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Abstract: In quantum information, it is important to recog-
nize the effects of additional interactions, such as spin—orhit
interactions, on the quantum information resources of two-
qubit Heisenberg states. Therefore, we study the nonlocal
correlation dynamics affected by the intrinsic decoherence
of the spin—spin-Heisenberg-XYZ interaction, which is sup-
ported by spin-orbit interactions (Dzyaloshinsky—Moriya) of
the x and y directions together. The two spins are coupled to
an external inhomogeneous magnetic field (EIMF) in the
x-direction. We investigate and compare the nonclassical cor-
relation dynamics of local quantum Fisher information, local
quantum uncertainty, and log-negativity. The results show
that spin—spin and spin—orbit interactions have a high cap-
ability to enhance non-local correlations in the presence of an
external magnetic field. The enhanced non-local correlation
can be further improved by strengthening the spin-spin and
spin—orbit interactions, as well as by increasing the EIMF’s
inhomogeneity and uniformity, which increases the ampli-
tudes and fluctuations of the generated non-local correlation
oscillations. The degradation of non-local correlations due to
intrinsic decoherence can be controlled by spin-spin interac-
tions. These degradation correlations can be enhanced by
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increasing the intensities of spin—orbit interactions, as well
as by increasing the EIMF’s inhomogeneity and uniformity.
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1 Introduction

Among the various quantum systems proposed for imple-
menting quantum information and computation [1,2], super-
conducting circuits, trapped ions, and semiconductor quantum
dots are crucial techniques for realizing quantum bits (qubits).
Based on electron spins trapped in quantum dots, a quantum
computer protocol has been initially proposed [3-5]. The elec-
tron, having a spin of (%), is the simplest natural qubit. Recently,
quantum computation with electron spins (as a single-spin—
qubit geometric gate) has been realized in quantum dots [6,7].
Due to electron tunneling from one dot to another, spin—-spin
coupling and spin-orbit coupling interactions between two
qubits can be realized by considering a two-qubit system repre-
sented by two electrons in coupled quantum dots. Therefore,
Heisenberg XYZ models describing spin—spin interactions are
among the important proposed qubit systems. Two-qubit Hei-
senberg XYZ models have been realized in various systems,
including bosonic atoms inside an optical lattice [8], trapped
ions [9], superconductor systems [10], and linear molecules [11].
These models have been updated to include the first order of
spin—orbit coupling known as Dzyaloshinsky—Moriya interac-
tions [12-14], realized through an antisymmetric superex-
change interaction in La,CuO, [15], and the second order of
spin-orbit coupling known as the Kaplan-Shekhtman-Entin—
Wohlman-Aharony interaction [16]. Additionally, Heisenberg
XYZ models have been updated to include dipole-dipole inter-
actions [17] and inhomogeneous external magnetic fields
[18,19]. Recently, the spin-orbit interaction was experi-
mentally realized in two magnetic cobalt layers [20] (with
Co/Ag/Co system). Moreover, the spin—orbit interaction was
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experimentally implemented in the prototypical ferromagnet
by polarized neutrons [21] and in ferroelectrics and antiferro-
electrics [22] systems as well as in the epitaxial Ni/Cu(001)
system [23]. The Heisenberg XYZ qubit models have shown
several potential applications in teleportation, [24], quantum
dense coding [25], thermodynamics [26], and quantum correla-
tion generations [27].

Exploring two-qubit information dynamics in various
proposed qubit systems, based on different types of non-
local correlations (NLCs) (such as entanglement and
quantum discord), is one of the most critical research fields
in implementing quantum information and computation
[28]. Quantum entanglement (QE), quantified by measures
such as entropy [29], concurrence [30], negativity, and log-
negativity [31], is a significant type of two-qubit NLCs
[32,33]. It has a wide range of applications in quantum
information fields, including quantum computation, telepor-
tation [34,35], quantum optical memory [36], and quantum
key distribution [37]. After implementing quantum discord
as another type of qubits’ NLCs beyond entanglement [38],
several quantifiers have been introduced to address other
NLCs [39] using Wigner—Yanase (WY) skew information [40]
and quantum Fisher information (QFI) [41]. WY-skew-infor-
mation minimization (local quantum uncertainty, LQU)
[42] and WY-skew-information maximization (uncertainty-
induced nonlocality) [43] have been introduced to quantify
other NLCs beyond entanglement. Additionally, the minimi-
zation of QFI (local quantum Fisher information, LQFI) has
been used to implement another two-qubit NLC [44,45]. LQU
has a direct connection to LQFI [46,47], establishing more
two-qubit NLCs in several proposed qubit systems [48], such
as hybrid-spin systems (under random noise [49] and
intrinsic decoherence [50]), two-coupled double quantum
dots [51], the mixed-spin Heisenberg model [52], and the
Heisenberg system [53].

The information dynamics of two-spin Heisenberg XYZ
states have been investigated using the Milburn intrinsic
decoherence model [54]. This includes studies on entangle-
ment teleportation based on the Heisenberg XYZ chain
[24,55], the LQFI of Heisenberg XXX states beyond IEMF
effects [56], and quantum correlations of concurrence
and LQU [57]. Previous works have focused on exploring
the time evolution of the two-spin Heisenberg XYZ states’
NLCs under limited conditions on spin—spin and spin—orbit
interactions, as well as applied magnetic fields, to ensure
residing quantum information resources of two-qubit
X-states (having an X density matrix) [58-62].

Motivated by the aforementioned experimental evi-
dence for realizations for the spin—orbit interaction having
a high ability to support the generating NLCs, and the
importance of general two-qubit Heisenberg states, this
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study employs the Milburn intrinsic decoherence and
Heisenberg XYZ models to explore the NLC dynamics of
LQFI, LQU, and log-negativity for general two-qubit
Heisenberg XYZ states with non-X density matrices, influ-
enced by specific conditions on spin-spin and spin-orbit
interactions, as well as applied magnetic fields.

The manuscript structure includes the Milburn
intrinsic decoherence equation, the Heisenberg XYZ model,
and its solution in Section 2. In Section 3, we introduce the
definitions of the NLCs’ quantifiers: LQFI, LQU, and LN.
Section 4 presents the outcomes of the dependence of these
quantifiers on the physical parameters. Our conclusions
are provided in Section 5.

2 Heisenberg spin model

Here, the Milburn intrinsic decoherence and Heisenberg
XYZ models are used to examine the capabilities embedded
in spin-spin interaction supported by the spin-orbit
(Dzyaloshinsky—Moriya) interactions in the x and y direc-
tions (described by the first-order of spin-orbit couplings
D, and D,), to generate essential NLCs between the two
spin qubits under the effects of the uniformity and the
inhomogeneity of an applied external inhomogeneous
magnetic field (EIMF). For two spins (each described by
the upper [1x) and lower [1x) states, where (k = A, B)), the
Hamiltonian of the Heisenberg XYZ model with a spi-
n-orbit interaction and an applied EIMF (Figure 1) is
written as

Ju656§ + 3 By - G+ Dyp - (G x 0p), )
a=x,y,z k=A,B
where o) = (65, 6¢, 6%) represents the vector of Pauli
matrices of the k-spin, and Bi = (B, BY, B) represents
the vector of the external magnetic field applying on
k-spin. In our work, we consider that the EIMF is applied

Figure 1: Diagram of a Heisenberg XYZ chain model, where two arbitrary
spin-qubits (A and B) are selected with spin-orbit interaction vector
Dyp = (Dx, Dy, D,), and an EIMFs By in the x-direction.
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only in the x-direction: EL = (B, 0,0), B = By, + by, and
B} = By, — by, Here, B, and by, represent the degree of the
uniformity and the inhomogeneity of the applied EIMF,
respectively. For the spin—orbit interaction vector l_);B =
(Dy, Dy, D,), we have Dup. (G x G5) =Dy + D,C, + D,C,
with G, = 63768 - 69*268"(a = x,y,z). After consid-
ering only the spin-orbit interactions of the x and y direc-
tions 1_);3 = (Dy, Dy, 0) with an applied EIMF in the x direc-
tion, to support the spin-spin interaction in generating
two-spin—qubit correlations, the considered Hamiltonian
is written as
H= ) J6i0h+ D(010F - 6563)
i=X,y,2

o 2
+ Dy(6365 - 636%) @
+ (Bm + bm)ajl( + (Bm - bm)al)?(

In the two-spin—qubits basis: {|,) = |1alp), [¥,) = |1408),

[Y5) = |0a1p), [1y) = |040p)}, the two-spin system’s
Hamiltonian in (1) can read as a non-X matrix of
1, B- B k-
. ,B_* -, I+, :B+
a-= o 3)

B o+l -, B
]X_]y -:k B— L

with B, = By, £ by + Dy, + iDy. Generally, with a motion
equation, this non-X Hamiltonian matrix generates two-
qubit non-X states due to spin—spin interaction combined
with x and y spin—orbit interactions. However, if we con-
sider only the spin-orbit interaction in the z direction,
D= (0,0, D;), as discussed in previous studies [58-62],
the two-spin system’s Hamiltonian (1) generates X-states
characterized by a density X-matrix. Because deriving
the analytical expressions for the eigenvalues and eigen-
vectors of the non-X Hamiltonian matrix (Eq. (3)) is very
difficult, the eigenvalues are computed numerically.

The time evolution of the NLCs in the generated two
spin—qubit states, represented by the density matrix M(t),
will be explored using the Milburn intrinsic decoherence
model [54], which is given by

d . [ S S
EM(t)_ i[H, M] Z[H’[H’M]]’ 4)

where y is the intrinsic spin-spin decoherence (ISSD) coupling.

After calculating the eigenvalues Vi (k =1, 2, 3, 4) and
the eigenstates | V) of the Hamiltonian in Eq. (3), the two-
spin density matrix M(t) of Eq. (4) can be obtained numeri-
cally using the following solution, given by

4
M@ = Y Unn®SmunOVd MOV Vid(Vil. )

m,n=1
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This solution depends on the unitary interaction Up,,(t) and
the ISSD coupling Spn(t), given by the following terms:

Unn(t) = g7V WL,

Smn(t) = e“%(Vm_Vn)zt.

(6)

Eq. (5) is used to numerically calculate and explore the
dynamics of the NLCs within the two-spin—qubit states’
Heisenberg XYZ model under the effects of spin-orbit
interactions along the x and y directions and an applied
external magnetic field in the x direction.

3 NLC quantifiers

Here, the two-spin NLCs will be measured by the following

quantifiers: LQFI, LQU, and LN.

« LQFI
Here, we use LQFI to quantify another type of two-spin
Heisenberg-XYZ correlation beyond entanglement. After
calculating the two-spin eigenvalues 7ty (k =1, 2, 3, 4) and
the eigenstates |IIj) of the density matrix of Eq. (5), which
has the representation matrix M(t) = X 7| ILn )Ty
with 7, 2 0 and 2,71, = 1, the LQFI is calculated using
the closed expression given by [41,44,45]

F(t) =1 - mf™,

which depends on the highest eigenvalue 73'** of the sym-
metric matrix R = [ry]. Based on the Pauli spin—; matrices

ol (i =1, 2, 3) and the elements &., = (Il,;|I ® 0'[Il,), the
symmetric matrix elements r; are given by

2 m’tn i i
y Tl gt ).

hj = +
nm+n,[¢0nm Tt

For a maximally correlated two-spin—qubit state, the
LQFI function converges to F(t) =1. Otherwise, the
LQFI function oscillates and is bounded by the inequality
0 < F(t) <1, indicating that the states have partial
LQFI NLC.
« LQU

Also, we use LQU of WY skew information [40] to realize
another type of two-spin—qubits’ NLC [40,42,43]. For the
two-spin density matrix M(t) of Eq. (5), the LQU can be
calculated by the following closed expression [42]:

U(t) =1- Amax(AAB); 7

which depends on the largest eigenvalue Ap.x of the
3 x 3-matrix A = [a;], which have the following
elements:

a;j = Tr{yM(0) (a; ® I){M(¢) (g; ® D)}
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The LQU function oscillates and is bounded by the
inequality 0 < U(t) < 1. It converges to U(t) = 1, other-
wise indicating that the states have partial LQU NLC.
Logarithmic negativity (LN)

We employ LN [31] to measure the generated two-spin—
qubit entanglement. The LN expression is based on the
negativity’s definition y,, which is defined as the absolute
sum of the negative eigenvalues of the partial transposi-
tion matrix (M(t))T of the two-spin—qubit density matrix
M(¢) of Eq. (5). The LN can be expressed as

N(t) = log,[1 + 21,]. 8)

The LN function vanishes, N(t) = 0, for a disentangled
two-spin state. It converges to its maximum value,
N(t) =1, for a maximally entangled two-spin state.
Otherwise, LN oscillates and is bounded by the
inequality 0 < N(t) <1, indicating that the two-spin
states have partial entanglement.

In the following, we work in a system of units where
h =1, and employ the nondimensionalized parameter
method as described in previous studies [24,63,64]. We
also consider the case of spin—spin interactions with anti-
ferromagnetic couplings satisfying J, > 0. Meanwhile, the
other physical parameters, including the spin-orbit cou-
plings and the degree of uniformity and inhomogeneity
of the magnetic field, satisfy Dy, Dy, B, by 2 0. Small
values of these parameters indicate weak spin—orbit inter-
action and a weak applied magnetic field.

4 Two-spin qubit dynamics

To explore the generation of non-local correlations
between two spin qubits, we consider that the two spins
are initially in their uncorrelated upper states |[14) ® |1p).
In this state, the density matrix has no non-local correla-
tions according to the considered quantifiers. Our focus is
on the effects of J, spin—spin interactions (Dy and Dy) and
inhomogeneous x-direction magnetic field parameters (B,
and by,) in the presence of ISSD coupling.

Our first analysis, starting from Figure 2, illustrates the
dynamics of non-local correlations (LQFI, LQU, and LN)
between two spin qubits. These correlations are generated
by the couplings (/,,/,,J,) = (0.8, 0.8, 0.8), supported by
varying intensities of x and y spin—orbit interactions.
This is done in the presence of an inhomogeneous x-direc-
tion magnetic field with small uniformity and inhomo-
geneity (Bp, by,) = (0.3, 0.5), and in the absence of intrinsic
spin-spin decoherence (y = 0). Figure 2(a) with (Dy, Dy) =

DE GRUYTER

NLC

NLC
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Figure 2: Time evolution of the LQFL, LQU, and LN are shown with the
two-spin couplings (J,, J,,J,) = (0.8, 0.8, 0.8) and the applied magnetic
field parameters (Bp, byy) = (0.3, 0.5) for different x, y spin-orbit inter-
actions: (Dy, Dy) = (0.0, 0.0) in (a), (Dx, Dy) = (0.5, 0.0) in (b), and (Dy, Dy)
= (0.5, 0.5) in (c).

(0.0, 0.0) shows that the LQFI, LQU, and log-negativity grow
and reach their maximum values. They are subject to slow
quasi-regular oscillations with the same frequencies and
different amplitudes. LQFI and LQU have the same beha-
vior, ie., the two spin qubit correlation is called
“LQFI-LQU correlation.” The amplitude of the LN is always
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larger than that of the LQFI and LQU. Under these circum-
stances of a weak coupling regime (J, = 0.8) and the applied
inhomogeneous x-direction magnetic field (with weak unifor-
mity and inhomogeneity), the initial pure uncorrelated two-
spin state evolves into various time-dependent partially cor-
related states. At specific times, it transforms into maximally
correlated states. The two-spin states exhibit maximal
LQFI-LQU correlation (F(t) = U(t) =1) and log-negativity
(N(t) = 1) simultaneously. At particular times, we observe
that partially entangled two-spin states have neither LQFI
nor LQU correlation.

The Dy-spin—orbit interaction (Dy, Dy) = (0.5, 0) drama-
tically improves the appearance of the intervals of the
maximal LQFI-LQU correlation and log-negativity entan-
glement, as well as the intervals in which two-spin
entangled states have no LQFI or LQU correlation. The
effects of weak spin-orbit interactions in the x direction
only are shown in Figure 2(b). As illustrated, the regularity
and fluctuations of the generated LQFI-LQU correlation
and log-negativity entanglement are significantly greater
than previously observed in the absence of x and y spi-
n-orbit interactions. The weak D, spin-orbit interaction
dramatically enhances the intervals of maximal LQFI-LQU
correlation and log-negativity entanglement, as well as the
intervals where two-spin entangled states have neither
LQFI nor LQU correlation. In Figure 2(c), we combined the
Dy and Dy spin-orbit interactions (Dy, Dy) = (0.5, 0.5). As
shown, the fluctuations of the two-spin NLCs between their
partial and maximal values are significantly fewer than in
Figure 2(a) and (b). Additionally, the NLC frequencies
have been reduced, and their lower bounds have shifted
upward. This indicates that the combined D, and D,
spin—orbit interactions enhance the generated partial
two-spin—qubit LQFI-LQU correlation and log-negativity
entanglement.

Figure 3(a) and (b) illustrates that higher spin-spin
interaction couplings ((J,, ]y, J,) =@ 05, 15) in (a) and
Ue:Jy»J) = (5,1, 15) in (b)) significantly enhance the two-
spin LQFI-LQU correlation and log-negativity entangle-
ment. By comparing the generated spin—spin NLCs shown
in Figur 2(c) and 3(a), we find that relatively strong cou-
plings of ] -spin—spin interactions ((J, ]y, ) =(1,0.5,15)),
supported by weak Dy ,-spin—orbit interactions ((Dy, Dy) =
(0.5, 0.5)), increase the amplitudes and frequencies of the
LQFI-LQU correlation and log-negativity entanglement
oscillations. Figure 3(a) and (b) shows that higher ] -cou-
plings lead to that the spin—spin NLCs’ oscillations have
more fluctuations. The time positions of the maximal
LQFI-LQU correlation and log-negativity entanglement
are enhanced. Figure 3(c) is plotted to demonstrate the
capability of spin-spin interactions (J, = 0.8), supported
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Figure 3: Time evolution of the LQFI, LQU, and LN of Figure 2(c) are
plotted for different two-spin couplings: (., J,, J,) = (1, 0.5, 1.5) in (a) and
(]X,]y,jz) = (5,1, 1.5) in (b). In (c), they are plotted for x, y spin-orbit
couplings Dy = Dy, = 2'in (c).

by x,y-spin-orbit interactions (Dy = D, = 2), to enhance
the generated spin—spin NLCs when an external magnetic
field with weak determinants ((Bn,bn) = (0.3, 0.5))
is applied. By comparing the qualitative dynamics of the
generated LQFI-LQU correlation and log-negativity entan-
glement shown in Figure 2(c) (Dx = D, = 0.5) with those
in Figure 3(c) (Dx=D,=2), we can deduce that
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Dy y-spin—orbit interactions play a significant role in
enhancing the generated LQFI-LQU correlation and log-
negativity entanglement. Their amplitudes are increased,
and their oscillations exhibit more fluctuations between
extreme values. Additionally, strong x, y-spin—orbit interac-
tions potentially strengthen and accelerate the generation of
LQFI-LQU correlation and log-negativity entanglement due
to J,-spin—spin interactions.

Figure 4 illustrates the LQFI-LQU correlation and log-
negativity entanglement dynamics of Figure 3(a) (where
(]X,]y,jz) =(1, 0.5, 1.5), by, = 0.5, and Dy = Dy = 0.5) for dif-
ferent uniformities of the applied EIMF. Figure 4(a) illus-
trates that with a large uniformity (B; = 2), increasing the
EIMF uniformity delays the growth of LQFI, LQU, and log-
negativity. It also increases the fluctuations of the two-spin
state between different partially and maximally correlated
states. The generations of the LQFI-LQU correlation and
log-negativity entanglement are shown in Figure 4(b) (with
By, = 10), confirming that increasing the EIMF uniformity
enhances the ability of strong J,-spin—spin interactions,
supported by weak x, y-spin—orbit interactions, to create
partially and maximally correlated states with greater

NLC

t/n

3 0.5 ) I "
=

LQFI

Figure 4: Time evolutions of LQFL, LQU, and LN of Figure 3(a) (for
(]X,]y,]z) =(1,0.5,1.5), by = 0.5, and D, = D, = 0.5) are plotted for
different EIMF uniformities: B,, = 2 in (a) and B, = 10 in (b).
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stability. However, the generated spin-spin NLCs become
more sensitive to the EIMF uniformity.

In the upcoming analysis of Figure 5, we maintain the
same parameter values as in Figure 3a (with (J,, ]y, )=
(1,0.5,1.5), By, = 0.3, and Dy = Dy = 0.5) and examine different
magnetic field inhomogeneities: b,, = 2 in (a) and b, = 10 in
(b). In the case of Figure 5(a), we observe that greater EIMF
uniformities improve the efficiency of generating LQFI-LQU
correlations and log-negativity entanglement. The unifor-
mity of the EIMF increases the fluctuations of the two-spin
state between different partially and maximally correlated
states. The timing of the maxima (F(t) = U(t) = N(t) = 1)
and minima (zero-value) (F(t) = U(t) = N(t) = 0) of the
generated LQFI-LQU correlations and log-negativity entan-
glement is enhanced. Figure 5(b) demonstrates that an
increase in EIMF inhomogeneity significantly enhances the
generated two-spin—qubits’ NLCs, leading to greater ampli-
tudes and fluctuations in the NLC oscillations.

The next illustrations in Figures 6-8 depict the time
evolutions of NLCs of LQFI, LQU, and log-negativity in the
presence of non-zero ISSD coupling. By comparing the
results of Figure 2(a) (y = 0.0) with those of Figure 6(a)

NLC

t/m

NLC

.

Figure 5: Time evolutions of LQFI, LQU, and LN of Figure 3(a) (for
UnyJz) =(1,0.5,15), B,, = 0.3, and Dy = Dy, = 0.5) are plotted for
different EIMF inhomogeneities: b, = 2 in (a) and by, = 10 in (b).
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(y = 0.05), we observe that LQFIL, LQU, and log-negativity
exhibit different decaying oscillatory dynamical evolu-
tions. The generations of Heisenberg-XYZ states’ NLCs,
due to J, = 0.8 spin—spin couplings and the applied mag-
netic field (B, b,) = (0.3, 0.5) without spin-orbit interac-
tion, are weakened and exhibit different amplitudes,
which decrease with increasing ISSD coupling. After a cer-
tain time interval, with non-zero ISSD coupling, LQFI and
LQU show different NLCs with varying amplitudes but

NLC

NLC

NLC
© o ©o
[
P— i

Figure 6: Time evolutions of LQFI, LQU, and LN of Figure 2(a) are shown
in the presence of the ISSD effect (y = 0.05) with EIMF uniformity and
inhomogeneity (B, b) = (0.3, 0.5), and two-spin couplings J, = 0.8 for
different couplings: Dx = 0 (k = X,y) in (@), Dx = 0.5 in (b), and Dy = 2
in (c).
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similar behaviors. Moreover, the robustness of LQFI and
log-negativity against the ISSD effect is greater for LQU.

As shown in Figure 6(b) and (c), increasing the inten-
sities of x, y-spin—orbit interactions reduces the robustness
of NLCs against the ISSD effect. The amplitudes of NLCs
significantly decrease as the x, y-spin-orbit interactions
increase. Moreover, LQFI and LQU exhibit sudden changes
at different times. The phenomenon of sudden changes has
been studied both theoretically [65] and experimentally
[66]. For very strong x, y-spin—orbit interactions (Dy = 2)
Figure 6(c), we observe that the log-negativity of the two-
spin qubit drops instantly to zero at a specific time and
remains zero for an extended period (i.e., the sudden-death
LN-entanglement phenomenon occurs). After this, the dis-
entangled two-spin states exhibit only different stable
NLCs of LQFI and LQU. We can conclude that the decay
of NLCs due to ISSD can be intensified by increasing the
intensities of x, y-spin-orbit interactions.

Figure 7 illustrates the time evolutions of LQFI, LQU,
and LN of Figure 6(b) and (c), but for strong spin-spin
couplings with (J,,/,,J,) = (1, 0.5, 15). By comparing
Figures 6(b), (c) and 7(a), (b), we find that strong spin-spin
couplings (J, , ]y, J,) =1, 0.5, 1.5) reduce the ISSD effect and

Figure 7: Time evolutions of LQFI, LQU, and LN of Figure 6(b) and (c) are
shown but for strong spin-spin couplings with (]X,]y,jz) =(1, 0.5, 1.5).
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improve the robustness of the NLCs (against the ISSD
effect) of LQFI, LQU, and LN. For very strong spin-orbit
interactions Dy = 2 (Figure 7(b)), the sudden-death LN-
entanglement phenomenon does not occur, except instan-
taneously at ¢t = 0.57. The generated two-spin states have
different stable partial NLCs of LQFI, LQU, and LN. In this
case, the decay of NLCs due to ISSD can be mitigated by
enhancing the spin-spin interactions.

Figure 8(a) shows the time evolutions of LQFIL, LQU,
and LN from Figure 4(a) for (J,,J,,J,) = (1, 0.5, 1.5) and
Dy = Dy = 0.5, considering the ISSD effect (y = 0.05) after
strengthening the EIMF uniformity with (B, by,) = (2, 0.5).
In this case, we observe that the large EIMF uniformity
B, = 2 increases the NLCs’ decay resulting from ISSD.
Time intervals appear in which the disentangled two-spin
states have only different stable NLCs of LQFI and LQU.
Moreover, the robustness of LQFI and LN NLCs, against the
ISSD effect, is reduced by increasing EIMF uniformity. The
results shown in Figure 8(b) demonstrate that increasing
the inhomogeneity of the EIMF to b, = 2 enhances the
degradation of the NLC functions. Under the parameters
bn =2, (]X,]y,]Z) = (1, 0.5, 1.5), and Dy = 0.5, we observe

NLC
o
o

NLC

Figure 8: Time evolutions of LQFL, LQU, and LN in Figure 4(a), for
(]X,]y,jz) =(1,0.5,1.5) and D, = D, = 0.5, are presented considering the
ISSD effect (y = 0.05) for EIMF uniformity with (Bp, by,) = (2, 0.5) in (a)
and EIMF inhomogeneity with (B, by,) = (0.3, 2) in (b).
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that the generated NLCs (LQFL LQU, and entanglement)
in Figure 4(a) degrade (due to the ISSD effect) and quickly
reach their partially stable oscillatory behaviors, com-
pared to the case with a small value of by, = 0.5 in Figure
7(a). We find that the EIMF’s inhomogeneity has a lesser
ability to enhance the ISSD effect compared to its
uniformity.

5 Conclusion

In this study, we use the Milburn intrinsic decoherence and
the Heisenberg XYZ models to explore the capabilities of
spin—spin and spin-orbit interactions (in the x and y direc-
tions) to generate NLCs (measured by LQFI, LQU, and LN)
under the influence of the uniformity and inhomogeneity
of the EIMF in the x direction. The generated NLCs are
examined in the absence of the ISSD, as the parameters
of spin-spin and spin-orbit interactions, as well as the
EIMPF’s uniformity and inhomogeneity, are increased. It is
found that the spin-spin Heisenberg XYZ and x, y-spin—
orbit interactions have a strong ability to enhance non-local
correlations with small external magnetic field parameters.
The spin—orbit interactions significantly contribute to the
enhancement of the generated two-spin—qubits LQFI-LQU
correlation and log-negativity entanglement, increasing
their oscillation amplitudes and fluctuations. In the pre-
sence the ISSD, the generation of NLCs is weakened and
exhibits varying amplitudes, decreasing as the ISSD coupling
increases. The robustness of LQFI and log-negativity against
the ISSD effect is greater than that of LQU. Sudden changes
occur during the dynamics of LQU and LQFI, while sudden
death occurs during the dynamics of log-negativity entangle-
ment. The decay of NLCs due to ISSD can be enhanced by
increasing the intensities of X, y-spin—orbit interactions.
Strengthening the spin-spin interactions, however, weakens
the NLCs’ decay resulting from ISSD. The generated NLCs
degrade quickly due to the ISSD effect with a large IMF’s
inhomogeneity, reaching their partially stable oscillatory
behaviors. The ability of the IMPF’s inhomogeneity to
increase the ISSD effect is small compared to that of the
EIMP’s uniformity. Our findings on the generated two-spin
qubit NLCs (measured by LQFI, LQU, and LN) resulting from
spin-spin interactions, supported by spin—orbit interactions
in the x and y directions and an applied EIMF in the
X direction, pave the way for exploring other quantum
effects with the considered interaction directions or with
different interaction directions. Additionally, these quantum
effects can be explored using other differential motion
equations with the considered interaction directions.
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Furthermore, fractional quantum calculus and
Riemann-Liouville integration [67,68] can be employed to
investigate fractional quantum phenomena in the consid-
ered Heisenberg XYZ model using fractional differential
motion equations [69,70].
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