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Abstract: This work investigates the quadratic and quartic
nonlinear diffusion-reaction equations with nonlinear convec-
tive flux terms, which are investigated analytically. Diffusion—
reaction equations have a wide range of applications in
several scientific areas, such as chemistry, biology, and
population dynamics of the species. The new extended
direct algebraic method is applied to obtain abundant
families of solitary wave solutions. Different types of solitary
wave solutions are obtained by applying this analytical
method. This approach provides the solutions in the form
of single and combined wave structures, which are observed
in shock, complex solitary-shock, shock-singular, and peri-
odic-singular forms. Some of the solutions are depicted gra-
phically to illustrate the fact that they are, indeed, wave
solutions of the mathematical model.
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1 Introduction

In the physical sciences, differential equations (DEs) are
essential to describe some physical phenomena. Many
important evolutionary occurrences are often modeled
by nonlinear partial differential equations (NPDEs). Most
physical phenomena in various fields, such as field theory,
optical fiber [1,2], mathematical physics, plasma physics [3],
biophysics, fluid dynamics, mechanics, aerospace industry
[4], chemistry reactions [5-7], metrology, and many other
fields [8-10] are described by using the NPDEs. For instance,
the nonlinear Schrodinger equation (NLSE) has numerous
applications in scientific fields such as nonlinear optics,
mathematical finance, plasma physics, nuclear and solid-
state physics, biochemistry, superconductivity, and matter.

As most of the physical occurrences are modeled by
NPDEs. It is essential to find the solutions to NPDEs. Finding
the solutions to the NPDEs is crucial to having a thorough
understanding of the phenomenon. To obtain the exact solu-
tion, a range of analytical techniques have been developed
and reported in the literature. The Kudryashov method [11],
the homogenous balance method [12,13], the generalized
Kudryashov method [14,15], the tanh—coth method [16,17],
the direct algebraic method, extended modified auxiliary
equation mapping method, the unified method, the modified
and extended rational expansion method, the extended
(%)—expansion technique, the variational principle method
[18,19], the amplitude ansatz method [20], the bilinear neural
network method [21], the auxiliary equation method [22], the
improved P-expansion approach [23], the improved modified
extended tanh-function method [24], the generalized algebraic
method, the Jacobian elliptic functions technique [25], the
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improved exp(-F(n))-expansion method [26], the Riccati

equation method [27], the modified (%)-expansion method
[28] among others, have been developed to this end.

It is worth pointing out that Yan and Lou worked on
the soliton molecules of Sharma-Tasso—Olver—Burgers
equation [29], Wu et al. investigated the nonlinear von
Karman equations for the three-layer microplates [30].
Meanwhile, Wang et al. considered the diffusively delay-
coupled memristive Chialvo neuron map for the network
patterns [31], while Dai et al. worked on the macrodisper-
sivity models with an analytical solution [32]. Kai and Yin
worked on the Gaussian traveling wave solution to a spe-
cial kind of Schrédinger equation [33], Zhu et al. used the
logarithmic transformation for the modified Schrdédinger’s
equation [34] and nonlinear Zakharov system [35] to obtain
analytical solutions. Berkal and Almatrafi worked on the
bifurcation and stability of a two-dimensional activator—
inhibitor model [36], and some researchers have worked
on the approximate solutions of reaction—diffusion models
[37-40]. in the present study, we will derive exact solutions
for a nonlinear reaction—diffusion system.

Our current research focuses on nonlinear diffusion—
reaction (DR) equations, which have wide applications in
biology, chemical, physical, and logical systems. Various
reduced versions of the DR equations have been investi-
gated in the literature. In the study by Triki et al. [41], the
auxiliary equation method was used to study three non-
linear DR equations in inhomogeneous mediums, including
derivative-type and algebraic-type nonlinearities. Further-
more, nonlinear reaction diffusion equations with cubic and
quantic nonlinearities, nonlinear DR equations including
quadratic-cubic nonlinearities, and nonlinear diffusion—
reaction equations with a nonlinear convective flux term
have been investigated by Bhardwaj et al. [42], Malik et al.
[43,44]. We examine the DR equation for a case where the
diffusion coefficient D is unaffected by density.

In the present work, we investigate the dynamics
through the solutions of particular nonlinear DR equations,
which include a nonlinear convective flux term along with
quadratic and biquadratic nonlinearities and are repre-
sented by the following equations:

o, + koo, = Do, + ap - o?, o))
@, + ko*p, = Do, + ag - o*, @

where a, , and k are physical constants that need to be
determined, D is the diffusion coefficient, and ¢ = ¢(x, t)
has different interpretations according to the phenomenon
under investigation. These equations describe transport
phenomena where diffusion and convection processes are
equally important and nonlinear diffusion is assumed to be
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similar to nonlinear convection effects. The (%)-expansion
method and the Kudryashov method have been recently
applied to solve this system of equations.

The purpose of this study is to improve the accuracy of
possible soliton solutions of the DR equations through a
new methodology. Being a novel analytical technique, the
new extended direct algebraic method (NEDAM) has not
been applied to solve nonlinear DR equations with a non-
linear convective flux term. In domains including engi-
neering, physics, and applied mathematics, NEDAM has
demonstrated its reliability and effectiveness in resolving
NPDEs. For example, Vahidi [45], Mirhosseini-Alizamini
et al. [46], and Munawar et al. [47] have used NEDAM to
solve different types of NPDEs. Furthermore, Kurt et al.
used NEDAM to find traveling and solitary wave solutions
of the potential Kadomtsev—Petviashvili equation. The
author found that the NEDAM is accurate, effective, and
applicable for solving problems. There are many other
methods that provided us with hyperbolic, trigonometric,
and rational function solutions. As we will see, single and
combined wave structures are observed in shock, complex
solitary-shock, shock-singular, and periodic-singular forms.
Rational solutions also emerged during the derivation.

The present work is organized as follows. Section 2 is
devoted to provide a brief summary of the NEDAM. To that
end, we employ [48] as a guiding reference. The metho-
dology is explained in its most general setting. We provide
therein a set of steps that lead to the derivation of exact
traveling-wave solutions of general systems of partial DEs
in two variables, namely, space and time. Moreover, var-
ious cases are fully described to reach exact solutions for
those models. In turn, Section 3 is devoted to derive the
exact traveling-wave solutions for the mathematical models
(D and (2). From our discussion, it can be readily checked
the existence of abundant solutions of this form for our
mathematical models. For the sake of convenience, we illus-
trate the behavior of just some of those solutions by means
of three-dimensional plots, contour plots, and two-dimen-
sional plots. As we can see from the figures, all of the solu-
tions obtained through the NEDAM are traveling waves.
Finally, we close this work with a section of concluding
remarks.

2 Method

In this section, we provide an outline of the NEDAM [48].
This method consists of the next steps.

Step 1. We suppose that a NLPDE can be expressed as
follows:
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H(M, Mt; ]\4)(; Mtt’ MXD MX’ ) = O, (3)

where M is an unknown function and H is a polynomial
of M(x, t).

Step 2. Consider the transformation M(x, t) = ¥({),
where { = x — wt. Here, w indicates the wave velocity. By
substituting this transformation into (3), we obtain

W, 0, 90", 07, ..)=0, @)

d ” d2
where ¢ = (), ¢ = 3, 9" = g7, etc.

Step 3. We assume that (4) has a solution of the form

N
o) = Y biQU((), ®)

i=0
where b;(0 <i < N) are unknown constants, by # 0, and
Q({) satisfies the auxiliary ordinary differential equation
(ODE):

Q({) =InF(m + nQ({) + vQ({)»), F=#0,1, (6)

where m, n, and v are constants. The solution to Eq. (6) can
be expressed as follows:
o If n> - 4mv < 0 and v # 0, then we have

-(n® - 4mv)

5 q ™

n
Q(() = o + @ tang,

-(n? - 4my)

n
Q) = ot @, cotp 5

7|, 8)

Q4(¢) =~ + Pytan(y=( -~ 4mv))
+ /pq sece(N-n* - 4mv (),

Q) = —% + @y cotp(y/—(n? - 4mv))

9

(10)
+ /pqescr(~-n? - 4mv (),
_on @ -(n® - 4mv)
Qs({) = oy T tanr 2
1D
\J-n? - 4my
- cotg| ————(|,
4
where
—(n2 —
o, = Y0~ 4m) 12
2v
o If n® - 4mv > 0 and v # 0, then
n n* - 4mv
Q6({) = —=— - @ tanhy|~———— 13
6({) 2 2 tanhp 5 48 (13)
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Jn? - 4my
2

n
Q(() = oy T ®, cothr ¢

bl

QK(() = —% — @, tanhp(J/n? - 4mv)
+ 1 /pgsechp(~n? - 4mv (),

Qo({) = —2% - @y cothp(y/-(n? - 4mv))
+ /pqeschp(+/n? - 4mv (),

Qu(() = -1+ 2

tanh
v 2 F

4

v-n*-4mv

- cothg 2

¢

>

where

Jn? - 4my

q) -
z 2v

o Ifmv>0andn =0, then

0n(() = \/? tans(JTY),

Qp() = —\/? cotp(vVmv (),

-(n® - 4mv)

—_ 3

(14)

(15)

(16)

an

(18)

(19)

(20)

Qu3(¢) = \/? (tanp2Vmv {) £ /pq secp(2vmv {))(21)

01) = | (-cot a2 TTE) + [FesG a0, @)

1
Qi5(() = E\/?[IHHF[JT(] - COIF[JT

* If mv <0 andn =0, then

Qu(§) = =\~ tanhy(V=TVY),
Qr(() = —,x—% cothp(v=Tv (),

Q) = || % (-tanhp(2y=mv{)

+ (/mvsechr(2/-mv)),
1
Q) = _E‘,_%

J-mv
* If n=0andv = m, then
Q({) = tang(my),

my (] + cotpl

tang|

mv
7 ¢

(]] 23)

(24)

(25)

(26)

]] @7

(28)
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Q5(¢) = —cotp(m(), (29)
Qx({) = tanp(2mq) + /pq secr(2mg), (30)
Q24(¢) = —cotp(2m{) £ /pqcsce(2m(), (31
Qus(() = % tany %c] - Cotp[%(]]. (32)
* If n=0and v = -m, then
Qo6(¢) = —tang(my), (33
Qy7(¢) = —cotp(m(), (34)
Q8(¢) = —tanhp(2m{) + 1 /pq secr(2m¢),  (35)
Q9(¢) = —cothp(2m{) £ ,/pq cschp(2md), (36)
1
Qu(¢) = — | tanhy %{] ¥ cothp[%(]]. 37)
o If n* = 4mv, then
_ =2m(n{ InF + 2)
Qu(¢) = T (mF (38)
oIf n=y, m=ry with (r#0), and v=0, then
Q) = FX¥¥ —r.
o If n=v =0, then Q33(¢) = ué InF.
* Ifn=m =0, then
-1
Q3(() = WInE' (39)
o If=m=0andv # 0, then
Qs5({) = - P
O o) - sinheny + )’ 47
_ n(sinhp(ng) + coshr(n{))
Qa0 = = sinhp(n) + coshr(n0) + @) D
s Ifn=y,v=ry(r# 0) and m = 0, then
_ pF)((
Q3(() = W (42)

It is worth recalling that the generalized hyperbolic and
triangular functions are defined as follows:

F¢ - qF ¢
sinhy(¢) = =

tanhy(q) = PE
anhg({) = D + gF 0’

2 2

sechp({) = P+ gF eschy(¢) = PF — gF " (45)

@3

F¢ + qF~¢
coshr({) = p+

F¢ F¢
Cothp(()=z A gy

F¢ - qF ¢’

pF¢ — qF %

SinF(() = 2 > ’ (46)

Ft( + F—t(
cosp(¢) = %
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_ DpFC-qF% _ PFC+qF ¢
tang({) = ‘lm, cotp({) = ‘lm, 47
2
secr(¢) = PFC + gF <’ escr(() = PFC — gF <’ (48)

where ( is an independent variable and p, q > 0.
Step 4. Calculate N using the balancing method on Eq. (4).
Step 5. Combine Eq. (5) together with Eq. (4), set coeffi-
cients of Q({) equal to zero, and determine the values of
the unknowns.

3 Results

The present section is divided into two stages. In Section
3.1, we derive exact solutions for the quadratic model and,
Section 3.2, we obtain solutions for the quartic model.

3.1 Quadratic model

To obtain soliton solutions of the DR equations under study
in the present work, we employ the traveling-wave trans-
formation { = x — wt, so that ¢(x, t) = ¥({). This change of
variable transforms Egs. (1) and (2) into the following non-
linear ODE:

Dy + wy’ ~ kp*y' + ayp - py? = 0,

where the prime symbol denotes the order of derivative of the
function ¢ with respect to {. By applying the homogeneous
balancing criterion to Eq. (49), one can readily find that N = 1.
Therefore, we can write the solutions of Eq. (49) as follows:

W({) = by + b1QAJ). (50)

By using Eq. (50) and its derivative in Eq. (49) and by
equating the coefficient of the powers of Q({) zero, one can
obtain a system of algebraic equations. It is easy to check
that the solution of this system of equations is given by

(49)

- DknlogF - \/D%k?n21og®F - 4D*k*mv log2F

0 kz ) (51)
2Dv logF
= Tg (52)
2DB - /D*k21og*F(n* - 4
= B \/ og*F(n* - 4mv) ’ (53)
k
2B D10g*F(r? - 4mv) (54)

kz
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By manipulating Eq. (50) along with the different forms of =~ Where ¢ = n? - 4mv. For illustration purposes, Figure 1
Q({) described in Section 2, we can obtain the following behavior of the solution ¢,(x, t) for the parameter values

forms of traveling wave solutions for Eq. (1): n=15 m=15 v=15 p=19, k=14, F=15
» When n? - 4mv < 0 and v # 0, then and D = 14.
Px, )= %(Dkn InF - Dok In(F)) * When n? - 4mv > 0 and v # 0, then
1
. V7 tang| S22 ] | e 0(x, ) = 7 (Dkn In(F) - Dk/G In(F)
+%2DV11’1(F) —2 —2— s
v v . . otanh; %] (60)
+ E 2Dv In(F) _Z_V - T ,
1
,(x, ) = F(Dkn In(F) - Dk+/a In(F))
(Vo t-lelF—Dk\/_lF
1 V=0 cotg| =5 n (56) o,(x, ) = k2( nlin(F) o In(F))
+E2DV11'I(F)— 2 —2— s
v v 1 \/Ecothp[g] n (61)
+ X 2Dv In(F) BEr-w——
o5, )
1
= —(DknIn(F) - Dk+/@ In(F))
S G7 Og(X, t) = iZ(Dkn In(F) - Dk/@ In(F))
. 1[21) V=G (tanp({~=0) - secp({~=0)) 1 ” k
—12Dv In(F), - —1t
k 2v 2v 1 n
+ —12Dv In(F)[-— (62)
k 2v
%, 1)
tanh - isech,
= %(Dkn In(F) - Dk/G In(F)) (58) _ Yo(tan F((\/EZ)V tsechy(¢/a)) ”,

+ HZDV In(F)

_JO(cotr({=0) — esep({v=0)) _ n. ]
2v v

0y, 1) = %(Dkn In(F) - DGk In(F))

(DS(X’ t)
= %(Dkn In(F) - Dk+/o In(F)) + %[ZDV In(F) (63)
. J=G|tan @] - cot;[@]] . (59) _JG(cothp({VG) - cschp((VG)) n ’
+ 2 [PV In(F) y -l 2v 2v
(a) 7 (b) 7 (©
P1(x.)
) :3 -2 -1 ) 1 2 37 —‘3 —‘2 —‘1 F 1 2 3 %

Figure 1: Lump-kink soliton behavior of the solution ¢,(x, t) for the parameter valuesn = 1.5,m = 15,v =15, =19,k =14, F =15,and D = 1.4:
(a) three-dimensional plot, (b) contour plot, and (c) two-dimensional plot.
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DX, ) = %(Dkn In(F) - DGk In(F)) * Ifmv <0 andn = 0, then
1
) oot 7] + tanh %]‘ P15(x, ) = 75 (DknIn(F) ~ DGk In(F))
+ X 2Dv In(F)[- o 1 m (70)
(64) - E[ZDV In(F) . tanh p({/-mv )],
1
_n 0(x, 1) = F(Dkn In(F) - Dk+/a In(F))
| (7D

1
- E[ZDV In(F) /—% cothp((\/—mv)],
Figure 2 shows the graphical behavior of the solution
@g(x,t) for the parameter values n=01 m=-1,

1
v=02B=12k=01F=15and D = 11. 915X, 0) = 37 (Dkn logF = Dk/o In(F)

1 m
« If mv>0andn =0, then N E[ZDV In(F) Ty (tanh {2{V=mV) (72)

0u(x, ) = %(Dkn In(F) - Dk+/o In(F)) + 1. /pqsechp(2{/-mv))
(65)

’

1 m
¥ EIZDV 1]“(F)\/; tanF((m)]’ (X, 1) = %(Dkn In(F) - DJGKLA(E))

0%, ) = %(Dkn In(F) - Dk</@ In(F)) o - HZDV In(F) —%(mcothp(zm ) (73)
- %IZDV ln(F)\/? cotp({Vmy )], + cschF(Z\/—_mv))],

016, 1) = 5Dk In(F) = DK\G In(E) 0, )= 5 (Dkn In(F) - Dk In(F)
+ Hzpv In(F) \/? tan p2(Vmv)  (67) - %Dv In(F) -% tanh £ %C J-—mVJ (74)
- Jpqsec F<zcm>”, - cothp[%(m]]].

0,406 0) = %(Dkn In(F) - Dk In(F)) For illustration purposes, Figure 4 shows the graphical

behavior of the solution ¢¢(x, t) for the parameter values

1 = = - = = = = =
+E[2DV1H(F) n=0,m=-1,v=15p=05k=02F=15andD =1.

JPq cscp2(Vmv) - (68)

m * Whenn =0 and m = v, then
Yy cotp(2{Vmy )”,
0y (x, t) = %(Dkn In(F) - Dok In(F))

1 (75)
,t) = —(DknIn(F) - Dk In(F
015X, 1) = 37 (DknIn(F) = DkG In(F)) + L0y ncey tang( o,
1 1
+ —Dv ln(F)\/ﬁ tan p —(«/mv] (69) 1
k v 2 Pp(X, ) = P(Dkn In(F) - Dk+/a In(F))
1 (76)
- - 1
couf e ]” - 3 @DV InE) cot(¢m)),
Figure 3 shows the graphical behavior of the solution 1
@u(x, t) for the parameter values n=0, m =01, Pps(X, 1) = F(Dkn In(F) - Dk~ In(F)) o

v=15p=04,k=02,F=12,and D = 2. 1
+ E{ZDV In(F)(sec p(2{m) + tan p(2{m))},
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(a) I O N (c)

P6(X.t)

Figure 2: Kink soliton behavior of the solution ¢g(x, t) for the parameter valuesn = 01, m = -1,v =02, =12,k = 0.1, F=15,and D = 1.1: (a)
three-dimensional plot, (b) contour plot, and (c) two-dimensional plot.

0pu(x, 1) = %(Dkn In(F) - Dk</G In(F)) 0, 1) = %(Dkn In(F) - oDk In(F))
(78)
+ %{ZDV In(F)(csc p(20m) - cotp(2{m))}, + %{znv In(F)(-tanh p2¢m) 82
+ 1 sechp(2¢m))},
0p(X, 1) = %(Dkn In(F) - Dk<G In(F)) Vpasechy

1

(79) 0,4(X, t) = —(Dkn In(F) - Dk-/G In(F))
+ % Dv In(F)| tan g %n - cotp[%n]]] 29 k2

+ %{ZDV In(F)(-cothp2gm) 83

+ 1,/pq csch p(2{m))},

* Whenn = 0 and m = -v, then

Pp(X, 1) = %(Dkn In(F) - DGk In(F)) .
(80) 95t ) = 1z(Dknn(F) - Dky/G In(F))

- %(zpv In(F) tanh p(¢m)),

1
+_

K Dv In(F)

—-cothp

7

0%, 0 = 5Dk InF) = DKV In(F)

- ﬁ{wmv((n In(F) + 2)}.

m
%] - tanh p

0 (X, 1) = lz(Dkn In(F) - Dk+/G In(F))
k (81) * When n? = 4my, then

- %(zpv In(F) cothp(¢m)),

(85)

(€)

m it

i i

QSQA

Figure 3: Solitary wave behavior of the solution ¢,,(x, t) for the parameter valuesn =0, m = 0.1,v =15, =04,k =02, F =12, and D = 2: (a)
three-dimensional plot, (b) contour plot, and (c) two-dimensional plot.
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P16(t) ¢

AN

-3 -2 -1 1 2 3

Figure 4: Kink soliton behavior of the solution @,(x, t) for the parameter valuesn = 0,m = -1,v =15, = 0.5,k = 0.2, F = 1.5, and D = 1: (a) three-

dimensional plot, (b) contour plot, and (c) two-dimensional plot.

sIfn=y,m=r, y(r#0),and v = 0, then

Py(X, 1) = %(Dkn In(F) - Dk</G In(F))

1 (86)
+ %{ZDV In(F)(FX - r)}.
* Whenn =v = 0, then
Pg(x, t) = %(Dkn In(F) - Dk+/a In(F))
k 87

+ %(ZD(mv InX(F)).
* Whenn =m =0, then
1 2D
05X, 1) = F(Dkn In(F) - Dk+/a In(F)) - a (88)

* Whenm =0 and n # 0, then
_ DknlIn(F) - Dk/a In(F)

055X, t)= K2
89)
_ 2Dnp In(F)
k(cosh (({n) - sinh ¢(¢n) + p)’
DknIn(F) - Dk+/& In(F
0,506 0) = n In(F) o Vo In(F)
(90)

_ 2DnIn(F)(cosh p({n) + sinh p(¢n))
k(cosh p(¢n) + sinh p(¢n) + q)

* Whenn =y,v=ry(r #0),and m = 0, then
_ DknlIn(F) - Dk+/o In(F)

(P37(X: t) - k2
_ 2DvIn(F)pF ©n
k(p - rqF %)

3.2 Quartic model

By applying the traveling wave transformation, we readily
obtain the nonlinear ODE

DY + wy’ -k’ + ayp — Bt = 0. (92)

Observe that we obtain that N =1 by using the balance
between the dispersive and nonlinear terms in Eq. (92).
Therefore, the solutions of this equation are expected to
be expressed in similar fashion as for Eq. (50). By substi-
tuting Eq. (50) together with its derivatives into Eq. (92) and
by comparing the coefficients of the indices of ((), we can
obtain an algebraic system of equations. The solutions lead
to two possible families of parameters

Family 1.
21,2 12 2 _
by = - JBA I F(n z;TV) s pind) g
bl = —%, (94)
3112 2
we - 3k° In 1-"2(;2 4mv)’ (©5)
2 21-2 12 2
ook Bk 1n2£3(n 4mv) 96)
212 12 2 _ 3/2
a= (B I F(r; : 4mv)) . o)
Family 2.
V3B (-KDIEE( - 4mv) + 3pknIn(F)
by = - o7 . (98)
bl = —%, (99)
31n2 2 _
w= K Fg;gz ) : (100)
2 2(_1-2 2 2 _
D= k JBA-KY)In2F(n? - 4mv) (101)

2/33 ’
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(BA(-k®)In2 F(n? - 4mv))®/?
a-=
3438
Proceeding as in the case of the model with quadratic reaction

law, we obtain the following traveling wave solutions for Eq. (2).
» When n? - 4mv < 0 and v # 0, then

o,(x, t) = —Ziﬁz(wlﬁzkza In?F + BknInF)

(102)

(103)

{J-a
2

1 J—0 tang
- —kvInF

B 2v A

@,(x, t) = _ZLBZ(‘/ﬁZkZU In’F + BknInF)

J-ao cotp[?]

1
_EkvlnF_T__

P5(x, ) = —Ziﬁz(,/ﬁzkzo In’F + BknIn(F))

1
B

v=a(tan ({~/-0) - sec p({~/-0))
2v

kv In(F)

>

2v (105)

o(x, t) = —ﬁ(‘/ﬁzkzo In?F + Bkn In(F))

1
B
_V=a(cotp(¢V-0) - /pq esc (({~=0))

2v
_n
2v

os(x, t) = —%(x/ﬁzkza In’F + Bkn In(F))

kv In(F)

’ (106)

1
- —kvIn(F
5 (F)
107)

N

tan g

{J=0 {J=0
<) e

4y ol

Dynamical wave structures == 9

For the sake of convenience, Figure 5 shows graphs of the
solution ¢,(x, t) for the parameter valuesn=1, m=1,
v=15p=1k=12 and F = 15.

e« When n - 4mv > 0 and v # 0, then

Px, t) = —%(,/ B*k?c In*F + BknInF)

Jotanh p %] (108)

kvInF|-— - ——=|;,
2v 2v

1
B

P,(x, t) = —Ziﬁz(«/[izkzo In’F + BknInF)

ﬁcothF[% (109)

1
- —ikvInF|-

B 2v B

0y(x, 1) = —%(«/szo In’F + BknLn(F))
1
B

_ Jo(tanh {(¢V0) £ i/pqsechs({Va))
2v

kv In(F)

_n
v (110)

B

Py(x, t) = —%(\/ﬁzkza In?F + Bkn In(F))

- % kv In(F)

111
_Ja(cothp(¢Va) + /pq csch K¢ VD)) (1

2v

Ppx, t) = —%(\/szza In’F + BknIn(F))

- % kv In(F)
(112)

Jo

coth;[%] + tanh f|

[
4

4y 2w

For illustration purposes, Figure 6 shows the graphical beha-
vior of the solution ¢4(x, t) for the parameter values n = 1,
m=2,v=-15/p=1k=17 and F = 15.
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Figure 5: Solitary wave behavior of the solution ¢,(x, t) for the parameter valuesn =1, m=1,v =15, f =1,k = 1.2, and F = 15: (a) three

dimensional plot, (b) contour plot, and (c) two-dimensional plot.

« If mv > 0 and n = 0, then 0, ) = —#(,/BZRZG In’F + Bkn In(F))
N P o e
Pu(x, ) 2/32(\/[3 k?c In? F + BknIn(F)) - + % kv In(F) \/? (cotr(2{vmv) (116)
1 m
- gl 'y an ey )]’ £ Jpq csc F(zcm»’,
1 m
P, ) = E kv ln(F)\/;COtF((\/ my )] 1) 056 1) = —%(1 |B*k?a In’F + Bkn In(F))
1 2
- — k%o log?F knIn(F)),
ot (V0 log’F + pknIn(E)) [kv ln(F)\/i tan (\/ ] 117)
2B
P13(X, ) = 2[32( VAo In°F <+ Bkn In(F)) N COtF[E(*/W]]].
m
o kvln(F)\/; (tan2vmv) — (M5) | ywhen my < 0 and n = 0, then

Px, t) = —ﬁ(‘/ B?k?c In*F + BknIn(F))

+ %kvln(F) —% tanh ¢({ J-mv)]’

+ /pq secr(2{Nmv))|,

(118)

T

-3 -2

Figure 6: Kink soliton behavior of the solution ¢¢(x, t) for the parameter valuesn = 1,m = 2,v = 1.5, = 1,k = 1.7, and F = 1.5: (a) three-dimensional

plot, (b) contour plot, and (c) two-dimensional plot.
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1 1
(X, 1) = _z_ﬁz(‘/ﬁzkza In’F + BknIn(F)) Py, ) = —z—ﬁz(\/ﬂzkza In>F + Bkn In(F))
. - (119) 1 i 127
+ =|kvIn(F),|-— cothp({ /=mv ] _ = smy_ smi
5l In), [ coths ¢ - [kv e tan | 5| - corf &
1 . . . .
Pi(X, 1) = _ﬁ( |B*k?a In*F + Bkn In(F)) Figure 8 shows the graphical behavior of.= the soh=1t10n
¢,(x,t) for the parameter values n=0, m=15

. 1 v=15p=15k=11,and F = 1.5.

5{fov n(®) —%(tanhF(zc/——mv) (120)

* When n =0 and v = -m, then

+ i./pqsechp(2{vV=mv ))’,
0p(X, 1) = _2%32(‘/’32"2 oLnF? + BknIn(F))

Ppo(X, 1) = —iz(,/[ﬂkza In’F + BknIn(F)) 1 (128)
2 + (kv In(E) tanh g,
¥ %kvln(l—“) —%(cothp(z/——mv) (121)
0, (x, ) = —%W(«/szzo In’F + BknIn(F))
t . /pq csch p(2</—-my ))], 1 (129)
+ E(kv In(F) cothg({m)),
D ) = —ziﬁz(\/ﬁ% IWF + fin In(F) 1
. - . Py, 1) = —ﬁ(‘/ﬁzkzo In?F + Bkn In(F))
+ % kvIn(F),/-—|tanh E(\/—mv] (122) 1
p v - 5{kv In(P) (- tanh (2gm) (130)
1
— cothp[z(\/—mv ]]] + l'\/WSEChF(me»},
Figure 7 shows the solution ¢¢(x, t) for the parameter ()= _L( [B2%k?6 12 F + BknIn(F))
valuesn = 0,m = 1,v = -15, f = 1.5, k = 15, and F = 15. P 2P b
1 131
- —{kvIn(F csch p(2¢m
o Ifn=0and m = v, then .3{ nE/pq esch patm)
= cothp(2¢m))},
Pu(x, ) = —ziﬁz@/kazo In’F + BknIn(F)) i
(123)
1
- E(k\/ ln(F) tan F((m)); (030()(: t) = _ziﬁz( ,szZU In2F + Bkn m(F))
1 1 {m {m (132)
Op(X, 1) = -Z—BZ(\/ B?k?cLnF? + BknIn(F)) "2 kv In(F) —cothp[7] - tanh 7]]]
(124)
+ %(k\/ In(F) cotp({m)), o If n? = 4mv, then
1 0306, 1) = —%(«/ﬁzkzo In?F + Bkn In(F))
95X, O) = == ({B?%%0 In*F + BknIn(F)) 1 (133)
2B * g ey GuinG) + 2
21 (125)
ﬁ{kv In(F)(tan A2¢m) * Whenn=y,m=ry withr # 0 and v = 0, then
+ /pq sec ;(2¢m))}, Pt 0= ziﬁz (PR TEF + Bl n(E))
1 (134)
Ppu(x, 1) = _W(\/ B?k* In*F + Bkn In(F)) - %{kv In(F)(F¥ - 1)}.
~ Lo In(e)(=cotr2om) (126)

B
+ /pq csc F2(m))},
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Figure 7: Anti-Kink soliton behavior of the solution ¢;(x, t) for the parameter valuesn = 0, m =1, v = 15, p = 15, k = 1.5, and F = 1.5: (a) three-

dimensional plot, (b) contour plot, and (c) two-dimensional plot.

* Whenn =v =0 then

Oy, 1) = —ZLBZ(\/BZkZU In?F + BknIn(F))

- %((kmv In?F).

o If n=m=0, then

Pau(x, 1) = -ZLBZ(\/W + BknIn(F)) + B%

* When=m =0 and v # 0, then

Bk I?F + BknIn(F)

Pa5(x, 1) =~ 2p?
. knp In(F)
B(cosh p(¢n) - sinh (¢n) + p)’
P, )= Bk/G In(F) + Bkn In(F)

2p?
, knIn(F)(cosh ¢(¢n) + sinh (¢n))
B(cosh (¢n) + sinh ¢({n) + q)

o Ifn=y,v=ry withr # 0, and m = 0, then

(@)

(135)

(136)

(137)

(138)

(b)

kvp In(F)F%

B(p - qrF¥)

B PknIn(F) + /o
2B% ’

O5(x, 1) =
(139)

4 Discussion

In this section, we will discuss the graphical representation
of the results obtained in the previous section by using the
new NEDAM. Different types of soliton solutions are seen,
including solitary wave, kink, anti-kink, and rational func-
tion solutions. Using the Mathematica 11.1 software, graphs
have been created to show the solutions physical behavior
in the form of 3D, 2D and contour plots. When modeling a
variety of physical phenomena (such as chemical reactions,
the creation of biological patterns, and heat conduction),
reaction—diffusion equations with quadratic and quartic
nonlinearities may essential.

It is well known that solitary waves are examples of
coherent structures that propagate without distortion
because of their limited and stable profiles. The study of

(c)

V4

t

.

3]
2

nr

Figure 8: Solitary wave behavior of the solution ¢,,(x, t) for the parameter values n = 0, m =15,v =15, = 15, k = 1.1, and F = 1.5: (a) three-

dimensional plot, (b) contour plot, and (c) two-dimensional plot.
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energy transfer mechanisms in nonlinear media, including
shallow water systems and optical fibers, depends heavily
on these waves. Kink and anti-kink solutions, which are
frequently used to mimic interfaces or domain walls like
those seen in magnetic phase transitions or crystal disloca-
tions, represent monotonic transitions between two stable
states. Understanding phase separation and symmetry-
breaking dynamics in physical systems requires an under-
standing of these structures. Less frequently found, rational
function solutions describe limited structures with distinc-
tive singular behaviors. These are frequently linked to
severe occurrences or anomaly-driven phenomena, such
as localized bursts in reaction—diffusion systems or rogue
waves in hydrodynamics. Many waveforms and transition
patterns are possible due to the interaction between the
quadratic and quartic nonlinearities in these equations,
which enriches the solution space. Visualizing these solu-
tions offers important information about their stability,
dynamics over time and space, and possible uses in systems
controlled by complicated pattern generation, phase transi-
tions, and nonlinear energy transfer. In particular, Figure 1
depicts a lump-kink, while Figures 2, 4, and 6 are kink soli-
tons. Figures 3, 5, and 8 provide solitary waves, and Figure 7
shows an anti-kink behavior.

5 Conclusions

In this work, the NEDAM has been used to obtain solitary
wave solutions for general reaction—diffusion equations
with quadratic and quartic nonlinearities. By applying this
approach, we have established different types of soliton
solutions, including solitary wave, kink, anti-kink, and
rational function solutions. To illustrate the physical beha-
vior of the solutions, some plots have been obtained using
the Mathematica software. One can obtain various possible
results by adjusting the parametric values appropriately. As
a conclusion on the side, we have found out that the NEDAM
is an appropriate and reliable method for locating precise
soliton solutions for broad categories of nonlinear problems.
The results obtained in this work were verified by substi-
tuting them into the original model equations with the help
of Mathematica software. We verified in all cases that the
functions derived in this work are actually solutions of our
mathematical models. As a future direction of investigation,
the models investigated in this work will be extended as
NPDEs of higher-order partial differential equations, consid-
ering fractional orders of differentiation, and stochastic
sources. In those cases, we expect to derive solitary wave
solutions by employing the NEDAM, and we will confirm our
result numerically through suitable mathematical software.
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