems [11].
By mapping the parameters of the management system to
the VCQNLE, we can use the equation to present more com-
plicated phenomena in optics and plasma physics [3–5].
According to that, we will now concentrate on how specific
parameters influence wave propagation, drawing primarily
from Eqs (39) and (13). Of these, only two parameters signifi-
cantly impact wave propagation: the group velocity ( )α x and
the Raman effect ( )δ x . Given that the Raman parameter
marks the quintic term in the VCQNLE, we will focus our
attention on its effects. Therefore, we have set the following
constant values for all figures: = = = =C C ε k2, 3, 1, 0.51 2 ,
where = −C 21 in figures (b), we will vary the values of

( )α x and ( )δ x as specified.
Case I: To isolate the effects of ( )α x and ( )δ x , we will

set them to have equal magnitudes. In Figure 1(a) and (b),
( ) ( )= =δ x α x 0.25, but in Figure 2(a) and (b), it takes
( ) = −δ x 0.25, ( ) =α x 0.25.

Figure 1: The 3D plot of the bright soliton δω1 and the kink wave δω2 given by Eqs (39) and (40), which describe ultrashort optical pulses in nonlinear
optics. (a) The bright soliton wave δω1 and (b) the kink wave δω .2
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In Figure 1(a) and (b), it is clear that in the case of
nonlinearity management system where the GVD is taken
as a constant value ( ) =α x 0.25, the chirp wave becomes as
a bright soliton ( ) =δ x 0.25 in Figure 1(a) and becomes a
dark soliton when the sign of the Raman effect changes to
negative ( ) = −δ x 0.25 in Figure 2(a), but this does not affect
the kink wave in Figures 1(b) and 2(b). In Figures 3(a) and
4(a), we can see that when the GVD is fixed as ( ) =α x e x3

and ( ) = ±δ x e x2 , it makes the amplitude of the chirp

wave ( )

( )
− = −e

C δ x

C α x

x
8

3

8

9

1

2

, which is responsible for the oscilla-

tions. Moreover, in both Figures 3(a) and 4(a), the chirp wave
takes a parabolic shape affected by the choices of the expo-
nential functions in both ( )α x and ( )δ x . On the other hand,
the kink-like chirp wave solution δω2 in Figures 3(b) and 4(b)

is affected by the variable amplitude ( )

( )
− = −e

C δ x

C α x

x
2

3

1

2

and

have a parabolic shape.

4.2 Solution stability

The motion of conservative systems in classical mechanics
is described by the Hamiltonian system. The momentum is
given as [10]

∣ ( )∣∫=
→∞

m ψ x t xlim , d ,
s

s

l

0

2 (41)

where =l 1, 2, 3,…, 20. The solution’s ψ ψ,…,
1 20

stability
conditions are satisfied if

∂
∂

>
m

k
0. (42)

If we take ( )ψ x t,
1

as instant to apply stability

∣ ( )∣

( )

( )

⎜ ⎟

⎟⎜

= ⎛
⎝−

⎞
⎠

⎛
⎝ − ⎞

⎠
⎛
⎝ + ⎛

⎝ − ⎞
⎠
⎞
⎠

> > =

ψ x t
b

C

C ε t kx

b ε t kx

C b C
C

C

, 4

tanh

3 3 tanh

,

0, 0,
3

16
.

C

C

1

2

2

1
2

3

2

3

1 3

2

2

1

1

1

Therefore, the important conditions for the solitary
wave solution ψ

1
to be stable are

> > = <C b C
C

C
C0, 0,

3

16
, 0.1 3

2

2

1

2
(43)

5 Conclusion

Using mapping method combined with variable chirp
wave transformation (4), we have successfully constructed
different types of chirp wave solutions including bright
soliton, dark soliton solutions, kink shaped profiles, and
singular periodic solutions of the VCQNLE. We have

Figure 2: The 3D plot of the dark chirp soliton solution δω1 and the kink chirp wave δω2 given by Eqs (39) and (40), which can describe ultrashort
optical pulses in nonlinear optics. (a) The dark chirp wave and (b) the kink chirp wave.
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Figure 3: The evolution 3D plot of the bright soliton chirp wave δω1 and kink chirp wave δω2 in the exponential distributed fiber when the GVD is fixed
as ( ) =α x e x3 and the variable Raman effect ( ) =δ x e x2 . (a) The bright soliton δω1 in the exponential distributed fiber and (b) the kink chirp wave δω2

in the exponential distributed fiber.

Figure 4: The 3D plot of the dark soliton chirp wave δω1 and the kink chirp wave δω2 in the exponential distributed fiber when the GVD is fixed as
( ) =α x e x3 and the variable Raman effect ( ) =δ x e x2 . (a) The dark soliton δω1 in the exponential distributed fiber and (b) the kink chirp wave δω2 in the

exponential distributed fiber.
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provided graphical and physical explanations by creating
3D diagrams, illustrating how the variables GVD ( )α x and
Raman effect ( )δ x controlled the dynamic behavior of the
wave solutions propagation. Following are the important
concluding remarks:
1) Compared with other studies before the VCQNLE

[12–18], the obtained chirp wave solutions cover other
solutions in the literature and contain new ones.

2) The utilization of these obtained solutions shows simpli-
city, effectiveness, and power of the mapping method.

3) The visualization of the soliton and kink chirp waves
shows that their shape can be changed by controlling
the GVD ( )α x and Raman effect ( )δ x , whereby changing
the two variable functions from constant case I to the
variable exponential case II, the shape is affected in
the second case and oscillations appear because of the
inhomogeneity of the coefficients.

4) When we have fixed the value of ( )α x and change the
sign of ( )δ x in Figures 1(a) and 2(a) as positive and
negative, respectively, the chirp wave changes from
bright to dark soliton. Similarly in Figures 3(a) and
4(a), the sign of the Raman effect ( )δ x changes the
soliton shape from bright (positive sign) to dark soliton
(negative sign) but does not affect the kink chirp.

5) The stability of the obtained solutions was studied for
( )ψ x t,

1
and the necessary conditions were found, and in

the same way, we can construct for other solutions.
6) The obtained solutions can have many applications in

optic fiber communications and plasma physics.

Since, it was the first time to apply mapping method on
variable coefficient equations like VCQNLE, we hope to use
it in the future studies with other variable coefficients evo-
lution equations.
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