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Abstract: In this study, a generalization of the Estevez—
Mansfield—Clarkson (EMC) equation that considers the
presence of conformable time-fractional derivatives is
investigated analytically. The integer-order model finds
applications in mathematical physics, optics, and the inves-
tigation of shape developing in liquid drops. In this study,
the Sardar sub-equation method, is employed to solve the
generalized EMC equation. From the Sardar sub-equation
method a broad range of soliton solutions, including dark-
bright, combined dark-singular and periodic singular soli-
tons, have been obtained. Some of the results derived in
this study are plotted to illustrate that the solutions are
solitary waves, indeed.
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1 Introduction

The purpose of this note is to derive a particular class of
analytical solutions for some nonlinear evolution equa-
tions (NLEEs) in the form of traveling waves [1-3]. In par-
ticular, the Estevez—Mansfield—Clarkson (EMC) equation
exhibits distinct characteristics compared to other well-
known NLEEs, each of which plays a unique role in mod-
eling various physical phenomena. The Korteweg—de Vries
(KdV) equation, known for describing shallow water waves,
is significant for its soliton solutions that emerge from the
interplay of nonlinearity and dispersion. The modified KAV
equation, which introduces stronger nonlinear terms, sup-
ports sharper soliton solutions, making it useful for steeper
waveforms. Burgers’ equation, often employed to model
viscous fluid flows and turbulence, includes dissipative
terms that lead to shock wave formation rather than soli-
tons. The sine-Gordon equation, with its kink and antikink
solutions, is relevant to models in field theory, crystal dis-
locations, and DNA dynamics. In contrast, the Sharma-Tas-
so-Olver equation, such as KdV, features solitonic solutions
but with a modified balance between dispersion and non-
linearity, making it applicable in plasma and nonlinear
wave studies. The EMC equation shares similarities with
these equations but also incorporates distinctive nonlinear
and dispersive terms, giving it unique solution properties
that bridge gaps in classical nonlinear wave models, parti-
cularly for phenomena with complex wave interactions.
Comparing these equations highlights the EMC equation’s
potential to model unique nonlinear dynamics across var-
ious physical systems.

In the practice, nonlinear fractional partial differential
equations (NLFPDEs) are often used to mathematically for-
mulate problems. Such scenarios require being modeled in
a number of distinct situations. Fractional differential
equations in engineering, mathematical physics, and dyna-
mical systems have all been made part of numerous pieces
of recent literature, by a wide range of authors in various
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fields of study. It is well known that fractional differential
equations are an extension of classical differential equa-
tions to an arbitrary (non-integer) order. In particular,
fractional differential equations involving non-local spatial
and temporal interactions can be represented by power-
law memory kernels. Scientific research into fractional
differential equations is rising significantly due to its
wide use in engineering and science. Many researchers
[4-6] have examined fractional differential equations and
applied several kinds of methods for solving them. In the
past, fractional derivatives and integrals were thought to
belong in the theoretical field of mathematics. However, a
number of research investigations conducted in the pre-
vious decades have indicated that fractional phenomena
may be connected to applied mathematics and engineering
subjects such as control theory, water wave mechanics,
plasma physics, geochemistry, vascular mechanics, fluid
mechanics, and optical fibers, along with mathematics.

Only in the last few years has the use of fractional
derivatives in mathematical modeling played a significant
role. NLFPDESs are a more prominent way to represent any
naturally occurring phenomenon. Various mathematical
models are represented in a form involving different
fractional derivatives, such as Atangana’s conformable
derivative [7], local M-derivative [8,9], p-order truncated
M-derivative [10], Jumarie’s fractional derivative [11],
and truncated M-fractional Westervelt model [12]. The pur-
pose of this work is to employ the Sardar sub-equation
method in the investigation of traveling wave solutions of
the EMC equation. That model is a non-linear system with
potential applications in various fields [13-15]. In this work,
we will suppose that Z = Z(x, t), where (x, t) € R x [0, ©).
The function Z will satisfy the time-fractional extension of
the EMC equation given by

DDy Z + aDyZDED,Z + aDyZDFZ + DX°Z = 0,
V(x,t) €R x [0, »),

M

where t represents time, and x denotes the spatial position
in one dimension. Moreover, a is a free parameter, and the
operators Dy, Dy, and Dy, are the usual integer-order
differential operators in space. On the other hand, a is a
number in (0,1), and D and D* denote the fractional
derivative operators of order a and 2a, respectively. For
purposes of this report, the fractional operators will be
understood in the conformable sense. We provide the
definition and some properties of these operators in
the following section, along with a brief description of
the methodology used in this manuscript.

Shehzad et al. worked on the NLEEs to derive bright-
dark and breathers wave solutions using the (G’/G, 1/G)-
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-expansion technique [16]. Nasreen et al. used the extended
and modified rational expansion method to obtain the
optical solitons for the third-order nonlinear Schrédinger
equation [17]. Kai and Yin, worked on the Sharma-
Tasso—Olver—Burgers equation to explore soliton struc-
tures [18]. Alam et al. worked on the bifurcation analysis
and new exact complex solutions for the nonlinear Schro-
dinger equations [19]. Mathanaranjan also used the
extended sinh-Gordon equation expansion method [20],
new extended auxiliary equation method [21,22], modified
F-expansion method [23], modified Jacobi elliptic function
expansion, and the unified Riccati equation expansion
[24,25]. In summary, multiple efficient methods have been
efficiently developed as a way to find exact solutions for
NLFPDEs. Among those methods, we can mention the gen-
eralized (G’/G)-expansion approach [26,27], the Kerr and
power law of nonlinearity [28], the exp-function method
[29], the extended tanh-function method [30], the extended
sinh-Gordon equation method [31], the improved tanh
method [32], the rational (G’/G)-expansion technique [33],
the directed extended Riccati method [34,35], the first-integral
method [36], the sub-equation method [37], the Riemann-Hil-
bert approach [38,39], the two variable (G’/G, 1/G)-expansion
method [40,41], the modified extended tanh-function method
[42], the generalized Jacobi elliptic function technique [43],
and the Hirota bhilinear method [44], among others. But in
this study, we use the Sardar subequation method, which is
a mathematical technique.

The Sardar sub-equation method is a technique used to
find exact solutions of nonlinear partial differential equa-
tions (NLPDES), including solitary wave and soliton solu-
tions. The method is often simpler compared to other
methods for solving nonlinear partial differential equa-
tions (PDEs). It reduces the NLPDE to an ordinary differ-
ential equation (ODE), which is easier to solve. It provides
exact solutions, including solitary waves and soliton solu-
tions, which are valuable for understanding the behavior
of nonlinear systems in fields such as fluid dynamics,
plasma physics, and optical fibers. The limitation of this
method is that it does not involve any linearization or
perturbation techniques, unlike other solution methods
that use the two of them. This method is not applicable
for all types of the NLPDEs but only for equations that
provide even-order ODEs. If the ODEs include odd-order
derivatives, then this method fails. It maintains the non-
linearity of the problem and changes the nonlinear terms
considerably. While the method can be adopted for all the
NLPDEs, it may not yield results with certain category of
NLPDEs, especially those with more complicated nonlinea-
rities. The goal of this study is to calculate exact soliton and
solitary wave solutions for the conformable time-fractional
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EMC equation using the Sardar sub-equation method. In
this way, we will obtain a broad range of soliton solutions,
including dark-bright, combined dark-singular and peri-
odic singular solitons.

2 Preliminaries

The conformable derivative is a type of fractional deriva-
tive that generalizes the derivatives of integer orders to the
fractional case, retaining certain properties of classical
derivatives. Here, we provide a fresh start to this discus-
sion by recalling the definition of conformable derivatives
and some of their properties.

Definition 1. Let g : [0, ) ~ R be a differentiable func-
tion, and suppose that 0 < a < 1. Then, the conformable
derivative of g of order a at the point ¢ is defined as

g+ 1) - g .
3

D (g)(t) = lim
-0
for each t > 0 (see [12] for additional information).

Theorem 1. Suppose that u,v : [0, %) - R are differenti-
able functions, and let a € (0, 1). Then,

— D%(mu + nv) = mD%yu) + nD*(v), for each m,n € R,

— D%(t") = rt"™ ¢, for eachr € R,

D%(uv) = uD%(v) + vD%(uw),

u) _ vDUw - ubw)
-

v2 )
D%m) = 0, for eachm € R,
Dau(t)) = < for each t > 0.

In order to provide analytical solutions for Eq. (1), we
will employ the Sardar sub-equation method, which con-
sists of the following steps.

Step 1. Let us assume that the mathematical model is
an NLPDE, which can be rewritten in the following form:

A(Z,DfZ,D,Z,D}Z, Dy Z, ...) = 0, Q)

where A is a polynomial form that depends on the para-
meters inside the parentheses. Here, the fractional traveling-
wave transformation Z = Z(x, t) is given by Z(x, t) = H(9),
where ¢ = kx + C;—H The symbols k and ¢ represent the real
constants, and a is the fractional order of differentiation.
Substituting this transformation into Eq. (3), we readily
obtain that

B(H,H',H",H",..) =0, @

where B is a polynomial of H.
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Step 2. Suppose Eq. (4) has a solution of the form

H(@$) = Y wni(9), wm#0, 5)

j=0

where w; are the coefficients to be determined, for each
j=0,1,..,m, and n(¢) satisfies the ODE

(@) = o + f2($) + n*(9). ®)

Then, the solutions of Eq. (6) are given as follows.
* Case 1.If 0 = 0 and f> 0, then

ni(¢) = +\/-dbf sech ([ f9), ©)
ni(¢) = £/-dbf csch a(\/f9), ®)

where sechgy (@) = 2(de® + be )™ and cschay(¢) = 2
(de?® — be™9)1.
* Case 2. If 0 =0 and f< 0, then

ni(¢) = +/-dbf sec a(\/-f9), ©)

;@) = +/=dbf csc a([~f9),

where secg, (@) = 2(de® + be™®)™ and cschgy (@) = 2i
(de¥ — be™¢)1,

*Case3.If f<Oando = fzz, then

(10)

f]st((b) = i\/j tanh g, _£¢]’ an
2 2
ng (@) = i\/j cothdb[ i ¢], (12)
2 2
BO) -5
+ /db sech 4(\/=2f9)),
1) = £~ (coma29) w

+ db csch a(\=2f ),

f]gi((/)) = i\/j tanh g, —I ¢)] + COthdb[\/j¢)”, @15)
2 2 2
where  tanhg, (@) = (de® - be™®)(beX + be™®)?  and
coth g (@) =(de® + be?)(de? — be ?)1.
* Case4d.If f>0and o = fzz, then
Nio(9) = i\/g tangy \/; ¢], (16)
N5 (@) = ’—f\/; COtdb[\/; ¢], 17)
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1) = £, (tona ) + VT seca o, 09

1) = £, L cota([F0) + Vb esca(Fo), 19

My(®) = i\g \/; ¢] + cotdb[g ¢]] (0)

where  tan g (¢) = —i(de? - be ?)(de? + be ?)™
coth gp (@) = —i(de? + be ?)(de? - be )1,

tang,

and

Step 3. Use the balancing rule to determine the value of m
in Eq. (5).

Step 4. Next, substitute Egs (5) and (6) into (4) to determine
the equations in power of n(¢).

Step 5. After obtaining nonzero solutions and setting all
the coefficients of n(¢) equal to zero to produce the system
of algebraic equations, we find out solutions by solving this
system.

3 Results

To start with, we transform the PDE in Eq. (1) using the

fractional traveling-wave transformation ¢ = kx + %a Sub-
stituting this transformation into Eq. (1) and letting H' = V,

we readily obtain the ODE
c2V + ack*V? + ¢k = 0 21

Using now the balancing procedure on Eq. (21) yields that
m = 2. Substituting this value into Eq. (5), we obtain that

H(9) = wo + win(@) + wan(9)?,

where wy, w;, and w; are the constants. Substituting now
Eq. (22) and their derivatives into Eq. (21), we reach the
system of algebraic equations

(22)

ackw? + 2w, + 2ck30w,; =0,
2ack’wowy + %y + cgkiw; =0,
ack®w? + 2ack*wow; + ciw; + 4cgk®w, =0, (23
ack?w? + 2ack*wow, + c*w; + 4cgk3w, =0,
ack*w? + 6ck3w, = 0.
It is possible to check now that the solution of this system is
given by

Jc* + 48kfo + ¢

" R
_ %+ 48kSa _ 6k
e T
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Now, we are in a position to derive exact solitary wave
solutions for our mathematical model. More precisely, the
solutions are obtained from Egs (6) and (22) when we substi-
tute Eq. (24) and any of the functions in the cases presented in
the previous section. After performing those substitutions and
reducing algebraically, we obtain the following functions:

—2(\/ c? + 48kbo + ¢)
S )
?(\/ c? + 48kfg + ¢)
Mcschz[\/7C %a + kx]]
%(m + o)
Gdb

ﬂ< [ \/—f
2akz(\/ c% + 48kfo + ¢)
+ Gdek csczl\/——f[%a + kx]].
—2(\/ c? + 48kSg + ¢)
ff[

Z1(X, t) =-
(25)

Zz(X, t) ==
(26)

Z3(X) t) =-
27
— + kx|,

Z4(Xa t) =-
(28)

Zs(X, t) =-

] 29)
temh2

Je? + 48Kk8a + ¢)
ﬁl

Z6(X: t) = 2 kz(

(30
3 ]
coth2

a

(\/ c% + 48kbo + ¢)
T[Jﬁsech ﬁ\/fj’[% + kx

Z7(x, t) =

3D

+ tanh

il

ﬁﬁ[%a + kx

Zg(X, t) =-

2k (V2 + 48Kkfo + ¢)
. %[mcsch[ﬁﬁ[%“ ke

(32)

)

+ coth[\/f\/—_f[%ta + kx
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(Jc? + 48KS + c)
ffl A

Z9(X’ t)=- 2ak?

tanh
(33)

\/7[— + kx
— 7 |’

+ coth

(W + 48KkSg + ¢)

Zyo(x, 1) = " kz

(34)

(V¢ + 48Kkba + ¢)

le(xa t) = 2 kz

(35)

Zpx, t) =

=y k2 (V% + 48Kkba + ¢)
7[\/% sec[\/i\/f[%a + kx

] (36)

+ tan

iy ]|
Zs(x, t) =

=P kz(\/ c? + 48kfo + ¢)

- 7[@ csc[ﬁ ﬁ[% kx|l @)

>

+ cot[\/f\/?[%ta + kx
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(\/c* + 48kfg + ¢)

1
Zl4(xa t) =- zakz

it
- e 2

—+kx

(38)

T+ e
e o)

+ cot

4 Discussion

In this section, we discuss the graphical results for the
fractional-order EMC model. The solutions for different
wave structures have been numerically examined in three-
dimensional, two-dimensional, and contour forms using sui-
table values of the parameters. We showed that the soliton
solutions appear as bright soliton, dark soliton, singular
soliton, and solitary wave. We are convinced that the results
of this study are novel. Indeed, to the best of our knowledge,
there are no previous results that use the analytical metho-
dology employed in this work on the fractional-order EMC
model. Moreover, it is important to note that our analytical
findings can be related to those derived from other
approaches, such as the Riccati ODE expanding techniques,
the F-expansion method, the tanh-method, and other related
approaches, within specific limitations. Our work might be
interpreted as a generalization of existing techniques, pro-
viding a more comprehensive framework from which these
particular techniques can be drawn or comprehended.

It is important to mention that the solutions were
plotted by means of specialized mathematical software.
In this section, we plot the graphs of some of the solutions.
As we mentioned previously, we plot three-dimensional,
two-dimensional, and contour plots in each case. Observe

(b)

10

-10 -5 0

Figure 1: (a) Three-dimensional, (b) two-dimensional, and (c) contour plots showing the graphical behavior of Eq. (25) with parameters a = 1.5,

a=09,c=-1,d=-09,b=-04, f=0.09,k=-05,1=-17,and 0 = 0.
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(a)

Zs(x,t)?g‘i\/
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(c)

5 10 -4 -2 0

Figure 2: (a) Three-dimensional, (b) two-dimensional, and (c) contour plots showing the graphical behavior of Eq. (29) with parameters a = 0.5,

a=09,c=1,d=09,b=04, f=-1,k=0151= 0.7, and o = 0.25.

| R
; .

Zi(x.t) E;}L

L
1Dx

-10 -5 [ 5 1

Figure 3: (a) Three-dimensional, (b) two-dimensional, and (c) contour plots showing the graphical behavior of Eq. (28) with parameters a = 1.5,

a=09,c=-1,d=09,b=04, f=-05k=051=17 and o = 0.

that the solutions in Figure 1 represent the bright solitons,
and Figure 2 represent dark soliton solutions. Meanwhile,
Figures 3-7 show the presence of multiwave structures. In
each case, the figures were obtained by assigning suitable
values to the model and solution parameters. For conve-
nience, those parameter values are provided in the

T

caption of each figure. Finally, Figures 8 and 9 are
obtained for various values of the fractional order
a =0.3,0.6, and 0.9, which shows the impact of the frac-
tional differentiation order on the behavior of the soli-
tons. In the former, we chose the solution (25), while the
latter uses (29).

(b)
Z3(x.t)

(RN

s

(<)

. . 4
5 10 -10 -5 ) 5 1

Figure 4: (a) Three-dimensional, (b) two-dimensional, and (c) contour plots showing the graphical behavior of Eq. (27) with parameters a = 1.5,

a=09,c=-1,d=09,b=04, f=-2,k=051=17,and 0 = 0.
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(b)

] -

o

40
Qq(xy.t)

20

3
°
3

Figure 5: (a) Three-dimensional, (b) two-dimensional, and (c) contour plots showing the graphical behavior of Eq. (34) with parameters a = -0.5,
a=09,c=-1,d=09,b=04, f=2,k=-051=07,ando=1.

(a) (b)

Zi(x,0)°

wsﬁ\
10}

5
UEE(
10

S~

T qp
10 10 5 5 o X

Figure 6: (a) Three-dimensional, (b) two-dimensional and (c) contour plots showing the graphical behavior of Eq. (35) with parameters a = -0.5,
a=09,c=-1,d=09,b=04, f=1,k=-051=07ando=1.

(a) (b)
21820(_Xst)
TR T
Zaxt) ° A N °
o ‘ || i
» ‘--1\0“""10 10 5 5 0 X m o o

Figure 7: (a) Three-dimensional, (b) two-dimensional and (c) contour plots showing the graphical behavior of Eq. (36) with parameters a = —0.5,
a=09,c=-1,d=09,b=04, f=08,k=-051=07,ando=1.

(a) (b) ()

FLE
Jots
1o mz1(X,t)
Joos

,Q;j 000
0

Figure 8: Three-dimensional plots of the impact of fractional order on the solution from Eq. (25) with (a) a = 0.3, (b) a = 0.6, and (c) a = 0.9.
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Figure 9: Three-dimensional plots of the impact of fractional order on the solution from Eq. (25) with (a) a = 0.3, (b) a = 0.6, and (c) a = 0.9.

5 Conclusion

In this work, we employed the Sardar sub-equation method
to derive exact solitary wave solutions of a generalized EMC
equation. The mathematical model investigated here is a
PDE, which considers the presence of fractional-order deri-
vatives in time, which are understood in the conformable
sense. To start with, the mathematical model is transformed
into an ODE using the fractional traveling-wave transforma-
tion. The Sardar sub-equation method is applied then to
derive various solutions in exact form. The associated solu-
tions are in terms of generalized hyperbolic and generalized
trigonometric functions. In that way, we derive the solutions
for combined dark-bright, singular, periodic singular, dark,
bright, and combined dark-singular soliton. Some figures
are provided in this work, and they provide evidence of
the different natures of the solutions.

In the physical sciences, and especially in fluid mechanics,
solitary waves describe the stable, localized waveforms that
maintain their shape while propagating, as observed in
shallow water or internal waves in stratified fluids. These
solutions are invaluable for modeling tsunamis and coastal
waves, where understanding wave stability and interaction
is crucial for predicting wave behaviors and designing pro-
tective infrastructure. In optical fiber systems, solitary wave
(or soliton) solutions play an essential role in the stable
transmission of data. Solitons, arising from the balance
between dispersion and nonlinearity in the medium, pre-
vent signal distortion over long distances, making them
ideal for high-speed, long-range communication. As a future
direction of investigation after this study, the authors will
consider nonlinear dynamical systems under time-fractional
derivatives of different types, including Caputo-type frac-
tional derivatives. Moreover, the authors intend to take
into account the presence of noise in NLEES, as it was done
in the study by Macias-Diaz et al. [45].
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