DE GRUYTER

Open Physics 2024; 22: 20240112

Research Article

Amal Al-Hanaya and Shreen El-Sapa*

Impact of permeability and fluid parameters in
couple stress media on rotating eccentric spheres

https://doi.org/10.1515/phys-2024-0112
received September 30, 2024; accepted December 25, 2024

Abstract: This study elucidates the axisymmetric rotation
of two eccentric spheres immersed in an incompressible
couple stress fluid within a porous annular region. The
investigation incorporates boundary conditions applied
to the surfaces of both spheres, which rotate axially at
differing angular velocities. Utilizing a collocation scheme
alongside a semi-analytical approach under the assump-
tion of low Reynolds numbers, this research delves into
the hydrodynamic couple force (torque) exerted by the
Brinkman couple stress fluid on the interior sphere. The
analysis reveals that the dimensionless torque becomes
increasingly significant as permeability enhances the size
ratio, couple stress fluid parameters, and separation dis-
tance. The computed torque values due to stress and
couple stress are presented graphically, providing visual
clarity to the findings. Additionally, all the results align
closely with the numerical analysis of two eccentric rigid
spheres in conventional couple stress fluids, devoid of per-
meability effects or slip conditions, as demonstrated in
previous studies (Al-Hanaya and El-Sapa (Effects of slip-
page and permeability of couple stress fluid squeezed
between two concentric rotating spheres. Phys Fluids.
2023;35:103112); Al-Hanaya et al. (Axisymmetric motion of
an incompressible couple stress fluid between two eccentric
rotating spheres. ] Appl Mech Tech Phys. 2022;63(5):1-9)).
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Nomenclature

spherical polar coordinates

q velocity vector of fluid (m/s)

U characteristic velocity

¢ couple stress parameter \/a®u/n

a permeability parameter \/W
viscosity coefficient (Pa s)

couple stress viscosity coefficients (Pa s)
density of the fluid (kg/m?3)

spin vector

body force per unit mass (m/s%
body couple per unit mass (m?/s?)
couple stress diadic

pressure (Pa (N/m?)

rate of deformation tensor

trace of couple stress tensor
characteristic angular velocity (1/s)
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1 Introduction

For the past 50 years, researchers have concentrated on
understanding fluid flow through porous materials. Numerous
applications, including heat exchange, separation, filtration,
increased soil contamination, shale gas extraction, oil
recovery, and catalytic assistance in industry, require an
understanding of flow behavior in porous media. Fluid
flow in a porous material that is isotropic and homogenous
on a large scale is governed by either Darcy’s law or
Brinkman’s equations. Porosity has a negligible impact
on Darcy’s law. However, because Darcy’s law cannot
resolve an issue with high porosity and a high tangential
rate, one runs into difficulties. This problem is solved by
applying Brinkman’s equation [1]. Leontev [2] studied the
Newtonian fluid flow past spheres and cylinders in a
porous media under Navier boundary conditions. El-Sapa
[3] proposed an analytical method for thermophoresis of
particles in the center of a spherical cavity that was filled
with Brinkman’s porous medium. The mobility of a sphe-
rical particle was investigated by Faltas et al. in the context
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of a semi-infinite Brinkman flow [4]. Madasu and Bucha [5]
studied magnetohydrodynamics’ effect on micropolar fluid
flow around a sphere in Brinkman’s porous medium.

Couple stress fluids are useful in real life. Bio-fluids,
colloidal fluids, liquid crystals, and others are couple stress
fluids. Polar effects in couple stress fluid flow were initially
studied by Stokes [6]. Stokes [7] proposed a basic theory to
explain fluid polar phenomena and generalize classical
theory. Stokes discovered that the polar effect in fluids is
a result of couple stresses and body couplings. He also
observed that the mechanical action is analogous to both
forces and momentum distributions. Couple stresses lead
to a size-dependent effect that is not accounted for in clas-
sical hydrodynamics. However, it is essential in specific
cases, such as fluid flows with suspended particles, colloidal
fluids, or liquid crystals. Many studies have examined the
utilization of these fluids. Jangili et al. [8] examined how
thermal conductivity and viscosity affect couple stress fluid
flow irreversibility between asymmetrically heated parallel
plates. Al-Hanaya et al. [9] researched the axisymmetric
movement of fluid couple stress between two eccentric spin-
ning spheres. They found that the solid sphere’s normalized
torque rotates inside the outer sphere without slipping. The
normalized torque rises with the size ratio and separation
distance. Couple stress fluids have been utilized in many
porous media, such as in the studies conducted by El-Sapa
and Almoneef [10], focusing on the axisymmetric flow of
aerosol particles under a slippage regime.

Many natural applications exist for the flow motion
theory of two eccentric spheres in micropolar fluids and
rheological fluids. Fluid microstructure can affect limited
and asymmetric flow inflow performance. Majumdar inves-
tigated the asymmetrical homogenous incompressible vis-
cous liquid flow in the annulus between two rigid spheres
[11]. Kamel et al. [12] studied micropolar liquid flow around
two rolling rigid spheres. Munson [13] studied eccentric
Newtonian fluid flow. Recently, Sherief et al. [14] used
semi-analytical methods to solve the no-slip problem of
pushing a sphere into a non-concentric spherical hollow
that was filled with creeping micropolar fluid. El-Sapa [15]
examined the relationship between a spherical envelope
with a slip regime and a non-concentric rigid sphere sub-
merged in a micropolar fluid. Al-Hanaya et al. [9] considered
a slow, steady motion of a couple stress fluid between two
non-concentric, rotating spherical boundaries.

The torque generated by the rotation of solid particles
in incompressible Newtonian, non-Newtonian, or porous
media has applications in the domains of chemistry, bio-
medicine, environmental science, and other scientific
disciplines. Scientists have analyzed the occurrence of
torque in the movement of spheres, cylinders, and other
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geometric shapes in a couple of stress fluids. Davis [16]
studied the force and torque on a rotating sphere close to
and within a fluid-filled rotating sphere. Madasu and
Sarkar [17] conducted an assessment of the torque exerted
on the slow rotation of a slightly deformed slip sphere in a
Brinkman medium. In the context of the Theory of Porous
Media, this work introduces a two-scale Mesh-in-Element
(MIEL) approach that allows for finite element discretiza-
tion and significant scale coupling. It investigates the the-
oretical underpinnings, algorithmic implementation, and
application of MIEL for modeling heterogeneous, inelastic
materials, building on prior research and verifying its
efficacy using numerical examples by Maike et al. [18].
Also, El-Sapa and Al-Hanaya [19] examined how variations
in slip conditions at the fluid interfaces and the perme-
ability of the medium affect the flow characteristics by
employing mathematical modeling and analytical techni-
ques in two concentric spheres with couple stress fluid in
the annulus. Further studies [20,21] explore fluid dynamics
within annular geometries, focusing on peristaltic motion
and magnetohydrodynamic effects. Their initial study for-
mulates a mathematical model for blood flow in a porous
annular space between deformable tubes, providing valu-
able insights for peristaltic endoscopes. Then, they develop a
mathematical model for creeping electro-magnetohydrody-
namic peristaltic propulsion in an annular gap created by
sinusoidally deforming tubes. Together, these studies contri-
bute to a deeper theoretical understanding of fluid dynamics
in both medical and engineering applications.

According to the aforementioned literature review,
this study looks into the Brinkman couple stress fluid
between two spinning eccentric spheres, which has many
potential applications, such as tribology, which is under-
standing the lubrication behavior of non-Newtonian fluids
in eccentric geometries; also biomechanics such as mod-
eling the flow of blood or other biological fluids in vessels
with irregular shapes; and finally, chemical engineering,
such as analyzing the mixing and transport of non-
Newtonian fluids in industrial processes. The solutions
are obtained with analytical and numerical approaches,
and there are other numerical methods, such as finite ele-
ment or finite difference methods, that can be employed to
solve the governing equations.

2 Field equations and constitutive
relations

In 1984, Stokes [6] extended the well-known Navier—Stokes
theory to develop the micro-continuum theory of couple
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stress fluid. The Stokes theory takes into account the
impact of particle size as well as the presence of polar
effects in the fluid medium, such as couple stress, body
couple stress, and asymmetric stress. Previous studies
[18,19] provide the revised equations, which regulate the
continuity and momentum of an incompressible fluid with
couple stress in Brinkman’s medium as

vV-q =0, V)

Vp+‘uVAV/\ﬁ’+r]V/\V/\V/\V/\c_f+%ﬁ’:o,

(2.2)
where ¢ is the volume-averaged velocity, p is the pore
average pressure, u represents the viscosity of the fluid,
n is the first couple stress viscosity coefficient, and 1’ is the
second couple stress viscosity coefficient. If the couple
stress coefficient n is taken to be zero, then the equation
of motion (2.2) reduces to the classical Navier-Stokes’s
equation. The fluid velocity via a porous medium is gov-
erned by the following Darcy-Brinkman equation, but we
assume that y, is the effective viscosity when the fluid flow
takes place in the porous medium, which is equal to u that
is suggested by Ochoa-Tapia and Whitaker [24,25]. In addi-
tion, K is the Darcy permeability of the permeable medium
and also is a scalar for isotropic porous medium. Other-
wise, K is a second-order tensor [26] and the Brinkman
equation of couple stress fluid reduces to the Darcy equa-
tion when K - 0 and to the Stokes equation of couple
stress fluid when K — oo.

The constitutive equations of the stress dyadic /I and
couple stress dyadic M of the couple stress fluids are given
by [7,9]

N 1
Il =-pl + AV- q + 2uE + EI AV-M, (23)

M =ml + 4nVew + 4n'(Ve)T, (2.4)

where E = %(Vﬁ’ + (VQ)T) is the deformation dyadic, I is
the unit dyadic, and & is the vorticity vector. Here, (-)"
denotes the transpose of a dyadic. The viscosity coefficients
in couple stress fluid equations satisfy these inequalities:

u=20,n=20,n2n,31+2uz20. 2.5

Introducing the dimensionless quantities to the governing
Eq. (2.2), we obtain the following:

O B Y
= —_—, w’' = -, = —_—,
TS o P
T a’
V=aV, %,= y% a’ = I (2.6)
a’u r am
2= — r=— m =—-.
¢ n pr 10
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Substituting Eq. (2.8) in Eq. (2.7) and then dropping the
primes, we obtain

— 1 — —
Vp+V/\V/\q+§V/\V/\V/\V/\q +a’g =0, (27)

where a is the permeability parameter, and ¢ is the length-
dependent parameter of the first couple stress fluid coeffi-
cient. If £ » 0 = (n = 0), Eq. (2.7) denotes the improved
Stokes equation for non-polar fluids.

Furthermore, the relations of non-dimensional stress
and couple stress are obtained by

. cortG(m% - Mgg) + %621099] .
where
M, = i + 4[% + ;,2 aau;,, 2.9)
My = %% ;2%[‘;‘2’ - 9], 2.10)
Mgg = M + 4% % + ;2 [% + wr], (2.11)
My = %%[‘;";’ - 9] + ;2%, 2.12)
Mgy = M + 4% lz + [z (w, + cotbwg),  (2.13)

2,
where £ = aq—” is the length-dependent parameter on the
second couple stress fluid coefficient.

3 Axisymmetric solutions to the
problem

Suppose a solid sphere rotates through unbounded Brinkman
couple stress fluids. Therefore, the origin of the spherical
coordinate system (7, 8, ¢) is positioned in the center of the
sphere. The flow field functions are independent of ¢ due to
symmetry. Additionally, the vectors of velocity and vorticity
have the form:

T =qyr,0)e, © =we + wyey, 3.1

where e, €y, and e, are the unit vectors along the coordi-
nate lines r, 6, and ¢. Applying Eq. (3.1) into (2.7), we obtain
the fourth-order partial differential equation as follows:
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(L4 = AD)(Ly = A7)(r sinfg,) = 0, (3.2)

where the axisymmetric Stokesian differential operator L,
and the roots are expressed as

62 1- (2 az
Li=— 7

or? r: oé2
2+ M = §1238 = gt

Zi 2_4a2

The non-zero vorticity components w, and wy are expressed
as

{ = cos0,

(3.3

b - 1 — . - _ _—i .
@r= 2(V N e 2rsind 09(81n9q¢)’
(3.4)
Wo = l(V AQ) €= _lli(r )
A 2ror 1o

On the rotating solid sphere, the following boundary condi-
tions have two possible situations that were made assump-
tions by Stokes [9]: boundary conditions (A) declare that
there are no couple stresses at the border of the region
and (B) the second states that the angular velocity of the
boundary is equivalent to the vorticity along the boundary.
Physically, according to the first boundary condition, the
tangential velocity at the sphere’s surface depends on the
polar angle 6 and is proportionate to the angular velocity.
This condition emphasizes that there is no surface slip for
the tangential component of the velocity and illustrates how
the fluid or surface interacts with the rotating sphere. The
second boundary condition indicates that the sphere is not
under any extra couple stresses. This indicates that there are
no moments created by the applied forces that would result
in rotation around an axis. By demonstrating that the
stresses are entirely normal or shear with no twisting
effects, this condition streamlines the analysis:

(1) The no-slip condition:

qy = aQsino, (3.5)
(2) No couple stresses (Type A):
mijni = 0, (36)

where Q is the characteristic angular velocity, and the
range of the slip coefficient, B, is zero to infinity. Only
the kind of fluid flow and the boundary’s substance affect
this parameter. From this study, the perfect slipcase may
be reached when the slip coefficient disappears, and the
classical situation of no slip can be inferred as a special
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case when the slip parameter approaches infinity. In addi-
tion, n is the unit normal to the solid sphere’s surface. The
aforementioned boundary conditioning was proposed by
Stokes [6]. According to physical theory, a force distribu-
tion can only result from mechanical interactions at the
boundaries in this particular situation.

Consequently, the differential Eq. (3.2) has the fol-
lowing generic solution:

2 o
4y, 0)= Y ¥ [APr K, Gyr)

j=1n=1

+ B,Ef)r‘ilm%(/lz;r)]Pr}(COS9);

(3.7

where the functions K,(-) and I,(-) are the modified Bessel
functions of the first and second kinds of order n, respec-
tively. where A{”, BY, j = 1, 2 are the constants. Also, PX(-)
represents the associated Legendre polynomials of degree
n and order one. The components of vorticity are obtained

by

2 oo
wp(r, 0) = 1 nn + 1)r‘%Pn(c059)
2

j=1n=1

(3.8)
X [A"(j)K’“'%(Aljr) + Brgj)lrw%(/bjr)]:

128
wo(r, 0) = 5 Y Y r2Pl(cos6)

j=1n=1

x [A,ED[nKm%(Aur) + Alern-%(Aljr>] (3.9)

+BY )[nIrH%(/‘{er ) - AerIn—%(Aer)]

Furthermore, the couple stress functions are obtained
from (2.9)-(2.13) as follows:

2 oo
Myg(r,0)=2 Y Y r2P(cosh)

j=1n=1

x [—A,ED[(E-Z + &7y (yr)
+ (G + (7 + E7n(n 310)
+ 2))Kn+%u1jr>] +BI(E2+E

x JgjThy-1(Ayr) = (251

+ (5—2 + f"Z)n(n + 2))In+;(Azjr)]l’
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2 o 2 o
mr(r, 0)=2 ) ) r:Pi(cos6) m(r, 0) = 2E%+ &)Y 3 rin(n + 1)Pi(cos0)
j=1n=1 J=1n=1
«[-ag (e s e an AP sy + 20| 619
+ (7 + (824 E7Pn(n 311 - B,Sf)[ﬂzjrln_%()tzjr) ~(n+ 2)1,,+%(,121r)]],
+ 2))Kn+%()lljr)] +BI((E2+ &7 Inserting Eqs (3.7) and (3.10)~(3.14) into (2.8), we obtain
x MyrL,_1(gr) = (§72A%r? 2 @
e g To(r, 0) =173 Y Y 20 cosBesc?0By(cos)
_ j=1n=1
HE2HE DN + z))Im;(Az,r)]], =
x [_Ar(l])[AlirKn—%(Aljr )+ nKm%(/W)]
2 o
= -2 ~2 -3 .
Meg(r, ) =m + 2(E2+ & )]z:lngl(n + Dr 2B,(cosH) . B,E”[ﬂzjrln_;(ﬂzjr) _ TlIn+§(7tzjl”)]]
x [~ Ar([j)[CSCQAlern—%(Aljr) + csc20Pl(cos0)[AV((~cos? B(a, + acsch)
+ 03 + 0cscO)ArK,_1(AyT)
+ n(esch - 1)Kn+;(A1jr)J "
: + (-cos20(o; + nocsch) (3.15)
+ B,Ei)[CSCQ)lzjr‘In_%()lzjr) - n(csc - 1) (3.12) P nacsc@)Km;(Ayr)J
In+%(/12jr)]] + 172 cotfPl(cosh) + B,E/)[(cosez(az + acsch) - gy
x [A,Ej)[ﬂlern_%(Aljrﬁ rLKM%(/hjr)] = 0cscOAy T, 1(AyT)

| + (—cos? 0(ag + nacsch) + ag
- B,E’)[ﬁzjﬂ _%(/Izjr) - nIn+;(/12j7”)]]»

L + nacscB)Im%(Aer)]],
Mgg(r, 0) =m + 2E2+ EHr2 Yy Y n(n

j=1n=1 where
* Dh(cosf) o=(n+DE?+E,
x [A,EJ)KH+%(A1jr) + B,$1>1,,+%(Azjr)] 0y = Afr%2 - r? - 2872 - 2877,
. (313) =)(2, 2872 — p2 — 9§72 _ 9 =2
+ CotOP}(cosh) A,gf)[)tlern_%(Aljr) AR
Oy = Ar¥2 - r2 - g2 - &7
1y i) = Byt G 0= et - - g
05 = Mr2En - (n + 2)r? - n(2n + 3)(§2 + 79,
— n.In+%(A2]'r)] . Oe = )lz-rzf‘zn _ (n + z)rz _ n(zn + 3)(5—2 + EI_Z)
6 2j ’
Hence, from Eq. (3.6), we obtain m,, = 0 on the surface of 07 = Mr% 7 ~ (n + 2)r? - 2ng,

the object. g = Ar2Ein - (n + 2)r - 2no.
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4 Torque due to stress and couple
stress tensors

Torque in fluids arises from the forces due to stress and, in
couple stress fluids, additional microstructural effects. In
classical fluids, torque results from pressure and viscous
forces acting on surfaces, calculated using the stress tensor.
In couple stress fluids, which account for internal body and
surface couples, torque includes contributions from both
the stress tensor and the couple stress tensor, reflecting
the fluid’s microstructure. These effects are significant in
systems such as suspensions, polymer solutions, and micro-
fluidic devices, influencing rotational dynamics, lubrication,
and energy dissipation. This enhances the fluid’s ability to
model behaviors in complex systems.

The torque T,¢, of the fluid flow affecting the axisym-
metric particle is controlled on the solid of revolution and
calculated according to the following [27]:

Ve
T, = Znua3jrr¢ |r=a SIN®0d0.
0

4.1

Substituting Eq. (3.15) into formula (4.1), we obtain

2
T, = Znya‘% Zr[
j=1

-AY )[ﬁljaK;(Aya) + Ky(Aja)

+ Bl(j)[)lzjal%(/lzja) - Ig(/lzja)]

+ 114

2 1
—50'1 + 70’ + 203 AljaK%(/hja)

(4.2)

+

2 1
_50'7 + 70’ + 205 K%(/llja)

+ B Dojals (Joja)

Ea —EO'-ZO'
3% 2 4

+

2 s
——0g + EO' + 20% Ig(/lz]a)]

3

The torque T, due to the couple stress tensor exerted on a
spherical particle, a; is

n
T = 2ﬂuazj(mr, €0s0O — MygSinO)|y-q Sin0dO.  (4.3)
0

Substituting (3.10) and (3.14) into (4.3), we obtain

2
Tn=-2In%uay x |-AY )[(E'2 + &) Xyjak (ja)
=1

+ (N a? + (£ + 35’_2))1(;(7[1]'0)] “44)

+ B2 + & yan )

- €@ + €+ E7Dn(n + DIL(y)
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5 Interaction between two
eccentric spheres

We examine the steady couple stress incompressible fluid
flow produced by two rotating eccentric spheres of radii a;
and a, with two angular velocities Q; and Q,, respectively,
around their common diameter (z-axis), as illustrated
in Figure 1. The spherical coordinates, in this case, are
(1, 02, ,) with the origin at the outside sphere center
and (r, 64, ¢;) based on the inside solid sphere center,
which is situated at a distance of h from the cavity center.
Suppose that couple stress fluids rotate consistently in an
axisymmetric direction around a sphere of radius a;. The
flow field functions are invariant with respect to ¢ due to
symmetry. Furthermore, the velocity and vorticity vec-
tors are expressed as

7 =qyr,0)e; and & =w/e+wpey (51

where ¢, €y, and e, represent the unit vectors along the
coordinate lines r, 8, and ¢. Furthermore, the coordinate
systems (13, 01, ¢,) and (1, 0, ¢,) are connected by the
following relations (1, 6;) and (13, 6,) is given by rZ = rZ +
h2 - 2rh cos, or by rf =r? + k% + 2rih cosf;. The equa-

tions’ linearity enables the application of the superposition
—(J)

principle. However, we choose the velocity q o and the
tangential couple stress functions mr(é) in the form:

Figure 1: Sketch of Brinkman couple stress fluid between two rotating
eccentric spheres.
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—»(1) 1) ) 2 o
ri, 0;) = n, 0) + n, 0 .
( ] ) q¢ ( 1 1) q¢ ( 2 2) (52) azgz Sln92 = Z ZA(])rl ZK 1()[1]r1) P,}(Cosel)
my(ry, ) = mg,(ri, 01) + mB,(r, 05). j=in=1 5.9
2 1
From the differential Eq. (3.2), four boundary conditions are + Y Y BYa, ZIm%(AZjaz)Pﬁ(COS 0,),
required to describe the problem. The boundary conditions JFin=1
on the surfaces of the spheres are established as follows: 2 © 5 ) "
_ 0=-2 a; 2PY(cos0)AY
n=a: gy = aQising;, My, =0, (.3) ,Zlnzl Lo
n=a: gy = GLSING;, My, =0, (54) x [(E‘Z + & Ok, 1(yjm)
where Q;, j=1,2 are the angular velocities of the two +(E7%at + (824 E7Hn(n + 2))
spheres. Accordingly, the mechanical interaction at the 2w (5.9)
wall is equivalent to the no-slip condition at the boundary, Ky 1i(Ayay)| + 2 Yo 2Pl(cos 0,)
which states that all solid borders have zero fluid velocity. j=in=1
In addition, boundary walls can prevent fluid elements x Brgj)[(gc—z + E N gnl, 1 (A1)
from rotating, so there is no zero couple stress when it
comes to boundary walls. T.he field functions, the velocity, — (& Zflz,rz +(E2+ f"Z)n(n + 2))In+1(/12jrz)] ’
and the couple stress are given by =y
[ 2 o
qy(r, 0) = Z YA 2Kn+1(/11]r1)P1(c0891) 0=-2 Z Z 2P1(c0561)A(])
j=1n=1 j=1n=1
) o . (5.5)
+ 2 Y Br "L (gyr)Pi(cos6y), X |2+ &7 yak, ()
j=1n=1
2 ® 5 ‘ + €7l + (§2+ &7+ 2)K , 1(Aya)
me:(r, 6)==2 3 3 11 2P(cos6)AY ’ r=e: (510)
j=1n=1 2
+2) On 2P1(c0392)B(1)
|6 £ iy, s0m) pte
-2 =2 . .
+ (EABE + (82 + E7Dn(n X (&7 + &)yl 1 (A1)
+ 2))Kn+%(/11jr1)] 66 - 7N+ E2+E D + 2))In+%(/12jr2)]-

‘9 i i’”z 2pl 1(cos0,)B 0 Then, from Eqs (4.2) and (4.4), the torque due to stress and

jinm1 couple stress forces T, and T;, acting on the inside particle
a; = 11s given by
(E2+ & Dyn, -1(gm)

12
T, = 2muay ) 7 x [— (j)[)l- K1 (Jyjay) + Ks(hy ]
- T+ 4 ETNG + ) O ot 2 A ke Ko

+ Bf”[@aﬂ; (gjay) — L(hgjan)

Substituting the field functions from (5.5) and (5.6) into 9 1
the boundary conditions from Eqs (5.3) and (5.4), we have + 114 “3oit 5ot 203 iK1 (Ajar)
the linear system of equations in the four unknowns (5.11)
L 2 1n
Apgj):Brgj):] =12as + —§O'7 + 70’ + 205 K%()qjal)
@ Ly sinb; = Z 2 AP e 2Kn+1(7l1101)P1(C0391) +BY ;0 B ga 204 {lojasls (Doy 1)
j=1n=1
(5.7
e 1 2 i
+ 2 2BIn U 1(yn)|  Pi(cosfy), tlm3o%t ot 206|I3(Aja1) ||,
j=1n=1 2

rn=a
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12
Tn= _Hﬂzyal 2 z
j=1

+ (Efal + (§72 + 38 )Ka(hya)

-4 + £ R Oye)

(5.12)
+ BO(E + & e tye

- (Egaf + (§7+ 38 ) h(hya)

6 Results and discussions

In order to satisfy the boundary condition over the entire
semicircular arc of a sphere, it is necessary to resolve an
infinite number of unknown constants. As a result of
boundary collocation, the infinite series can be truncated
into manageable finite representations by applying the
boundary condition at a finite number of discrete points
along the arc. It is possible to truncate the series after N
terms by imposing a boundary condition at N discrete
points, which leads to a system of 2N simultaneous linear
equations. In order to clarify the unknown constants, the
equations can be solved using a matrix reduction tech-
nique. By increasing N, the accuracy of this truncation
can be improved, with the magnitude of the truncation
error diminishing as N' approaches infinity. This combina-
tion of methods provides a robust framework for analyzing
the axisymmetric creeping flow generated by the particles
in a couple stress fluid. For the application of boundary
conditions in fluid dynamics, this method emphasizes the
strategic selection of points along the semicircular arc of a
sphere.

Overall, our initial point of selection is 6 = g since this
defines the area projected from the particle normal to the
direction of motion. Furthermore, the points 8 = 0 and
0 = 7 are also significant, although their use may lead to
the formation of a singular coefficient matrix in the equa-
tions for the unknown constants A, and B,,. There are four
fundamental collocation points that are chosen to address
this issue while maintaining symmetry: 6 = ¢, 6 = g - &
and 6 = 7 — a. The optimal value of ¢ is 0.01 o, which
allows the numerical results for drag force to converge to
at least four significant figures. Using a sufficient number of
well-distributed collocation points, the solution for the
torque can be approximated accurately, regardless of
the particle’s actual form or boundary conditions in pre-
vious studies [28-30].

The consequences of these studies are then explored in
detail, along with how the presence of couple stresses affect
the fluid’s behavior under different flow circumstances.

DE GRUYTER

When a fluid is able to withstand internal couple stresses,
for example, its flow resistance changes, or it produces
unique stress distributions compared with other fluids. In
addition to discussing flow across porous media, it would
also be interesting to discuss the impact of couple stress
fluids on the microstructure of the porous matrix, which
could alter permeability or other important parameters.
The relevant parameters are the length of the first and
second couple stress parameters, ¢ and ¢’, which take the
range from 1.0 to ®, the permeability parameter, a, which
value from 1 to =10, the separation distance § = (az — ay)/
h =1.001...10, the size ratio a;/a; = 0.1...0.99, and the
angular speeds Q,/Q,. This work discussed the normalized
torque with respect to stress tensor T,/ T, and couple stress
tensor T,/ T that appears graphically from Figures 2-11 and
Table 1.

Figure 2 illustrates the normalized torque T;/T. as a
function of the separation distance (a; — a;)/h for different
values of the angular velocity ratio Q,/Q;. The data are
presented for a fixed set of parameters: ¢ = 4.0, a; = 0.2,
a, = 2.0, and a = 1.5. The curves show how normalized
torque varies with separation distance for various angular
velocity ratios, ranging from Q,/Q; = -4.0 to other values.
The torque remains relatively constant for most values of
(a; — ap)/h, suggesting a stable behavior in the system
across different conditions. The variations in the curves
indicate how changes in the angular velocity ratio influ-
ence the torque for the given configuration. This figure
provides insights into the relationship between torque
and separation distance, highlighting the impact of angular
velocity ratios in the system dynamics.

4.0

2.0
0.0
2.0
4.0

Y

Figure 2: Normalized torque T,/T.. versus the separation distance for
various values of angular velocity ratio Q,/Q; at
£=40,a/a,=02,& =20,and a = 15.
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Table 1: Dimensionless torque T,/ T. on the rigid sphere a; with § = &' = 30 and the two spheres rotating in opposite directions

% a;/ay a=0.0[9] a=10 a=2.0 a=3.0 a=4.0 a =10.0
1.05 0.1 2.122441 0.009290 0.013862 0.018227 0.021941 0.024624
0.2 2.269303 0.014601 0.014031 0.018232 0.021941 0.024624
0.3 2.430441 0.026206 0.016550 0.018576 0.021983 0.024624
0.4 2.631674 0.038509 0.023930 0.021166 0.022742 0.024624
0.5 2.910755 0.047317 0.034613 0.028292 0.026541 0.024649
0.6 3.335021 0.066856 0.051530 0.041589 0.035944 0.025059
0.7 4.056916 0.091365 0.074623 0.062736 0.054287 0.028426
0.8 5.530868 0.141426 0.119717 0.103982 0.092054 0.044943
0.9 10.023727 0.296392 0.259082 0.231912 0.210972 0.119431
0.99 91.579170 3.090827 2.735826 2.466769 2.249198 1.119105
0.999 907.585754 30.995344 27.398773 24.645763 22.394852 10.498260
4.0 0.1 2.010692 0.009295 0.013862 0.018227 0.021941 0.024624
0.2 2.026726 0.015348 0.014058 0.018232 0.021941 0.024624
0.3 2.069914 0.028412 0.016953 0.018630 0.021989 0.024624
0.4 2.156706 0.040973 0.024844 0.021446 0.022817 0.024624
0.5 2.312791 0.047696 0.034379 0.027981 0.026323 0.024646
0.6 2.587229 0.066756 0.051112 0.041254 0.035741 0.025053
0.7 3.093276 0.089896 0.073039 0.061348 0.053186 0.028289
0.8 4.170103 0.137255 0.115798 0.100496 0.089002 0.043807
0.9 7.512265 0.284453 0.248203 0.222316 0.202500 0.115038
0.99 68.504509 2.943968 2.599263 2.342640 2.135705 1.033162
0.999 678.908569 29.496065 25.994425 23.357748 21.205435 9.537851
10.0 0.1 2.010401 0.009307 0.013862 0.018227 0.021941 0.024624
0.2 2.024912 0.015545 0.014066 0.018233 0.021941 0.024624
0.3 2.065131 0.028598 0.016992 0.018636 0.021990 0.024624
0.4 2.147774 0.041094 0.024896 0.021464 0.022822 0.024624
0.5 2.298784 0.047732 0.034379 0.027976 0.026321 0.024646
0.6 2.567110 0.066757 0.051095 0.041242 0.035736 0.025054
0.7 3.065037 0.089818 0.072955 0.061275 0.053130 0.028285
0.8 4.128208 0.137021 0.115577 0.100300 0.088830 0.043746
0.9 7.433049 0.283770 0.247572 0.221747 0.201987 0.114743
0.99 67.771484 2.935644 2.591443 2.335432 2.129021 1.027992
0.999 671.643616 29.411222 25.914204 23.283249 21135777 9.480927
0 0.1 2.010351 0.009310 0.013862 0.018227 0.021941 0.024624
0.2 2.024594 0.015580 0.014068 0.018233 0.021941 0.024624
0.3 2.064278 0.028634 0.016999 0.018637 0.021990 0.024624
0.4 2.146158 0.041117 0.024906 0.021467 0.022823 0.024624
0.5 2.296226 0.047739 0.034379 0.027975 0.026321 0.024646
0.6 2.563412 0.066757 0.051092 0.041240 0.035735 0.025054
0.7 3.059825 0.089803 0.072939 0.061262 0.053120 0.028284
0.8 4.120455 0.136976 0.115536 0.100263 0.088798 0.043734
0.9 7.418374 0.283641 0.247452 0.221639 0.201890 0.114686
0.99 67.635643 2.934221 2.590061 2.334135 2.127805 1.027024
0.999 670.301086 29.415516 25.912762 23.278940 21.129986 9.472232

Figure 3 presents the normalized torque T,/T. as a
function of the separation distance (a; — a;)/h for various
values of the ratio a;/a,. The analysis is based on a fixed set
of parameters: & =10.0, Q,/Q; =10.0, and a = 1.0. The
curves indicate that as the separation distance approaches
zero, the normalized torque experiences a significant drop,
particularly for lower values of a;/a; (e.g., 0.1). This beha-
vior highlights the strong dependency of torque on the

geometric configuration and the angular velocity ratio.
The marked differences in the torque values suggest that
the system dynamics are highly sensitive to the separation
distance, with larger values of a;/a, leading to more stable
torque levels at increased distances.

Figure 4 depicts the normalized torque T,/ T.. as a func-
tion of the separation distance (a, — ¢y)/h for various
values of the parameter ¢ while holding aj/a, = 04,
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Figure 3: Normalized torque T,/T., versus the separation distance for
various values of angular velocity ratio a;/a, at
£=10.0,9Q,/Q¢ =10.0, &' —» o, and a = 1.0.
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Figure 4: Normalized torque T,/T versus the separation distance for
various values of angular velocity ratio ¢ at
m/a; = 04,Q,/Q; =4.0,& =10,and a = 1.0.

Q,/Q1 = 4.0, and a = 1.0. The analysis reveals a pronounced
sensitivity of the normalized torque to variations in the
separation distance, particularly as it approaches zero. At
lower values of ¢ (e.g., 2.5), the torque exhibits a dramatic
increase, highlighting the enhanced coupling effects within
the system under tighter spatial constraints. Conversely,
higher values of ¢ reflect a more gradual torque response,
indicating a transition toward a more stable dynamical
regime. This behavior can be attributed to the interplay
between angular momentum transfer and the geometric
configuration, which collectively dictate the system’s
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Figure 5: Normalized torque T,/T. versus the separation distance for
various values of angular velocity ratio ¢ at
a/a; = 04, Q,/Q = 4.0,¢ =10.0, and a = 1.0.

mechanical stability. The steep gradients observed in the
curves illustrate the non-linear characteristics of torque as
influenced by both the separation distance and the angular
velocity ratio.

Figure 5 illustrates the normalized torque T;/T.. as a
function of the separation distance (a; — a;)/h for various
values of the angular velocity ratio ¢’, with parameters
fixed at ay/a, = 0.4, Q,/Q1 = 4.0, £ = 10.0, and a = 1.0. The
data reveal a striking characteristic: as as/h increases, the
normalized torque stabilizes at values near unity, irrespec-
tive of the specific value of ¢’. This observation under-
scores a significant decoupling of the torque from the
separation distance for larger ¢’, indicating that the system
approaches a state of dynamic equilibrium. At lower values
of &’ (eg., 5.0), there is a more pronounced response to
changes in separation, suggesting that the system remains
sensitive to spatial configurations and angular momentum
interactions. However, as £’ increases, the curves converge,
indicating a reduction in the influence of angular velocity on
the torque dynamics. This behavior highlights the transition
from a regime dominated by angular momentum transfer
dynamics to one where the geometric factors play a more
pivotal role. Overall, Figure 5 provides valuable insights into
the torque characteristics of the system, illustrating how
varying angular velocities can modulate the torque response
over different spatial configurations, ultimately leading to a
regime of stability at higher separations.

Figure 6 presents the normalized torque T,/T. as a
function of the separation distance (a; — a;)/h for various
values of the angular velocity ratio a, while maintaining
a/a, = 0.4, 2,/Qq = 4.0, and &’ = . The trends observed in
this figure reveal critical insights into the torque behavior
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Figure 6: Normalized torque T,/T.. versus the separation distance for
various values of angular velocity ratio a at aj/a; = 0.9, Q,/Q; = 4.0,
and &' =& > o,

as influenced by the angular velocity ratio. At lower values
of a (e.g., 1.0), the normalized torque exhibits a relatively
steep rise with decreasing separation distance, indicating a
robust coupling between the components of the system.
This behavior suggests that as the components come closer,
the interactions become increasingly significant, leading to
enhanced torque generation. The underlying physics can
be attributed to the increased angular momentum transfer
and the proximity-induced coupling effects, which domi-
nate the torque dynamics in this regime. As a increases,
particularly beyond 2.0, a noticeable shift in the torque
response is observed. The curves begin to flatten out, sug-
gesting that the system approaches a more stable regime
where the torque becomes less sensitive to changes in
separation distance.

This indicates that higher angular velocities contribute
to a more uniform distribution of forces within the system,
thereby reducing the torque fluctuations as the separation
varies. For larger values of a (e.g., 10.0), the normalized
torque approaches a near-constant value across a wide range
of separation distances. This behavior highlights a significant
decoupling of torque from spatial configurations, suggesting
that the dynamics are increasingly governed by the balance
of forces rather than the geometric arrangement of the com-
ponents. Overall, Figure 6 illustrates how the angular velo-
city ratio significantly influences the torque response in the
system. The transition from a sensitivity to separation dis-
tance at lower a values to a stable, nearly constant torque at
higher a values emphasizes the complex interplay between
angular momentum dynamics and geometric configurations,
ultimately shedding light on the stability characteristics of
the system under varying operational conditions.
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Figure 7: Normalized torque T,/ T. versus the size ratio for various values

of angular velocity ratio Q,/Q; at “2;“1 =15,a=10,& =10,and ¢ = 4.0.

Figure 7 illustrates the normalized torque T/T. as a
function of the size ratio &/& for various values of the
angular velocity ratio Q,/Q,, with other parameters fixed:
a =15 ¢ =10, and ¢ =4.0. The graph clearly demon-
strates how the normalized torque behaves under different
conditions of size and velocity ratios. As the size ratio
increases, the torque initially shows a positive trend for
certain angular velocity ratios, particularly for the higher
values of Q,/Q; (represented by the magenta and cyan
curves). In contrast, for lower velocity ratios (shown by
the black and blue curves), the normalized torque decreases
and eventually becomes negative. The trend indicates a sig-
nificant influence of the angular velocity ratio on the tor-
que’s direction and magnitude, highlighting how the relative
sizes of the objects and their rotational velocities impact the
overall system dynamics.

Figure 8 presents the normalized torque T,/T.. as a
function of the size ratio /¢, for various values of perme-
ability parameter a, while keeping the other parameters
constant: £ = 10.0, &’ = 20.0, and Q,/Q; = -2.0. The graph
shows a clear increase in normalized torque with the
increasing size ratio, and this effect becomes more pro-
nounced as the permeability parameter a increases. For
smaller values of a (represented by the black and blue
curves), the torque increases gradually with the size ratio,
but the slope remains relatively mild. As a increases, par-
ticularly for a = 4.0 and a = 5.0 (indicated by the pink and
green curves), the torque increases at a much sharper rate.
This suggests that higher permeability values significantly
amplify the effect of the size ratio on the normalized
torque, leading to a much steeper rise in torque. This beha-
vior is important for systems where permeability plays a
key role, such as in porous materials or fluid-structure
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Figure 8: Normalized torque T,/ T, versus the size ratio for various values
az-ay

of permeability a at —— = 10.0, Q,/Qq = 2.0, & =10.0, and & = 20.0.

interaction problems, where changes in permeability can
have a substantial impact on the overall mechanical or
fluid dynamic performance.

Figure 9 illustrates the normalized torque T,/T. as a
function of the size ratio &/¢&, for various values of angular
velocity ratio Q,/Q,, while keeping other parameters fixed:
a=10, =10, and & =4.0. The results show that the
torque behavior is strongly influenced by the angular velo-
city ratio. For negative values of Q,/Q,, represented by the
curves for Q,/Q; = -4.0 (black) and 2,/2; = -2.0 (blue), the
normalized torque decreases initially as the size ratio
increases and eventually rises steeply for larger size ratios.
The other curves, representing lower angular velocity ratios
(e.g., Q,/Q1 = 0.0, Q5/Qq = 2.0, and Q,/Q; = 4.0), exhibit a
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Figure 9: Normalized torque T,/ T., versus the size ratio for various values
of angular velocity ratio Q;/Q; at ;™ = 1.5,a = 1.0, = 1.0,and € = 4.0.
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more gradual increase in torque with the size ratio. The
trends indicate that for negative angular velocity ratios,
the torque tends to decrease initially before increasing,
whereas for positive angular velocity ratios, the torque stea-
dily increases with the size ratio. This behavior underscores
the significant role of angular velocity differences in con-
trolling the torque generated in such systems, particularly in
configurations where the angular velocities of the two
objects differ.

Figure 10 illustrates the normalized torque T;,/T; as a
function of the size ratio for different values of the length
of the first couple stress parameter ¢. The graph plot values
for ¢ = 2.5,4.0, 6.0, and 8.0 using various line styles. The
curves demonstrate how the normalized torque behaves as
the size ratio approaches 0.9, revealing distinct trends
based on the chosen parameter values. Notably, as &
increases, the torque approaches a limiting value, indi-
cating a convergence in behavior among the different
parameter settings.

Figure 11 displays the normalized torque T,,/T as a

Q

function of the size ratio o for various values of the second
1

couple stress parameter ¢’. The plotted lines correspond to
different parameter settings: £’ = 2.5, 4.0, 6.0, 8.0, and 10.0.
Notably, as the size ratio increases, the normalized torque
exhibits an upward trend, indicating that larger size ratios
lead to higher torque values. The divergence in the curves
suggests that the choice of the second couple stress para-
meter significantly influences the relationship between
torque and size ratio. As £’ increases, the torque response
becomes more pronounced, particularly at larger size
ratios. This behavior highlights the importance of couple
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Figure 10: Normalized torque T,/ T., versus the size ratio for various
values of the length of the first couple stress parameter ¢
at % - w,a = 10,8 — ®,Q/Q = -10.
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Figure 11: Normalized torque T,/ T.. versus the size ratio for various

values of the length of the second couple stress parameter &'
a—-ay
at ——

M =30,a =10, = 20, 2/ = -0.1.

stress effects in analyzing torque in systems with varying

geometrical configurations.

Our discussions can be summarized as the following
main points:

* The variation of normalized torque with the separation
distance and the size ratio between spheres for different
angular velocity ratios shows that the decreasing torque
trend at higher angular velocity ratios underscores the
reduced influence of couple stress effects at elevated
speeds, which is critical for dynamic system applications.

* The normalized torque as a function of parameters such as
couple stress properties, size ratios, and permeability indi-
cates that increasing couple stress parameters or adjusting
size ratios significantly influences torque, offering path-
ways to optimize fluid behavior in engineering systems.
The larger size ratios can enhance torque generation in
systems with positive angular velocity ratios.

* This diagram illustrates how torque affects with couple
stress parameter within the fluid medium. For small
separation distances, it arrives at the maximum value,
and at a certain point, it is near to (a, — a;)/h = 3, rever-
sing its direction to reach its minimum value. This aids in
the development of predictive models and improving
fluid-structure interaction analysis.

* For negative angular velocity ratios, the torque initially
decreases before increasing, indicating a complex rela-
tionship influenced by the size ratio. But, for positive
angular velocity ratios, the torque consistently increases
with the size ratio, highlighting the direct impact of
angular velocity differences on torque generation.
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* As the first couple stress parameter () increases, the
torque values stabilize, suggesting that higher couple
stress characteristics lead to more consistent torque
responses across varying size ratios.

The normalized torque from couple stress increases with

the size ratio % indicating a stronger torque response at
1

larger size ratios. This behavior is influenced by the
second couple stress parameter ¢’, with higher values
leading to more pronounced torque variations.

7 Conclusions

The study investigates the torque acting on a solid sphere
positioned within a spherical container filled with a porous
medium saturated by incompressible couple stress fluids.
It is hypothesized that the inner sphere moves along the
axis of symmetry. A semi-analytical method is employed to
derive the field functions and compute the torque asso-
ciated with both stress and couple stress forces, with gra-
phical representations provided. Additionally, numerical
calculations of the torque, including limit cases, are pre-
sented in tabular form. The study of couple stress fluids in
porous media has important applications. Furthermore,
the future directions of this work could include (a) inves-
tigating the effects of varying permeability and fluid prop-
erties on stress distribution and flow behavior in couple
stress media under different rotational speeds, (b) exploring
the impact of eccentricity on stability and dynamic response
in rotating systems, potentially incorporating non-linear
fluid dynamics, and (c) developing predictive models that
integrate experimental data to enhance the understanding
of fluid-structure interactions in such media, informing
applications in engineering and materials science. Also,
the studies by Kumar and Jangili [31] and Siva et al. [32]
delve into the complexities of electroosmotic flow in couple
stress fluids within microchannels. While the former
emphasizes heat transfer analysis in rotating systems, the
latter investigates the impact of electromagnetohydrody-
namics and slip-dependent zeta potentials on rotational
flow dynamics. Together, they enhance the understanding
of fluid behavior in microfluidic systems under coupled
physical and thermal effects. On the other side [33-35],
these studies explore various effects on magnetohydrody-
namic flows, focusing on the Soret, Joule, and Hall effects in
rotating mixed convective scenarios. They investigated the
behavior of elastico-viscous fluids through porous media
and the implications of ion slip in unsteady conditions.
These studies contribute to a deeper understanding of fluid
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dynamics in engineering applications involving magnetic
fields. These can be taken into account in the future work.
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