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Abstract: Diesel engines find extensive application in var-
ious production sectors, including industry and agricul-
ture. Strengthening the condition monitoring and fault
diagnosis of diesel engines is of paramount importance
in ensuring the smooth operation of production systems.
Timely detection and elimination of defects play a crucial
role in maintaining the normal functioning of these systems.
Significant temperature fluctuations during the operation of
diesel engines are often associated with malfunctions,
including ignition failure, abnormal intake, and exhaust
processes. Hence, the application of infrared thermography
(IRT) for collecting infrared images of diesel engines and
conducting quantitative analysis of the temperature distri-
bution in these images has proven to be a faster and more
efficient method for recognizing the health status of diesel
engines, compared to other fault diagnosis methods. In
recent years, there has been a growing interest in deep
learning (DL) for fault diagnosis in various industries. This
emerging trend has attracted significant attention from
researchers. Convolutional neural network (CNN) has gar-
nered significant attention owing to the exceptional cap-
ability in extracting image features. Therefore, the article
presents a new fault diagnosis method for diesel engines
using IRT and CNN. The proposed method involves con-
ducting adaptive histogram equalization for image enhance-
ment, followed by employing Softmax regression for pattern
recognition. Finally, two sets of self-made experimental data
are used to investigate the impact of temperature variations

on fault diagnosis performance and to validate the efficacy
of the proposed method in comparison with three DL
methods. The findings indicate that this method exhibits
superior performance in the realm of diesel engine fault
diagnosis.
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1 Introduction

Diesel engines, as a common type of reciprocating machine,
serve as the primary power source for various equipment
and find extensive application in agricultural production,
petroleum equipment, defense technology, military industry,
ship transportation, and other domains. Therefore, enhan-
cing the dependability of diesel engines and guaranteeing the
seamless functionality hold immense importance [1]. Diesel
engines are susceptible to a range of faults during high-speed
and heavy-duty operation due to the intricate and challen-
ging working conditions, as well as certain inherent manu-
facturing defects. These faults have a significant impact on
production efficiency and can even lead to major safety acci-
dents [2]. Through the implementation of real-time condition
monitoring and fault diagnosis techniques, the defects can be
promptly identified and rectified. Additionally, appropriate
maintenance measures can be implemented to effectively
mitigate the risk of catastrophic fault and significant eco-
nomic losses.

Currently, in the field of mechanical equipment fault
diagnosis, sensor technologies commonly employed include
vibration signals [3–5], sound signals [6], temperature signal
analysis [7], as well as oil [8] and infrared image analysis
[9–11]. The sensitivity and maintenance costs of the afore-
mentioned methods [12] in the context of mechanical equip-
ment fault diagnosis are illustrated in Figure 1.

Based on the findings presented in Figure 1, it is evi-
dent that the higher sensitivity of the sensor technology
allows for the detection of abnormalities in mechanical
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equipment through signal analysis. However, accurately
pinpointing and resolving faults is not currently feasible,
leading to lower accuracy in fault diagnosis and subse-
quently higher maintenance costs. Conversely, as the sensi-
tivity of the sensor technology decreases, the identification
and characterization of faults become clearer, resulting in
reduced maintenance costs. However, the decrease in sensi-
tivity also increases the likelihood of equipment failure.

Among the fault diagnosis methods mentioned above,
vibration signals are widely applied in fault diagnosis of
diesel engines [13–15], primarily due to the ease of mea-
surement and ability to capture crucial dynamic informa-
tion of mechanical equipment, including the reciprocating
motion of piston connecting rod components, crankshaft
rotation, and valve opening and closing [16,17]. However,
the analysis of vibration signals is subject to certain inherent
limitations. The limitations include the need for contact
measurement, the presence of complex noise pollution,
and the requirement for local detection. Furthermore, the
collection process of vibration signals typically takes place
in challenging working environments, such as those with
high temperatures or oil and gas-filled equipment surfaces.
These conditions can easily result in signal measurement
distortion and even damage to the sensors [18]. Additionally,
the positioning of vibration signal sensors is typically con-
ducted during equipment shutdown, resulting in certain
losses associated with the shutdown process.

The structure and composition of diesel engines exhibit
a high degree of complexity, while the working environment
is characterized by harsh conditions. When faults arise,
it is common to observe abnormal occurrences such as

heightened friction, unusual vibrations, and fluctuations in
temperature [19]. In recent years, temperature signals have
garnered significant attention from scholars both domesti-
cally and internationally, owing to the abundant information
regarding the condition of mechanical equipment [20–22]. In
recent years, infrared thermography (IRT) has emerged as a
promising non-contact and non-destructive testing technique
for acquiring temperature data of devices [23]. The infrared
thermal camera serves as the central element of the IRT
system, enabling the remote monitoring of equipment sur-
face temperatures. It is capable of converting temperature
distributions into infrared images, which can be visually
displayed. Compared to contact temperature measurement,
IRT offers a simpler and more intuitive approach. By ana-
lyzing the abundant fault information present in infrared
images, IRT enables a comprehensive assessment of the
equipment’s fault status. Currently, IRT has been extensively
and effectively applied in the domains of equipment condi-
tion monitoring and fault diagnosis, as depicted in Figure 2.
Furthermore, a comprehensive examination and synthesis of
the fundamental principles, current application status, and
procedural framework of IRT can be found in the litera-
ture [24].

This article aims to leverage the distinctive benefits of
IRT to propose a novel approach for fault diagnosis of
diesel engines. The proposed method is designed to achieve
precise and efficient fault diagnosis. In this study, infrared
images of diesel engines exhibiting various fault states were
acquired using an infrared thermal camera. Subsequently,
CNN was employed to automatically extract the distin-
guishing features from the infrared images. Finally, the

Figure 1: Sensitivity and maintenance costs of various sensor technologies.
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utilization of a softmax regression (SR) classifier is deployed
to effectively classify different fault types of the diesel
engine. The efficacy of this method is validated through
the analysis of experimental data obtained from a high-pres-
sure common-rail diesel engine.

The subsequent sections of the article are structured as
follows: Section 2 provides a comprehensive review of rele-
vant literature, while also analyzing the current research
state in the field. In Section 3, the article provides a concise
introduction to the related background knowledge of the
fault diagnosis method proposed, as well as an overview of
the fault diagnosis method framework. Section 4 offers a
comprehensive overview of the fundamental elements of
the diesel engine system and the data acquisition system.
Additionally, it examines the procedural approach to fault
diagnosis. In Section 5, the article introduces two self-made
datasets, as well as the parameter settings of the network
models that are relevant to this study. Section 6 provides a
discussion and comparison of the experimental results,
thereby verifying the efficacy of the proposed method.
Finally, conclusions and contributions of the article are
summarized in Section 7.

2 Related literature review and
their limitations

In recent years, experts and scholars from various coun-
tries have conducted numerous meaningful studies on the

significant application value of IRT in the field of mechan-
ical equipment fault diagnosis. This is due to the unique
advantages of IRT in temperature measurement. Extracting
image histogram features is considered a straightforward
and efficient method for representing features. Younus
et al. [25] introduced a novel approach for fault diagnosis
of rotating machinery by using infrared image histogram
features. Principal component analysis (PCA) and indepen-
dent component analysis (ICA) were deployed during the
feature extraction phase. Finally, support vector machine
(SVM) was applied to classify the various fault states of
rotating machinery. In a separate investigation conducted
by Younus and Yang [26], the application of the two-dimensional
discrete wavelet transform (DCT) was employed to decom-
pose infrared images of rotating machinery. By extracting
the histogram feature parameters of each layer following
decomposition, the Mahalanobis distance and relief algo-
rithm were applied for feature extraction. Subsequently,
fault pattern recognition was performed using SVM and
linear discriminant analysis (LDA). Widodo et al. [27]
employed a self-organizing map (SOM) artificial neural net-
work (ANN) to detect the faults in the rotor system and
rolling bearings. The authors extracted histogram features
from infrared images, such as mean, variance, standard
deviation, central moment, entropy, kurtosis, maximum,
and minimum, to identify misalignment, imbalance, loos-
eness, and defects in the outer ring, inner ring, rolling
body, and cage of rolling bearings. Bagavathiappan et al.
[28] used IRT as a remote sensing technique to capture the

Figure 2: Related IRT application scenarios: (a) Defect detection of chips, (b) power facility troubleshooting, (c) evaluation of material extrusion
fatigue, (d) inspection of building structure and internal facilities, (e) lumbar intervertebral disc examination in medical field, and (f) condition
monitoring of the wind turbine gearbox.
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atypical temperature patterns on the surface of a machine,
successfully implementing the method for real-time moni-
toring of the blower impeller end bearing, shaft, and motor
in the exhaust system of a nuclear power plant, effectively
preventing the occurrence of major malfunctions. Janssens
et al. [29] introduced a novel automated system for fault
diagnosis of bearings using IRT, with a specific focus on
rotating machinery bearings as the subject of investigation.
By utilizing various feature parameters, including tempera-
ture standard deviation, Gini coefficient, and optical moment,
SVM was employed to classify bearing fault types that are
challenging to diagnose with conventional techniques, such
as the absence of lubricating oil. In a separate study [19],
random forest (RF) was employed to conduct early fault
diagnosis of rotating machinery by extracting the Gini coef-
ficient from infrared images. Glowacz and Glowacz [11] pro-
posed a novel method for extracting features from infrared
images, which involves selecting the difference region of the
image as the fault feature and classifying the fault patterns
using K-means, K-nearest neighbor (KNN), and BP network.
Li et al. [30] introduced a novel method for fault diagnosis of
variable-speed rotating machinery using IRT. The feature
parameters of infrared images were extracted based on
the bag of visual word (BoVW), and the identification of
various fault types of rotating machinery was achieved
through the implementation of SVM.

Currently, within the realm of diesel engine fault diag-
nosis, the prevailing approaches primarily encompass the
construction of dynamic models [31] and the implementa-
tion of condition monitoring techniques [32]. The construc-
tion of dynamic models primarily relies on the principles
ofmechanical equipment dynamics. By developing a dynamic
model that accurately represents the mechanical properties
of diesel engines, this study aims to investigate the correla-
tion between variations in dynamic parameters and system
malfunctions. Consequently, the ultimate goal is to achieve
effective fault diagnosis for diesel engines. The limitations of
this particular method are rooted in the challenges asso-
ciated with constructing a model and its limited ability to
generalize, thereby complicating the practical application
process. To date, the diagnosis method based on condition
monitoring has emerged as the most extensively employed
approach in the particular field, which achieves real-time
fault diagnosis of diesel engines through online monitoring
and collection of related signals that can effectively charac-
terize the fault state of diesel engines. The method involves
several steps, including signal preprocessing, feature extrac-
tion, and pattern recognition, to accurately identify and
diagnose faults in real-time. The commonly employed
methods for condition monitoring encompass vibration
analysis [33], temperature monitoring [34], noise analysis

[18], abrasive particle detection [35], and instantaneous
torque method [36].

With the rapid advancement and extensive application
of artificial intelligence (AI) technology, fault diagnosis
methods that rely on signal processing, feature extraction,
and machine learning (ML) have garnered increasing atten-
tion and research [37,38]. During the operation of diesel
engines, the measurement of vibration signals provides
a convenient means to directly observe and analyze the
dynamic variations of the equipment. Hence, vibration
signal analysis has emerged as the predominant approach
in the field of diesel engine fault diagnosis. Flett and Bone
[39] introduced a novel approach for fault diagnosis of the
diesel engine valve train. Aiming to address common
issues in the valve train, such as valve spring deformation
and abnormal clearance, the study employed the extrac-
tion of improved root mean square (RMS) to achieve
accurate diagnosis results. Meanwhile, the naive Bayes
classifier was applied for this purpose. Kowalski et al.
[40] have proposed a novel intelligent fault diagnosis
method for impulse diesel engines commonly used in
marine and land transportation. The method is based
on extreme learning machine (ELM) and demonstrates
the ability to accurately classify 15 common fault states of
diesel engines. A comparative analysis between SVM and
KNN has been conducted to establish the superiority of
the proposed method. Ramteke et al. [41] conducted a
study where vibration and sound signals were collected
to assess the wear status of diesel engines, employing fast
Fourier transform (FFT) and short-time Fourier transform
(STFT) for signal processing and extracting statistical feature
parameters. Based on the features, ANN was used to effec-
tively classify different types of wear faults.

Based on the above literature, it becomes evident that
the fault diagnosis methods proposed in these studies lack
significant accuracy. This can be attributed to the fact that
infrared images are not subjected to enhancement techni-
ques prior to feature extraction and fault classification.
When acquiring infrared images, various factors such as
circuit conditions, detector performance, space environ-
ment, and channel transmission errors can significantly
impact the quality of the images. The issues often result
in problems such as low contrast, blurred texture, and loss
of details, which in turn adversely affect subsequent com-
puter processing and recognition tasks. Image enhance-
ment is a widely applied method in the preprocessing of
infrared images. Its objective is to accentuate or refine
certain features of the image, such as edges, contours,
and contrast, with the aim of improving the visual impact
of the image or making it more suitable for computer-
based processing. Furthermore, it is important to
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acknowledge that image enhancement does not fundamen-
tally change the quantity of feature information conveyed
by infrared images. Instead, it merely adjusts the dynamic
range of feature information to a certain degree, facili-
tating the extraction of features and the identification of
images by computer systems.

Image enhancement can be broadly categorized:
including spatial domain and frequency domain, such
as histogram equalization [42–44], grayscale transforma-
tion [45], spatial domain filtering [46,47], and frequency
domain filtering [48,49]. The precise categorization is
shown in Figure 3.

Currently, histogram equalization (HE) is widely employed
as a prevalent technique in the field of image enhancement.
The gray-scale histogram of an image is a representation of
the distribution of gray-scale values, which provides an
intuitive visualization of the frequency of each gray-scale
level across all pixels in the image, effectively describing
the overall gray-scale distribution. The primary objective

of HE is to employ the cumulative distribution function to
convert the grayscale histogram of the original image from a
relatively concentrated grayscale interval to a uniform dis-
tribution across all grayscale ranges. By performing non-
linear stretching on the image, the pixel values are redefined
to achieve a more balanced distribution of pixels within a
specific grayscale range, as shown in Figure 4.

HE effectively enhances the contrast of the image [50].
However, the application of HE can significantly change
the contrast of the entire image, potentially resulting in
the loss of local detail information [51]. In recent years, the
adaptive histogram equalization (AHE) has garnered sig-
nificant attention and research interest [52,53]. AHE per-
forms equalization according to the local regions of the
image, avoiding the problem of excessive enhancement
or distortion caused by global equalization, preserving
image details, improving the effectiveness of image
enhancement, and making it more conducive to the next
step of feature extraction.

Figure 3: Classification of frequently employed techniques for image enhancement.

Figure 4: Schematic graph of histogram equalization.
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Despite some progress in the field of diesel engine fault
diagnosis, there are still some limitations associated with
the application of conventional ML methods, including the
inadequate capacity to extract intricate features from raw
data and the inability to accurately identify interference
information within the data. Up to now, research studies
on fault diagnosis of mechanical equipment using IRT
are still limited, and it is characterized by four main
problems:
1) The majority of existing research on fault diagnosis of

diesel engines primarily concentrates on the analysis
of a single fault mode. However, in the practical opera-
tion of diesel engines, the state often involves a complex
fault mode where multiple faults occur simultaneously.
Therefore, it is not practical to study diesel engine fault
diagnosis only in single fault mode.

2) Most of the existing fault diagnosis methods based on
IRT need to manually extract the features of infrared
images. Because infrared images contain rich and com-
plex status information, the process of feature selection
needs a lot of professional field prior knowledge and
engineering experiments, which greatly affects the effi-
ciency of fault diagnosis and the final classification
results.

3) The application of IRT in the domain of mechanical
equipment fault diagnosis is currently constrained to
conventional rotating machinery, such as rolling bear-
ings, rotor systems, and shafts. However, there exists a
dearth of both theoretical and applied investigations
pertaining to reciprocating mechanical equipment, such
as diesel engines.

4) In practical industrial applications, faults may manifest
under varying temperature conditions. When there is a
variation in the temperature distribution of mechanical
equipment, the corresponding distribution of fault infor-
mation on infrared images also changes. This, in turn,
poses a challenge in extracting features that remain
unaffected by temperature fluctuations. However, the
existing fault diagnosis methods that rely on IRT fail to
take into account the impact of temperature fluctuations
on the outcomes of fault diagnosis.

To address the research gap, this article concentrates
on typical fault modes of diesel engines. It employs an
infrared thermal camera to capture infrared images under
different fault modes and subsequently applies deep learning
(DL) methods for extracting fault characteristics from the
infrared images at different temperatures. The primary
advantage of DL resides in its inherent capability to auto-
matically extract features from images, thereby over-
coming the limitations associated with manual feature

extraction methods. Additionally, DL exhibits strong image-
processing capabilities [54]. In the context of mechanical
equipment fault diagnosis, there exist four commonly used
DL models: deep neural network (DNN) [55], recurrent
neural network (RNN) [56,57], stacked automatic encoder
(SAE) [58], and convolutional neural network (CNN) [59].
In the aforementioned models, CNN is capable of automa-
tically and efficiently extracting deep-level features from
images, which is achieved through key operations such as
convolution and pooling [60], which help to mitigate
information loss that may occur during manual proces-
sing. In the meantime, CNN employs the approach of local
connection and weight sharing, which serves two pur-
poses: first, it reduces the number of weights, thereby
facilitating network training and optimization [61]. Sec-
ondly, it decreases the model’s complexity, consequently
mitigating the risk of overfitting. CNN exhibits significant
advantages in the analysis of two-dimensional images, as
it possesses the capability to extract various image fea-
tures, encompassing color, texture, shape, and image
topology. The proposed method exhibits strong robust-
ness and computational efficiency when applied to image
processing, particularly in tasks involving the identifica-
tion of displacement, scaling, and other types of distortion
invariance. Therefore, this article employs CNN to extract
features from infrared images across various fault states.

3 Methodology

3.1 Adaptive histogram equalization

AHE is a sophisticated image processing technique to
enhance the contrast of images. Unlike global HE, which
aims to equalize the entire image, AHE operates by equal-
izing the local image based on the grayscale distribution
within specific regions of the image, achieving a more
effective enhancement effect. Therefore, AHE is considered
more appropriate for enhancing the local contrast of images
and capturing finer image details. The fundamental concept
of AHE involves the partitioning of an image into multiple
regions, with the application of HE to each local region,
which mitigates the issue of excessive enhancement resulting
from global HE, while simultaneously preserving the local
characteristics of images. The following is the specific appli-
cation process of AHE.
1) The image should be divided into multiple not overlap-

ping local regions. The dimensions of each region can
be modified based on the specific attributes of the appli-
cation scenario and the image. Typically, the
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dimensions of each region are 8 × 8, 16 × 16 or 32 × 32
pixels. As AHE operates in local regions, each local
region can be processed independently. The presence
of overlapping regions aids in preserving the image’s
continuity and smoothness, while also preventing the
formation of conspicuous boundaries.

2) The grayscale histogram needs to be calculated for
each region. To obtain the grayscale histogram for
each region, it is necessary to calculate it separately
for each region. The calculation method for the grays-
cale histogram can be represented by the following
equation:

( ) ( ) ( ( ))∑ ∑= −
=

−

=

−

h k w i j δ k f i j, , ,

i
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j
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0

1

0

1

(1)

where h(k) denotes the count of pixels with a grayscale
level of k, w(i, j) represents the weight assigned to pixel
(i, j), f(i, j) represents the grayscale level of pixel (i, j),
and δ(x) is the Kronecker function. Specifically, when x
equals 0, δ(x) is equal to 1; otherwise, its value is 0. N
andM correspond to the width and height of the image,
respectively.

3) The cumulative distribution function needs to be calcu-
lated for each region. For the grayscale histogram of
each region, the cumulative distribution function can
be calculated using the following equation:
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In Eq. (2), the variable c(k) denotes the cumulative sum
of the quantity of pixels having a grayscale level equal
to or less than k.

4) Calculate the mapping function for each respective region.
The calculation of the mapping function for each region’s
cumulative distribution function is expressed as follows:
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0
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Among the variables used in the context, s(k) denotes
the grayscale level of a pixel after mapping, where k
represents the original grayscale level. L represents
the total number of grayscale levels present in the
image.

5) HE is conducted for each region. For each region, the
pixels contained within it are assigned a grayscale value
through the utilization of a mapping function.

6) The processed regions should be merged into a single
image.

The size of the local region in AHE is set to 8 × 8 in the
article.

3.2 Convolutional neural network

CNN is composed of a series of convolution layers, activa-
tion layers, batch normalization layers, pooling layers, and
fully connected layers. It can automatically extract features
from the input data and apply the features to perform tasks
such as classification, recognition, and prediction. It has
achieved good results in image recognition, speech recog-
nition, natural language processing, and other fields. In the
CNN model, the convolution layer extracts features through
a sliding filter (a set of convolution kernels), the pooling
layer reduces the dimension of features through down-sam-
pling, and the fully connected layer maps features to specific
output classes. The basic process of CNN is shown in Figure 5,
and the following sections will provide a detailed description
of the different layers of CNN.

3.2.1 Convolutional layer

Convolution operation is a fundamental operation in CNN,
wherein a set of convolutional kernels is employed to

Figure 5: Typical architecture of CNN.
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conduct convolution calculations on input data, resulting
in the generation of feature maps. Each new feature map is
obtained by convolving the local features of the input data,
a process referred to as “local perception.” During the pro-
cess of obtaining the feature map through convolution
operation, the convolution kernel remains constant in
order to achieve “weight sharing.” The mathematical
representation of the convolution operation is as follows:

= ∗ +−
x c x b ,i

n
n i

n
i
n1 (4)

where the variable xi
n denotes the ith output map of the nth

layer, −
xi

n 1 represents the ith output map of the (n−1)th
layer, and cn signifies the convolution kernel of the nth
layer. The symbol “*” denotes the convolution operation,
while bi

n represents the bias vector.

3.2.2 Batch normalization layer

The inclusion of a batch normalization layer in CNN is
intended to enhance both the training speed and overall
performance of the network. By applying input normaliza-
tion to each layer, the stability of the input distribution is
enhanced, thereby mitigating the issues of gradient van-
ishing and exploding. Consequently, the approach facili-
tates the training process by accelerating its convergence.
The process of batch normalization can be represented as
follows [22]:

=
−

+
−

− μ

σ ε

x

x

,

n

n
P

P

1

1

2

(5)

= +−γ βx x ,

n n n n1 (6)

where [ ]= −μ E x
P

n 1 , [ ]= −σ xVarP
n 1 . The constant ε is intro-

duced to avoid division by zero in the denominator. On the
other hand, the coefficients γ and β are used to scale and
shift the normalized data, respectively. These coefficients
need to be learned in order to properly adjust the data.

3.2.3 Activation layer

The activation layer is typically positioned following the
convolutional layer. By incorporating nonlinear mapping
functions such as Sigmoid, Tanh, ReLU, etc., the CNN’s
expression and generalization capabilities can be enhanced,
allowing it to effectively address intricate nonlinear problems.
Compared to activation functions such as Tanh and Sigmoid,
the ReLU offers several advantages. Firstly, ReLU effectively
mitigates the issue of gradient disappearance, ensuring
more stable training of neural networks. Additionally, ReLU

exhibits faster calculation speed and better convergence,
further enhancing its appeal as an activation function. The
mathematical representation of the output of ReLU can be
expressed using the following equation:

( ) = ⎧⎨⎩
≥
<f x

x x

x

, 0

0, 0

, (7)

where let x represent the input value and f(x) denote the
corresponding output value. When the input value is greater
than or equal to zero, the output value is equal to the input
value. Conversely, when the input value is less than zero, the
output value is zero.

3.2.4 Pooling layer

The pooling layer serves as a crucial component in the
down-sampling process, aiming to decrease the dimensions
of images or feature maps while preserving the essential
characteristics. This reduction in size not only helps to
minimize computational expenses but also mitigates the
risk of overfitting. The pooling operations commonly
employed in various applications encompass maximal
pooling and average pooling. The encoding of positional
information in features makes the maximal value of the
feature map more informative in terms of information
content, as opposed to the average value. Therefore,
when conducting pooling operations, it is common to
use maximal pooling, which can be expressed as follows:

{ ( )}
( )

=
− + ≤ ≤

− jx xmax ,

n

i W j iW

n

1 1

1 (8)

whereW represents the width of the maximal pooling area.

3.2.5 Fully connected layer

The fully connected layer is commonly deployed as either
the output layer or an intermediate layer within a neural
network to facilitate dimensional transformation. It is
employed for the purpose of classifying or regressing input
features. In the CNN model, the outputs of the convolu-
tional layer, pooling layer, and activation function ReLU
are typically linked via one or more fully connected layers
in order to generate G-dimensional vectors for the purpose
of pattern recognition. Here, G represents the total number
of classes. The fully connected layer is characterized by a
high number of parameters, which can lead to overfitting.
Hence, it is common practice to employ regularization
techniques, such as L1 and L2 regularizations, in conjunc-
tion to minimize the number of parameters in the fully
connected layer.
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3.3 SR

SR is a model used for multi-classification tasks, where it
addresses the classification problem by mapping the input
vector to a probability vector. The application of this
approach offers several benefits, including rapid training
speed and robust interpretability of output results. Consequently,
it has found extensive application in various domains such
as image classification, natural language processing, recom-
mendation systems, face recognition, etc. [62]. Meanwhile, in
the context of multi-classification problems, SR serves as a
classifier that is frequently integrated with other models,
such as CNN and RNN, as the output layer in DL. The pri-
mary function of SR is to determine the fault state by com-
puting the probability that the samples to be classified are
associated with each fault class label. The particular model
is depicted in Figure 6.

The subsequent section outlines the procedural steps
and mathematical derivation of the SR theory.
1) Data Input. Assuming a dataset with m samples, each

containing n features, the input data are represented by
X. The dimension of X is (m, n).

2) Provide explicit values for the weights and biases. The
weight matrix, denoted asW, is employed in the context
to represent the dimensions of (n, k), where k signifies
the number of classes. Additionally, the bias vector,
denoted as b, possesses a dimension of k.

3) Constructing a linear model. For every given sample X,
the score under each class is calculated as Z = WX + b.
The dimension of Z is represented as (m, k).

4) The Softmax function is substituted. To transform the
scores of each sample within each class into probability
values, the softmax function is applied, denoted as y =

softmax (Z). The Softmax function is defined by the
following equation:

( ) =
∑ =

e

e
Zsoftmax ,i

j

k

z

z

1

i

j

(9)

where i denotes the score of the current sample belonging
to the ith class, and j represents all classes.

5) The introduction of the loss function is discussed. Cross
entropy is commonly employed as the loss function, and
it can be mathematically expressed as follows:

∑∑= −
∧

L
m

y y
1

log ,

i

m

j

k

ij ij
(10)

where the variable y represents the true label, while
the variable

∧
y represents the predicted probability

value.

6) Update parameters. The gradient of the loss function
with respect to the weight and offset is calculated, and
the parameters are updated using the gradient descent
method. The process can be expressed as follows:

= −
∂
∂

= −
∂
∂

Δ α
L

Δ α
L

W

W

b

b

, . (11)

In Eq. (11), the symbol α denotes the learning rate,
which serves the purpose of regulating the magnitude of
each iteration’s step in the gradient descent algorithm.

7) Pattern recognition. For the given input sample, the
probability value for each class should be calculated,
and the class with the highest probability value should
be selected as the predicted result.

4 The proposed system for fault
diagnosis of diesel engines

The diesel engine fault diagnosis system proposed in the
article is depicted in Figure 7. The system comprises four
modules, namely, infrared image acquisition, image pre-
processing, CNN-based adaptive feature extraction, and SR
classifier. First, it is necessary to gather infrared images of
the diesel engine in various conditions, including normal
condition (NC), single cylinder misfire (SCM), multi-cylinder
misfire (MCM), and air filter blockage (AFB). Before feeding
the infrared images into the feature extraction module, it is
necessary to preprocess them, which involves several steps,
such as grayscale processing, capturing the region of
interest (ROI) in the images, and applying AHE algorithm
to enhance the contrast of the ROI. Finally, the image
feature parameters extracted by CNN are divided into

Figure 6: SR model.
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training and testing sets. These sets are then directly
inputted into the fault pattern recognition process of
the SR classifier.

4.1 The proposed IRT-CNN-based fault
diagnosis method

This section aims to present the proposed method for fault
diagnosis of diesel engines, which is based on IRT and CNN.
CNN possesses two primary advantages in the extraction of
image feature parameters. First, CNN has the capability to
autonomously extract deep features from images without
relying on prior knowledge or human subjective experi-
ence in feature design and extraction. This ability reduces
the influence of human involvement in the process.
Secondly, in contrast to traditional fully connected net-
works, CNN employs techniques such as local connection,
weight sharing, and spatial pooling. On one hand, the reduc-
tion in the number of weights simplifies the training and
optimization process of the network. On the other hand, it
also decreases the complexity of the model, thereby miti-
gating the risk of overfitting and enhancing the extraction of
translation invariant features. The flow chart illustrating the
IRT-CNN-based fault diagnosis method for diesel engines, as
proposed in the article, is presented in Figure 8.

As shown in Figure 7, the methodology comprises
three primary stages. In the initial phase, infrared image

data is gathered for the diesel engine across various fault
states. In the subsequent phase, CNN is employed to develop
a fault diagnosis model for diesel engines. Themodel aims to
extract fault characteristics from infrared images. Finally,
the fault features collected under various fault states are fed
into the SR classifier to perform fault pattern recognition of
the diesel engine. It is noteworthy that the application of
IRT-CNN based fault diagnosis method, as proposed in the
article, does not necessitate any prior understanding of the
fault mechanism or parameter configurations of the diesel
engine. This method exhibits robust self-learning capabil-
ities and is easily applicable, making it highly adaptable
for fault diagnosis of diesel engines.

4.2 Infrared image acquisition

When analyzing the infrared image signals, the variation
in temperature of the diesel engine cylinder head serves as
an indicator not only of the combustion conditions within
the cylinder, but also provides valuable insights into the
operational status of the ignition system, fuel supply system,
and the reciprocating impact of the piston. Therefore, col-
lecting infrared images of the diesel engine cylinder head
for the purpose of fault pattern recognition holds significant
relevance and practical importance. In this study, infrared
image data acquisition is dependent on the utilization of a
high-pressure common-rail diesel engine test bench. Figure 9

Figure 7: Fault diagnosis system of the diesel engine.
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illustrates the fundamental structure and layout of the diesel
engine condition monitoring system. This system primarily
consists of a diesel engine and its control panel, an infrared
thermal camera, and a data acquisition system. The diesel
engine type employed in the experiment is CA6DF3-20E3, and
the corresponding operational parameters are presented in
Table 1.

As shown in Figure 9(a), the high-pressure common-
rail diesel engine test bench comprises two main compo-
nents, namely the diesel engine and the control panel. The
control panel is responsible for managing the initiation,
ignition, and shutdown of the diesel engine, while the
accelerator pedal is used for executing acceleration and

deceleration maneuvers. The control panel’s dashboard
enables real-time monitoring of various parameters such
as speed, intake pressure, fuel rail pressure, and water
temperature of the diesel engine. This allows for the detec-
tion of any sudden abnormalities or irregularities.

In this experimental study, the MAG32 infrared thermal
camera was applied for the purpose of capturing infrared
images, as depicted in Figure 9. The pertinent parameters of
the infrared thermal camera are presented in Table 2.

The temperature measurement process of an infrared
thermal camera can be influenced by various factors,
including environmental temperature, measurement dis-
tance, and the emissivity of the object’s surface. Infrared

Figure 8: Procedure of the proposed method.
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thermal cameras can be used for temperature correction to
compensate for the above factors. The surface emissivity of
an object is defined as the ratio of the radiant energy
emitted by the object at a specific temperature T to the
radiant energy emitted by a blackbody at the same tem-
perature. The characterization of the thermal radiation
characteristics of an object’s surface and the calculation
of thermal radiation energy transfer are crucial para-
meters. The object’s thermal radiation and thermal
conduction characteristics are of great significance for
engineering design and research, which are influenced
by various factors such as temperature, surface material,
and spectral wavelength. The emissivity of the object sur-
face ranges from 0 to 1, and any variations in emissivity
within a specific wavelength and temperature range can be
disregarded. The emissivity values of various common
materials within a specific temperature range are pre-
sented in Table 3.

In the present study, the application of green paint on
the surface of the engine cylinder block is investigated.
With regard to the data presented in Table 3, the emissivity
value is determined to be 0.94. During the experiment, four
common fault states were simulated for the diesel engine,
namely NC, SCM, MCM, and AFB. Among them, simulating
single cylinder misfire and multi-cylinder misfire by dis-
connecting the cylinder ignition power cord, and installing
an intake hood to simulate AFB. The malfunction of the
diesel engine is shown in Figure 10.

Figure 9: (a) IRT-based diesel engine condition monitoring system; (b) diesel engine test bench.

Table 1: Working parameters of the diesel engine

Items Values

Common-rail mode BOSCH electronic control common-
rail system

Air intake mode Supercharged intercooling
Rated power 155 kW
Rated speed 2300 rpm
Maximal torque 760 N m
Compression ratio 17.4
Total displacement 6.7 L
Number of cylinders 6
Number of valves per
cylinder

2

Table 2: Parameters configuration of the infrared thermal camera

Configuration parameters Values

Equipment type MAG32, China
Infrared detector type Uncooled focal plane
Image resolution 384 × 288
Frame rate 50 fps
Measuring range ‒20°C–150°C
Environmental temperature 20°C
Measuring sensitivity 0.02°C
Emissivity 0.94
Test distance 1.2 m
Palette High contrast
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Set the engine speed to 500 revolutions per minute
(rpm) and use the infrared thermal camera to acquire
infrared images in the following manner.

Step 1. Choose one fault class from the four simulated
fault states.

Step 2. Set the environmental parameters of the infrared
thermal camera. Before commencing the experiment, it is
observed that the temperatures of the diesel engine test
bench and the surrounding environment are initially similar,

which can be attributed to the gradual reduction in tempera-
ture difference between the diesel engine and the environ-
ment as a result of continuous heat transfer. Eventually, it is
possible for the temperature to reach equilibrium. At present,
the laboratory thermometer indicates a temperature of 20°C.
The minimum temperature of the first infrared image, cap-
tured by the infrared thermal camera, is extracted for each of
the four fault states, as depicted in Figure 11.

As shown in Figure 10, the minimum temperatures
observed on the surface of the diesel engine cylinder
remain consistently close to 20°C across all four fault states.
In the experiment, the environmental temperature para-
meter of the infrared thermal camera is set to 20°C.

Step 3. At the constant speed of a diesel engine of
500 rpm, infrared images are collected every 10 s.

Step 4. The duration for image acquisition is set to
25 min in order to allow the highest temperature on the
surface of the cylinder to reach a stable state. In the experi-
ment, the temperature stabilizes at approximately 52°C. A
total of 150 infrared images are collected for each fault
class. The maximum temperature profile of the diesel
engine cylinder surface the temperature is displayed in
Figure 12.

Step 5. Cool the diesel engine to the environmental
temperature and repeat the aforementioned steps for the
remaining fault classes until the data collection process is
concluded.

Table 3: Emissivity of common materials in a certain temperature range

Materials and
status

Temperature (°C) Emissivity

Blackbody All temperatures 1.00
Polished (oxidized)
aluminum

50–500 (200–600) 0.04–0.06（0.11–0.19）

Polished copper 115 0.023
Matte brass plate 50∼350 0.22
Polished steel 100 0.07
Newly rolled steel 20 0.24
Polished iron 425–1025 0.14–0.38
Rusty iron plate 19 0.69
Water 0–100 0.95–0.96
Human skin 36 0.98
Coal (carbon) 25–30 0.93
Various colors of oil
paint

Below 100°C 0.92–0.96

Figure 10: (a) NC, ①–⑥ are the six cylinders, respectively, (b) SCM, (c) MCM, (d) AFB.
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4.3 The process of infrared image
enhancement

Before implementing image enhancement for infrared
images, it is necessary to first extract the ROI from
infrared images. This initial step serves to simplify the
complexity of subsequent image processing tasks and
effectively reduce the overall amount of image data. The
research should primarily concentrate on the thermal
dynamics of the diesel engine cylinder block, which experi-
ences substantial variations in temperature. At the same
time, it can also emphasize the primary information con-
tained within the image, thereby facilitating subsequent
image processing and analysis. The ROI plays a crucial
role in an image as it encompasses significant information
that requires careful consideration. Selecting the ROI can
enhance the ability to capture pertinent information, opti-
mize the speed and efficiency of image processing, and
facilitate improved image recognition and classification by
algorithms. Infrared images depicting the fault state of the
diesel engine running steadily for a duration of 10 min are
selected, as illustrated in Figure 13. The temperature unit
is °C.

As shown in Figure 13(a), the infrared image reveals
notable brightness and high temperature in the diesel
engine cylinder region. Additionally, the brightness near
the turbocharger is also prominent, indicating the highest

temperature point in the entire image. In Figures 13(b) and
13(c), SCM and MCM occurred in the diesel engine, resulting
in a decrease in the temperature of the corresponding
cylinder block region. In Figure 13(d), it can be observed
that the temperature in the vicinity of the turbocharger is
significantly higher compared to other conditions. AFB can
lead to suboptimal engine intake, which in turn can result in
a dense fuel-air mixture, incomplete combustion, and inade-
quate airflow for turbocharger cooling. In addition, it should
be noted that certain extraneous variables, such as the pre-
sence of power lines and experimental equipment, can
introduce substantial interference to infrared images,
thereby affecting the suitability for subsequent analysis.
Therefore, the ROI extraction from infrared images is
advantageous for subsequent feature extraction studies
and serves to mitigate the impact of interfering factors.
The resolution of infrared images obtained in the study is
384 × 288. After isolating the engine block region, the
resolution is reduced to 355 × 49, as depicted in Figure 14.

After the ROI extraction from infrared images, the size
of the images decreased significantly from 324 kb to 51.1 kb.
The size reduction suggests that the ROI extraction can
effectively reduce the amount of data that needs to be
processed, leading to enhanced speed and efficiency in
image processing. The extracted ROI from infrared images
is inputted into the AHE-based image enhancement module,
as shown in Figure 15.

Figure 11: The minimum temperature profile of the diesel engine cylinder surface: (a) NC, (b) SCM, (c) MCM, and (d) AFB.
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Figure 12: The maximal temperature profile of the diesel engine cylinder surface: (a) NC, (b) SCM, (c) MCM, and (d) AFB.

Figure 13: Infrared images of the diesel engine: (a) NC, (b) SCM, (c) MCM, (d) AFB.
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The analysis of Figure 15 reveals that AHE has a
notable impact on enhancing the visual quality of images.
It effectively improves the color distribution and enhances
the effect on feature extraction by adapting to the grays-
cale distribution in various regions.

5 Experimental study

5.1 Experiment dataset description

During the operation of the diesel engine, the surface tem-
perature of the cylinder block experiences a certain degree
of fluctuation. However, over time, it stabilizes at a tem-
perature of approximately 52°C, after initially rising from
20°C. We collected 150 infrared images for each fault class.
The article employs four commonly used DLmodels, namely

CNN, DNN, RNN, and SAE, to analyze infrared images and
identify fault modes of diesel engines.

In the present experimental study, two self-made experi-
mental datasets, namely dataset 1 and dataset 2, after ROI
extraction and AHE-based image enhancement, are employed
to validate the efficacy and precision of the proposed method.
Among the datasets, dataset 1 comprises 600 infrared image
samples, with 150 samples collected from each of the four fault
classes. On the other hand, dataset 2 is a sample grid that
encompasses five time regions: region 1 (0–5min), region 2
(5–10min), region 3 (10–15min), region 4 (15–20min), and
region 5 (20–25min). Each time region consists of 120 samples
(four fault classes × 30 samples). For instance, Figure 16 dis-
plays the infrared images depicting four different fault states
of the diesel engine in region 2.

As reflected in Figure 16, it is difficult to visually dis-
tinguish the fault class when analyzing infrared images
under different fault states. Due to the phenomenon of
thermal conduction, the variations observed in infrared
images of different fault classes are minimal. In the present
study, a partitioning scheme was employed where 80% of
the available data samples were allocated for training pur-
poses, while the remaining 20% were reserved for evalu-
ating the model’s generalization ability and real-world
performance. Tables 4 and 5 provide detailed descriptions
of individual regions of dataset 1 and dataset 2, respectively.

Figure 14: ROI of a diesel engine infrared image under NC.

Figure 15: (a) ROI of infrared images under NC; (b) ROI of infrared
images under NC after image enhancement.

Figure 16: Infrared images of the diesel engine after AHE-based image enhancement: (a) NC, (b) SCM, (c) MCM, and (d) AFB.

Table 4: Detailed description of dataset 1

Fault
class

Class
label

Number of training
set images

Number of test set
images

NC 1 120 30
SCM 2 120 30
MCM 3 120 30
AFB 4 120 30
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5.2 Parameter settings of the involved DL
methods

In this article, the AlexNet model in CNN is employed to
extract fault features present in infrared images of diesel
engines. AlexNet has significantly enhanced the accuracy
of image recognition by leveraging several advantages.
These include a deep network structure, a substantial
number of convolutional layers and pooling layers, the
application of the ReLU activation function, and the incor-
poration of dropout technology. The advancements have
demonstrated the superiority of CNN in the field of image
recognition, establishing AlexNet as a significant milestone
in the field of DL. We used the pre-trained AlexNet model
and made certain parameter adjustments to it according to
the characteristics of the dataset employed.

AlexNet necessitates an input image size of 227 × 227 × 3,
encompassing 5 convolutional layers, 3 pooling layers, and 3
fully connected layers. The filter consists of convolutional
kernels of sizes 11 × 11, 5 × 5, and 3 × 3. Subsequently, a fully
connected layer is employed to compute the probability of
four classes and facilitate pattern recognition. The detailed
structure is presented in Table 6. To showcase the effective-
ness of the CNN-based method, various DL methods such as
DNN, RNN, and SAE, which have been prominent in recent
years, were compared and analyzed. These methods were
then applied to the task of fault pattern recognition of diesel
engines. In the context of RNN, LSTM is used to perform
image classification. On the other hand, the DNN model
employs MLP for the purpose of fault pattern recognition.
The specific parameter configurations for the aforemen-
tioned methods are presented in Table 7.

6 Result analysis

6.1 Fault diagnosis results of diesel engines
under dataset 1

The objective of the article is to evaluate the effectiveness
of the proposed CNN-based fault diagnosis method for

Table 5: Detailed description of individual regions in dataset 2

Fault
class

Class
label

Number of training
set images

Number of test set
images

NC 1 24 6
SCM 2 24 6
MCM 3 24 6
AFB 4 24 6

Table 6: Parameter settings of AlexNet

Layer type Number of kernels Size of input map Size of output map Size of kernel Stride Padding

Input layer / 227 × 227 × 3 / / / /
Convolutional layer 1 96 227 × 227 × 3 55 × 55 × 96 11 × 11 4 × 4 0
Pooling layer 1 1 55 × 55 × 96 27 × 27 × 96 3 × 3 2 × 2 /
Convolutional layer 2 256 27 × 27 × 96 27 × 27 × 256 5 × 5 1 × 1 2 × 2
Pooling layer 2 1 27 × 27 × 256 13 × 13 × 256 3 × 3 2 × 2 /
Convolutional layer 3 384 13 × 13 × 256 13 × 13 × 384 3 × 3 1 × 1 1 × 1
Convolutional layer 4 384 13 × 13 × 384 13 × 13 × 384 3 × 3 1 × 1 1 × 1
Convolutional layer 5 256 13 × 13 × 384 13 × 13 × 256 3 × 3 1 × 1 1 × 1
Pooling layer 3 1 13 × 13 × 256 6 × 6 × 256 3 × 3 2 × 2 /
Fully connected layer 1 / 6 × 6 × 256 4096 / / /
Fully connected layer 2 / 4096 2048 / / /
Fully connected layer 3 / 2048 4 / / /
Output layer / 4 4 / / /

Table 7: Parameter settings of comparison methods

Comparison method Network size Activation function Classifier

MLP [52185, 512, 256, 128, 4] ReLU Softmax
LSTM [52185, 100, 100, 4] Sigmoid Softmax
SAE [52185, 1024, 512, 128, 4] ReLU Softmax

Note: The input image size of the above three methods is 355 × 49 × 3.
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diesel engines. However, it should be noted that this inves-
tigation does not take into account the impact of tempera-
ture variations on the surface of the diesel engine cylinder
block. For the purpose of conducting a comparative ana-
lysis, this study employed various DL methods, including
MLP, LSTM, and SAE. These methods were deployed to
dynamically extract features of infrared images captured
in mixed temperature regions and accurately classify the
fault state of the diesel engine. The confusion matrix
depicting the fault diagnosis results of the aforementioned
four methods can be observed in Figure 17.

From the analysis of Figure 17, it is evident that the
CNN-based method exhibits the highest fault diagnosis
accuracy, regardless of temperature variations during diesel
engine operation. Moreover, it demonstrates the capability
to effectively differentiate between the four fault states of
the diesel engine.When diagnosing diesel engine faults, MLP,
LSTM, and SAE exhibit a higher number of misclassifications

compared to the CNN-based method. Additionally, the classi-
fication accuracy is significantly lower than that of CNN-
based methods. Simultaneously, to mitigate the influence of
randomness in DL methods, each method performs 10 times
of training and testing on dataset 1. This is done to determine
the mean and standard deviation of the diagnostic accuracy,
as presented in Table 8.

From the analysis of Table 8, it is evident that the CNN-
based fault diagnosis method exhibits the highest

Figure 17: Classification results of four methods: (a) CNN; (b) MLP; (c) LSTM; (d) SAE.

Table 8: Classification results of dataset 1

Methods Average classification
accuracy

Standard deviation

CNN 97.67% 0.0072
MLP 87.67% 0.0934
LSTM 83.33% 0.0456
SAE 88.50% 0.0423
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classification accuracy and the lowest standard deviation,
which achieves an accuracy rate that is 10.36% higher than
the second-highest method based on SAE. The average
testing accuracy of the LSTM model is the lowest, mea-
suring only 83.33%. In relation to the stability of algo-
rithms, the CNN-based method proposed in the article
demonstrates a significant advantage over the other three
DL methods. It is worth noting that MLP exhibits the
highest standard deviation of 0.0934. Furthermore, MLP,
LSTM, and SAE have a certain degree of mistaken identifi-
cation between classes 2 and 3. In contrast, CNN demon-
strates 100% accuracy in correctly identifying SCM and
MCM. In conclusion, the CNN-based method proposed in
this article demonstrates superior feature extraction cap-
abilities in the recognition of diesel engine fault states.

6.2 Fault diagnosis results of diesel engines
under dataset 2

In the engineering application of diesel engines, it is impor-
tant to acknowledge that functional failures can potentially
arise at any stage of operation. Therefore, with the objec-
tive of mitigating potential premature failures, this article
seeks to showcase the efficacy of the method proposed in
the research by segmenting the complete operational process
of the diesel engine into five distinct regions. Simultaneously,
the fault diagnosis results are compared with DL methods
such as MLP, LSTM, and SAE to showcase the superior per-
formance of the CNN-based fault diagnosis method proposed
in the article. For the purpose of fault pattern recognition,
the aforementioned four DL methods were employed on
datasets from five different time regions. Each method was
subjected to ten training and testing sessions, and the corre-
sponding classification results are presented in Table 9 and
Figure 18, respectively.

From the analysis of Table 9 and Figure 18, it is evident
that among the five time regions of dataset 2, CNN-based
fault diagnosis method exhibits the highest average classi-
fication accuracy. Furthermore, when considering all four
methods, CNN also achieves the highest overall classifica-
tion accuracy, reaching an impressive 93.58%. MLP demon-
strates the second-highest average classification accuracy
among the four methods, achieving an accuracy of 90%.
The remaining two approaches, namely LSTM and SAE,
exhibit comparatively lower average classification accu-
racy of 88.67 and 80.67%, respectively. On the contrary,
the CNN-based method proposed in the article exhibits
strong algorithm stability, as evidenced by its consistently
low standard deviation of average classification accuracy.
Among the four DL methods evaluated, the CNN-based
method consistently achieves the lowest standard devia-
tion of 0.0172 across five time regions and overall. The
standard deviation of the average accuracy of SAE is the
highest, reaching a value of 0.0654.

Furthermore, it is evident that during the initial time
region, the classification accuracy of the four DL methods
is relatively low. This can be attributed to the fact that in
the early stage of diesel engine operation, the temperature
of the cylinder and the environmental temperature are
similar. Consequently, the training data for the model is
inadequate, leading to interference in subsequent fault
pattern recognition. The analysis results presented above
indicate that the CNN-based fault diagnosis method pro-
posed in the article is capable of effectively extracting fault
features from infrared images of diesel engines.

The conclusion is supported by the fact that all four
methods employed in the study use the SR classifier for
final pattern recognition. Furthermore, by conducting a
comparative analysis, it becomes evident that the surface
temperature of the diesel engine cylinder block exhibits a
gradual increase across the dataset of five consecutive time

Table 9: Classification results of dataset 2

Methods Time regions Average

0–5min 5–10min 10–15min 15–20min 20–25 min

CNN Accuracy 70.42% 97.50% 100% 100% 100% 93.58%
Std 0.0657 0.0204 0 0 0 0.0172

MLP Accuracy 66.25% 92.07% 95.00% 96.67% 100% 90.00%
Std 0.0684 0.0472 0.0520 0.0583 0 0.0452

LSTM Accuracy 55.42% 93.75% 96.67% 97.50% 100% 88.67%
Std 0.0813 0.0208 0.0583 0.0534 0 0.0428

SAE Accuracy 36.67% 92.08% 98.33% 88.33% 87.92% 80.67%
Std 0.1302 0.0292 0.0276 0.0717 0.0683 0.0654

Note: Std represents the standard deviation.
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regions. It is noteworthy that CNN demonstrates the highest
accuracy in fault diagnosis and the lowest standard devia-
tion of average accuracy. The aforementioned statement
suggests that the CNN-based method, as proposed in the
article, exhibits superior algorithm stability and anti-inter-
ference capability when it comes to fault diagnosis of diesel
engines caused by temperature fluctuations.

6.3 Effect evaluation of image enhancement

In this article, the image pre-processing stage involved the
application of AHE for infrared image enhancement. As

depicted in Figure 14, image enhancement has resulted in
a notable improvement in contrast for infrared images. To
examine the impact of image enhancement on the feature
extraction process of CNN, the features obtained after the
final fully connected operation of CNN are chosen for
visualization, as shown in Figure 19.

It can be clearly seen from Figure 19 that after AHE-
based image enhancement, the feature distribution becomes
more concentrated, with the distribution range of Dimen-
sion 1 and Dimension 2 reduced by half, and the feature
separation degree has been improved, thereby facilitating
subsequent feature extraction and pattern recognition.

Figure 19: Comparison of feature visualization: (a) pre- and (b) post-AHE.

Figure 18: Diagnostic accuracy of CNN, MLP, LSTM, and SAE in five time regions.
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To provide additional evidence on the impact of image
enhancement on fault state recognition of diesel engines,
we conducted training and testing using various methods
including CNN, MLP, LSTM, and SAE on dataset 3 obtained
from dataset 1 without undergoing any image enhance-
ment. The network parameters remained constant, and
the classification results are presented in Table 10 and
Figure 20.

It is worth noting that the raw data used in the
research process of this article is consistent with a previous
article published by the author [63]. It is reasonable to say
that the fault diagnosis results before applying AHE-based
image enhancement in Table 10 of this article should be
consistent with the results for Dataset 3 in Table 10 of the
previous article. However, due to the unpredictability of
DL methods, there may be significant differences in the
results of each training and testing. Therefore, it can be
explained that in this article, after retraining and testing
the dataset 10 times, the results have shown some differ-
ences compared to the previous article. However, this dif-
ference is relative and does not affect the scientificity and

accuracy of the results in this article. The results in Table
10 fully demonstrate the effectiveness of the AHE-based
image enhancement method.

In Table 10 and Figure 20, the variable Y denotes the
application of AHE for image enhancement, while the vari-
able N signifies the absence of AHE in image enhancement.
Table 10 demonstrates that when using the above four DL
methods for feature extraction, AHE-based image enhance-
ment can effectively improve fault diagnosis accuracy.
Among the various models considered, the MLP-based
method exhibited the most significant enhancement in
fault diagnosis accuracy, achieving a notable increase of
11.80%. The fault diagnosis accuracy of the other three DL
methods has also shown improvement to varying degrees
following the application of AHE.

6.4 Generalization ability verification of CNN

To elaborate on the generalization ability [64] of the CNN
for infrared image classification under study, we have set
up a situation where the training dataset is unbalanced.
For dataset 1, we randomly deleted 20% of the infrared
images under class label 1, which means there are still
120 infrared images left under this label. Among them,
the training set and test set contain 96 and 24 images,
respectively, and the infrared images under the other class
labels remain unchanged. Set the epochs to 10 because in

Table 10: Classification results of dataset 3

Methods AHE Average accuracy Comparison

CNN Y 97.67% 1.65%
N 96.08%

MLP Y 87.67% 11.80%
N 78.42%

LSTM Y 83.33% 2.66%
N 81.17%

SAE Y 88.50% 1.72%
N 87.00%

Figure 20: Comparison of diagnostic accuracy of CNN, MLP, LSTM,
and SAE. Figure 21: Confusion matrix of fault diagnosis results.
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this case, the training accuracy curve and loss value curve
of CNN have become stable, and then record the entire
training and testing process time. The confusion matrix
of the highest fault diagnosis accuracy of 10 times of
training and test results is taken and presented, as shown
in Figure 21.

The variation curves of fault diagnosis accuracy and loss
value during the training process are shown in Figure 22.

From Figure 21, it can be seen that even with reduced
training data under class label 1, the fault diagnosis accu-
racy can still reach 99.12%, with an average accuracy of
97.28% and a standard deviation of 0.018. Furthermore, all
test data under classs label 1 have been correctly identified.
Therefore, the above facts are sufficient to prove the good
generalization ability of the proposed CNN for infrared
image classification.

In terms of hardware configuration, a computer of
Windows 11 is used in this study, with 13th Gen Intel(R)
Core(TM) i5-13600KF 3.50 GHz CPU, NVIDIA GeForce RTX
4060 GPU, and the RAM is 32GB DDR5. Moreover, the total
number of iterations is 280, taking 25 s. The number of
parameters of the CNN used in this article is about 60 M.
Therefore, we can conclude that the method proposed in
this article has the acceptable feasibility of online moni-
toring and can identify the real-time status of diesel engines
accurately. In addition, due to the relatively large number of
parameters, the model needs to be compressed and pruned
in subsequent embedding tasks, and the hardware config-
uration of the computer needs to be improved.

7 Conclusions

This article introduces a highly efficient fault diagnosis
approach for diesel engines, using the combination of
IRT and CNN. In order to address four prevalent fault states
of diesel engines, we have collected the corresponding
infrared images. The effectiveness of the proposed method
is verified in comparison to DL methods such as MLP,
LSTM, and SAE. Simultaneously, the article investigates
the impact of temperature variations on the fault diagnosis
efficacy of DL methods. To summarize, the article makes
the following key contributions:
1) This study proposes an effective fault diagnosis method

for diesel engines by combining IRT with CNN. The pro-
posed method is capable of automatically extracting fault
features from infrared images and demonstrates excellent
algorithm stability and anti-interference ability against
temperature fluctuations.

2) The AHE-based image enhancement, proposed in the
article, demonstrates its effectiveness in enhancing the
fault diagnosis accuracy. Moreover, it exhibits a certain
level of adaptability to DL methods, including CNN,
MLP, LSTM, and SAE.

3) The experimental results demonstrate that the proposed
CNN has a good generalization ability for infrared image
classification and acceptable feasibility of online moni-
toring, and exhibits superior fault diagnosis performance
and effectively identifies mixed faults (MCM) when com-
pared to MLP, LSTM, and SAE.

Figure 22: The variation curves of accuracy and loss value: (a) accuracy, (b) loss value.
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In future research endeavors, the primary focus will
be on addressing the issue of low accuracy in fault diag-
nosis during the early stages of diesel engine operation.
This will involve conducting research on few-shot image
classification, as acquiring an adequate amount of data is
challenging.
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