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Abstract: In this article, the (3+1)-dimensional Hirota–
Satsuma–Ito-like equation is investigated by the modified
direct method, from which some interaction solutions
among lump, stripe solitons, and Jacobi elliptic function
wave solutions are obtained, which are crucial in under-
standing complex behaviors in nonlinear systems where
multiple wave types coexist and interact. The corresponding
evolution and dynamics for the interaction solutions under
different parameters are discussed. Such interactions are
key to modeling realistic systems in which multiple phe-
nomena coexist, such as fluid mechanics, plasma physics,
and optical systems, where waves can exchange energy and
form stable or unstable patterns. These results reported in
this article can reveal the theoretical mechanisms of stabi-
lity, energy transfer, and pattern formation in nonlinear
media and may raise the possibility of related experiments
and potential applications in nonlinear science fields, such
as oceanography, nonlinear optics, and so on.

Keywords: soliton, lump solution, interaction solution, Hirota–
Satsuma–Ito-like equation

1 Introduction

The construction of nonlinear wave solutions for soliton
equations and the in-depth study of their underlying dynamic
properties remains a highly active area of research in the
field of integrable systems. It has been demonstrated through

theoretical and experimental studies that the examination of
nonlinear wave solutions is of significant importance in the
elucidation of the theoretical mechanisms underlying related
nonlinear phenomena across various physical fields such as
Bose–Einstein condensate [1], nonlinear optics [2], oceano-
graphy [3], plasma physics [4], and even financial markets [5].

In the last few decades, various effective techniques,
including the Hirota bilinear method [6], Darboux and
Bäcklund transformation (BT) [7], inverse scattering trans-
formation [8], Riemann–Hilbert problem [9], deep learning
method [10–12], and so on, have been proposed to construct
nonlinear wave solutions with physical meaning and ana-
lyze their corresponding evolution behavior [13–15]. At the
same time, relevant theories and methods have been gen-
eralized to fractional order soliton equations, from which
various physically meaningful nonlinear wave solutions and
corresponding nonlinear dynamics have been studied [16–19].
Recently, lump solution, which can be considered a special
nonsingular rational solution, has attracted significant interest
and is commonly utilized in diverse physical fields, including
oceanography and nonlinear optics. A comprehensive analysis
of the interactions between lump solutions and other non-
linear wave solutions in various (2+1)- and (3+1)-dimensional
evolution equations has been conducted [20–27].

In order to describe unidirectional propagation of
shallow water waves, Hirota and Satsuma initially pro-
posed a completely integrable model.

− − + + = = −u u uu u v u v u3 3 0, ,t xxt t x t x x (1)

which can be solved by the inverse scattering method [28].
As integrable extension, the (2+1)-dimensional Hirota–Sat-
suma–Ito (HSI) equation [29]

− − + − = = − = −w u uu u v αu w u v u3 3 0, ,t xxx t x t x x y x (2)

and (3+1)-dimensional Hirota–Satsuma–Ito-like (HSIl) equa-
tion [30]

+ + + + =cu u u u u u du3 3 0yt xxxt x xt xx t zt (3)

have been proposed, whose nonlinear wave solutions and
corresponding dynamics have also been subjected to
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investigation [31–33]. The HSIl equation is a type of non-
linear evolution equation that generalizes the behavior of
wave interactions in systems where nonlinearity and dis-
persion play a central role, which is important in modeling
physical phenomena that involvemultiple interacting waves
or fields with different speeds or properties. Plasma physics,
HSIl equation can describe wave interactions where ions
and electrons interact with different wave speeds, from
which the nonlinear dynamics in plasma environments
can be investigated. In fiber optics, the HSIl equation can
describe the propagation of light pulses where nonlinearity
and dispersion balance each other, which is useful in the
study of optical solitons in nonlinear media.

The bilinear BT for the HSIl Eq. (3) has been given, and
the interaction phenomena between lump waves and kink
waves have also been discussed in [30]. The lump and
breather solutions have been constructed and the interac-
tion among the lump, soliton, and periodic waves have also
been investigated in [31]. A natural idea is whether more
interaction solutions can be constructed, such as lump and
stripe solitons, stripe solitons and elliptic periodic function
solutions, and so on, to characterize more practical nonlinear
phenomena and to provide theoretical guidance for designing
new physical experiments and predicting new physical phe-
nomena. This is the main motivation of this study.

This article employs the generalized direct method to
investigate the HSIl Eq. (3). The following is a description of
the organization of this article. In Section 2, the interaction
solutions between lump and stripe solitons for the HSIl Eq.
(3) are presented, and the corresponding fusion phenomena
are discussed. In Section 3, the interaction solutions between
stripe solitons and Jacobi elliptic function waves for the HSIl
Eq. (3), whose dynamics are investigated. In Section 4, by
combining positive quadratic functions and Jacobi elliptic
functions, the interaction solutions between lump and
Jacobi elliptic function waves for the HSIl Eq. (3) are
obtained. In Section 5, the three mixed-action solutions
are subjected to analysis. The conclusion and discussion
are presented in Section 6.

2 Interaction solutions between
lump and stripe solitons

Using the dependent variable transformation ( )=u fln x , the
Hirota bilinear form for the Eq. (3) can be given as follows:

( )+ + ⋅ =D D cD D dD D f f 0,
x y y t z t

3 (4)

where the differential operator D [6] is defined as follows:
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Generally, the N -soliton solutions can be constructed

by taking = ∑ ⎛
⎝∑ + ∑ ⎞

⎠= < =f μ μ A μ ηexp
μ i j

N

i j ij i

N

i i0,1 1 . However, these

soliton solutions in the high-dimensional situations do not
have a tendency to zero everywhere in space, and they are
usually referred to as line soliton solutions. To obtain solu-
tions in which the entire space tends to zero, that is the lump
solutions, the long-wave limit method [34] has been widely
used, but this technique is usually effective in (2+1) dimen-
sions and sometimes fails in (3+1) dimensions. In 2015, the
positive quadratic function method for constructing the
lump solutions was proposed [20]. In 2017, the method for
finding interaction solutions between rogue wave and strip
solitons was proposed [27]. Subsequently, the interaction
solutions between various types of nonlinear wave solutions
were obtained. Here, we take a more generalized approach,
extending the spatial variable t as a function of t , which
allows the construction of nonlinear wave solutions with
greater physical significance and demonstrates a richer
range of nonlinear dynamics, although it greatly increases
the computational complexity and difficulty.

In the study of nonlinear local waves, lump and stripe
waves are two distinct types of waves that describe dif-
ferent physical phenomena. In physics, lump waves are
localized, nontraveling waveforms that typically decay
to zero in all spatial directions. Stripe waves describe
wave structures that are infinite in one dimension
and periodic or localized in the perpendicular direction,
which represent spatially extended patterns, often with
a periodic structure along one axis, resembling
“stripes” in their shape. The objective of this section is to
construct an interaction solution between lump and one-
stripe solitons for HSIl Eq. (3), the function f , is expressed
as follows:

( )( )= + + ++ + +
f ξ ξ k a te ,k x k y k z k
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where ( )≤ ≤ ≤ ≤a i i1 3, 5 7i , ( )≤ ≤k i1 4i , and k are real
parameters to be determined, and ( )a t4 and ( )a t8 are arbi-
trary functions of the only variable t. Generally, the lump
solutions for HSIl Eq. (3) can be derived under the case

=k 0, while the interaction solutions between lump and
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one-stripe solitons can be obtained by taking
( ) = +a t a t a4 40 41, ( ) = +a t a t a8 80 81, and ( ) =a t a9 90. Here,

we consider the more general case, that is, ( ) ( )a t a t,4 8 , and
( )a t9 are arbitrary functions, which to the best of our

knowledge has not yet been investigated.
By substituting Eq. (6) into Eq. (3), these wave para-

meters can be determined by direct and tedious calcula-
tions as follows:
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under the constraint condition = ≠ <a a a a k0, 01 7 3 5 1 , where
p

1
is the integral constant. Then, the function f can be obtained

as follows:
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from which the interaction solution for HSIl Eq. (3) can be
given as follows:

where

=
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Various exact interaction solutions between lump and
one-stripe solitons for HSIl Eq. (3) can be obtained by
choosing different values of parameters. As a concrete
example, the contour plots under the parameters =a 13 ,

=a 15 , =a 17 , =a t8
2, =a 19 , =k 1, = −k 11 , =k 23 , =c 3,

=d 1, =p 1
1

, from which the fusion phenomena can be
observed, are shown in Figure 1 to demonstrate the

Figure 1: The contour propagation for the solution (10) with =a 13 , =a 15 , =a 17 , =a t8
2, =a 19 , =k 1, =k ‒11 , =k 23 , =c 3, =d 1, =p 1

1
, =y 1, and

(a) =y 1, =z ‒6; (b) =y 1, =z 0; (c) =y 1, =z 15; (d) =x 1, =z 0; (e) =x 1, =z 2; (f) =x 1, =z 6; (g) =x ‒1, =y ‒50; (h) =x ‒1, =y 0; and (i)
=x ‒1, =y 100.
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evolution of the interaction solution (10) in different
spaces. Figure 1(a)–(c) shows the contours for the solution
(10) in x–t space, representing the interaction process of
the stripe and lump solitons, i.e., from the juxtaposition of
the stripe and lump solitons (cf. Figure 1(a)) to the absorp-
tion of the lump soliton by the stripe soliton (cf. Figure
1(c)). Figure 1(d)–(f) shows the contours for the solution
(10) in y–t space, representing the similar interaction
process as x–t space. Figure 1(g)–(i) demonstrates the
contour evolution for the solution (10) in y–t space and
also exhibit the collision between process of the stripe
and lump solitons, except that the lump velocity is faster
than the stripe soliton velocity; thus, it is the process of
the lump soliton chasing the stripe soliton and being
absorbed.

3 Interaction solutions between
stripe solitons and Jacobi elliptic
function waves

This section is primarily concerned with the interaction
between stripe solitons and Jacobi elliptic function waves.
To this end, the function f is taken as follows:

( )= + +f k k k h me JacobiSN , ,g

1 2 3 (12)
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where ( )≤ ≤k i1 3i , ( )≤ ≤a i1 3i , ( )≤ ≤a i5 7i are real
parameters to be determined, and ( ) ( )a t a t,4 8 are arbitrary
functions of variable t .

By substituting Eq. (12) with Eqs. (13) into Eq. (3), the
parameters can be obtained as follows:
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from which the function f can be written as follows:
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Then, the interaction solutions between stripe solitons and
Jacobi elliptic function can be derived as follows:
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Here, we take ( ) =a t t4
2 as an example to demonstrate

the evolution and dynamic properties of the interaction
solution (16). It is not hard to verify that the the interaction
solution (16) eventually tends to the plane wave as time
develops, that is,

Figure 2 presents the 3D evolution and density plots for the
interaction solution (16) in the x–z space, from which it can
be seen the interaction between the stripe solitons and the
periodic solution. There are similar evolution states in other
spaces, which are omitted here for the sake of simplicity.

Figure 2: The evolution for the interaction solution (16) with parameters =a 11 , =a 23 , =a t4
2, ( )=a tcos8 , =k 11 , =k 12 , =k 13 , =c 1, =d 1, =m 0.5,

=y 1, =t 3: (a) 3D plot and (b) density plot.
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4 Interaction solutions between
lump and Jacobi elliptic function
waves

The objective of this section is to obtain the interaction
solutions between lump and Jacobi elliptic function waves
for the HSIl Eq. (3). Here, we mainly give two construction
methods.

Case 1
In this case, the function f is defined as the combina-

tion of a positive quadratic function and a Jacobi elliptic
function, that is,

( )= + +f k k g k h mJacobiSN , ,1 2
2

3 (18)

with

( )= + + + = + + +g a x a y a z a h a x a y a z a t, ,1 2 3 4 5 6 7 8 (19)

where ( )≤ ≤k i1 3i , ( )≤ ≤a i1 7i are real parameters to be
determined, and ( )a t8 is the function of variable t.

By substituting function f (12) into Eq. (3) and com-
puting directly, we have
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Then, the interaction between the lump and Jacobi elliptic
function waves for the HSIl Eq. (3) can be given as follows:
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It is obvious that the nonsingularity of solution (22) can be
guaranteed by taking suitable values for the parameters k1,
k2, and k3, since the Jacobi function f

1
is periodic with a

range [ ]−1, 1 .
To demonstrate the evolution and interaction proper-

ties of the solution (22), we take parameters = =a a1, 1,1 3

= = − = = =a a k c d1, 1, 1, 1, 14 7 1 as an example, under
which the solution (22) can be simplified as follows:
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k a t z y m x y z

4 1
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,

3 8
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which clearly has no singularity under condition <k 13 . At the
same time, Eq. (24) implies that the nonlinear wave solution is
localized in all spatial directions and periodic in the t direction,
whose periodicity is determined by the function ( )a t8 and
parameter m. Figure 3 shows the evolution and contour plots
for the solution (24) in x–t space, which illustrates the interac-
tion between lump and periodic wave solutions.

Case 2
In this case, the function f is taken as the combination

of two positive quadratic functions and a Jacobi elliptic
function, that is,

( )= + + +f g h k l m aJacobiSN , ,2 2
9 (25)

with
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where ( ) ( ) ( )≤ ≤ ≤ ≤ ≠k i a i i1 3 , 1 7 4i i are real para-
meters to be determined, and ( )a t4 , ( )a t8 , and ( )k t4 are
the functions of variable t. In the same way as in case 1,
by symbolic calculation, we obtain

Figure 3: The 3D and contour propagation for the interaction solution (24) with parameters ( )=a tsin8 , =m 0.5, =z 1, and (a) =y 1, (b) =y 2, and
(c) =y 3.
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where p is the integral constant. Then, the function f can
be simplified as follows:
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from which the interaction solution between lump and
Jacobi elliptic function waves for Eq. (3) can be obtained by
substituting Eq. (28) into ( )=u fln x . To demonstrate the cor-
responding dynamic properties, we take the parameters

=a 11 , =a 12 , =a 13 , = −a t4 , =a 15 , =a 16 , =a 17 , =a t8 ,
=a 29 , =k 01 , =k 12 , =k 23 , =k t4

2, =k 1, = −c 1, =m 0.5,
=p 0, and the interaction solution can be derived as follows:
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Figure 4 shows the interaction process between the lump and
Jacobi elliptic function waves at different times. It can be
observed that as time t increase, the effect of the interaction
between the two waves gradually weakens, which is consis-
tent with the physical phenomenon of energy collision.

5 Mixed interaction solutions

In this section, we attempt to construct the mixed interac-
tion solutions combined with Jacobian, exponential, and
integral quadratic functions. To this end, the function f

is taken as follows:
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where ( )a t4 , ( )a t8 , and ( )k t8 are the functions of variable t .
Besides them, ( )≤ ≤k i1 7i , ( )( )≤ ≤ ≠a j j1 9 4, 8j , α β, are
real parameters to be determined.

By substituting Eq. (30) for Eq. (3), we have
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where p is integral constant, fromwhich the function f can
be derived as follows:

( )

( )

(

( ) )

( )

⎜ ⎟

⎜ ⎟

= ⎛
⎝ + + + − + ⎞

⎠

+ ⎛
⎝ + + + ⎞

⎠

+ +

+ +

+ + +
+

f a x

a k

k

y a z

a a t

a

p

a x

a k

k

y a z a t

α β k y

k z k t m

e JacobiSN

, .

k x y k z k

1

3 6

7

3

5 8

1

2

5

7 6

7

7 8

2

6

7 8

k k dk

dk1

6 1
2

3

7
3 4

(33)

Similar to the previous cases, the mixed solution u can be
obtained by directly substituting. Figure 5 shows the evolu-
tion behavior of the mixed solution by taking parameter
values =a 11 , =a 12 , =a 13 , = −a t4 , =a 15 , =a 16 , =a 17 ,

=a t8 , =a 29 , =k 1, =k 11 , = ∕k 3 22 , =k 13 , =k 14 , =k 05 ,
=k 16 , =k 17 , =k t8 , =d 2, = −c 1, =m 0.5, =p 0, =α 1,

=β 1, under which the mixed solution can be simplified
as follows:

Figure 4: The 3D and contour propagation for the interaction solution (29) with parameters =m 0.5, =y ‒0.1 and (a) =t 0, (b) =t 2, and (c) =t 6.
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(34)

In contrast to the case 2 figure presented in Section 4,
Figure 5 depicts the presence of an additional striped soliton,
which is more readily discernible from the expression of func-
tion f (30). It can be observed from Figure 5 that interactions
between the three types of waves over time exhibit similarities
to those observed in previous sections.

6 Conclusion and discussion

The present article examines the interactions between
three distinct types of solutions, namely, lump, stripe soli-
tons, and Jacobi elliptic function solutions. The (3+1)-dimen-
sional HSIL equation has been constructed based on a
modified direct method, with an accompanying discussion
of its associated evolution and dynamics. In contrast to the
independent variables of existing methods, which are typi-
cally represented by linear functions of spatial and temporal
variables, the variables in this study represent a combina-
tion of linear functions of spatial variables and arbitrary
spatial functions, thereby exhibiting a more intricate rela-
tionship with the dependent variables. As a result, a number
of fascinating dynamical properties of the interaction solu-
tions for the HSIl equation have been identified, which may
provide theoretical insight into the underlying mechanisms
of related nonlinear physical phenomena.

The study of interaction solutions enriches the struc-
ture of nonlinear local wave solutions for soliton equations,
provides theoretical models for characterizing complex non-
linear phenomena in different physical fields, including
nonlinear optics, plasma and oceanography, and provides
theoretical guidance for predicting new nonlinear phe-
nomena and designing new physical experiments. At the
same time, it provides an information source for studying

complex nonlinear waves using numerical simulation and
deep learning method. Of course, there are still many issues
that need further investigation, such as how to improve this
method to obtainmore physicallymeaningful interaction solu-
tions and nonlinear dynamical properties? How to extend this
method to more nonlinear evolution equations with practical
physical significance? How to effectively combine numerical
simulation and deep learning method to study the nonlinear
dynamics of the interaction solutions in depth? These are also
our upcoming studies in the near future.
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