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Abstract: In this article, we take into account the fractional
space Kundu–Mukherjee–Naskar model with time-depen-
dent coefficients (FSKMNE-TDCs). By incorporating time-depen-
dent coefficients (TDCs) into the equation, researchers can
better model systems that exhibit nonconstant or nonlinear
behavior over time. This has important implications for under-
standing complex phenomena such as turbulence in fluid flow,
quantum tunneling in particle physics, and time-varying elec-
tromagnetic fields. We apply the mapping method to obtain
hyperbolic, elliptic, trigonometric and rational fractional solu-
tions. These solutions are vital for understanding some funda-
mentally complicated phenomena. The obtained solutions will
be very helpful for applications such as optical fiber wave
propagation in a magnetized plasma, oceanic rogue waves,
and ion-acoustic waves. Finally, we show how the M-truncated
derivative order and TDCs affect the exact solution of the
FSKMNE-TDCs.

Keywords: exact solutions, random coefficient, M-trun-
cated derivative operator, mapping method

1 Introduction

Fractional differential equations (FDEs) lie in their ability
to capture nonlocal and memory effects through derivatives
of noninteger order. These equations have a wide range of
applications and are employed in physics, biology, medicine,
engineering, and finance [1–7]. In physics, these equations

can describe complex systems, such as fluid dynamics,
electromagnetic theory, and quantum mechanics. Frac-
tional calculus provides a powerful mathematical tool
for modeling and analyzing fractional physical systems.
Moreover, FDEs have proven to be useful in engineering
fields where they are utilized in the design and analysis of
control systems, signal processing, and image-processing
applications. Fractional derivatives can describe the beha-
vior of viscoelastic materials, allowing engineers to design
more effective materials and structures.

On the other side, partial differential equations (PDEs)
with variable coefficients play a crucial role in various
fields of science and engineering. These equations involve
functions with multiple independent variables and their
partial derivatives. The coefficients in these equations are
not constant but vary with the independent variables. This
variation allows for a more accurate representation of real-
world phenomena and provides a deeper understanding of
complex systems.

Moreover, solving PDEs with variable coefficients remains
a challenging task. Recently, there are various helpful and
practical techniques for solving these equations, including
the ( ′∕G G)-expansion method [8], the sub-equation method
[9], the Hirota’s bilinear approach [10], the ( )′∕G G2 -expansion
and Jacobian elliptic functions methods [11], solitary wave
ansatz [12]. Moreover, there are many methods for solving
PDEs with constant coefficients, for example, the extended
( ′∕G G)-expansion method [13,14], the generalized Kudryashov
approach [15], the ( ′∕ ∕G G G, 1 )-expansion method [16], the
exp( ( ))−φ η -expansion method [17], the generalized Riccati
equation mapping method [18], the Lie symmetry method
[19], the multivariate generalized exponential rational integral
function [20], the modified generalized Riccati equation map-
ping approach [21], the generalized exponential rational func-
tion method [22], the generalized Riccati equation [23], and the
He’s semi-inverse method [24,25].

To achieve a better degree of qualitative agreement, we
consider here the fractional-space Kundu–Mukherjee–Naskar
equation (FSKMNE) with time-dependent coefficients (TDCs)
as follows:
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where � is the optical soliton profile, � α δ, is M-truncated
derivative (MTD) operator, and ( )a t and ( )b t are arbitrary
functions of the variable t .

In 2013, Kundu and Mukherjee [26] suggested Eq. (1)
with =δ 0 and =α 1. It is derived from the basic hydro-
dynamic equations as a two-dimensional nonlinear Schrö-
dinger equation. This Eq. (1) can be used to illustrate optical
fiber wave propagation, oceanic rogue waves and ion-
acoustic waves in a magnetized plasma [27–29]. Numerous
studies have been carried out on Eq. (1) to examine soliton
propagation into an optical fiber. As a consequence, several
mathematical approaches are utilized to obtain exact solu-
tions, such as ( )′∕G G -expansion method [30], Lie symmetry
[31], Jacobi elliptic functions [32], extended trial function
[33], modified simple equation [34], and trial equation [35].

The motivation of this article is to establish the exact
solutions of the FSKMNE-TDCs (1). We employ the mapping
approach to acquired a variety of solutions for instance
trigonometric, hyperbolic, rational, and elliptic functions.
The acquired solutions are very helpful for applications
such as optical fiber wave propagation in a magnetized
plasma, oceanic rogue waves, and ion-acoustic waves.
Furthermore, we use Matlab program to produce 2D and
3D figures for some of the analytical solutions established
in this work to examine the impact of the MTD and TDC on
the acquired solutions of the FSKMNE-TDCs (1).

This article is organized as follows: In Section 2, we
define the MTD and describe some of its characteristics. To
obtain the wave equation of the SFSKMN-TDCs (1), we use a
suitable wave transformation in Section 3. In Section 4, we
construct the exact solutions of the SFSKMN-TDCs using the
mapping method (1). In Section 5, we address the impact of
the MTD on the attained solutions. Finally, the conclusion
of the article is presented.

2 M-truncated fractional derivative

Fractional calculus operators are an effective tool for mod-
eling and evaluating complicated processes that cannot be
effectively explained using regular integer-order calculus.
Several forms of fractional derivative operators have been
suggested in the literature, including the Katugampola
derivative, the Jumarie derivative, the Hadamard deriva-
tive, the Caputo derivative, the Riemann–Liouville deriva-
tive, and the Grünwald–Letnikov derivative [36–39]. In
recent years, Sousa and de Oliveira [40] introduced a novel
derivative known as the MTD that arises naturally from the

classical derivative. The MTD exhibits several classical cal-
culus features, such as the function composition rule, chain
rule, product rule, linearity, and quotient rule. The MTD
for �[ )∞ →u : 0, of order < ≤0 α 1 is given as follows:
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The MTD has the next features for any real constants a and
b [40]:
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3 Wave equation for FSKMN-TDCs

To acquire the wave equation for the FSKMN-TDCs (1), the
next wave transformation is applied:
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where � is a real valued function. Plugging Eq. (2) into Eq.
(1) and using
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we obtain for imaginary part

�[ ( ) ( )( )]+ + ′ =f t a t ρ μ ρ μ 0,
1 2 2 1

(3)

and for real part

� � �( ) ( ( ) ( )) ( )″ − + + =μ μ a t g t ρ ρ a t ρ b t2 0.
1 2 1 2 1

3 (4)

From (3), we obtain

( ) ( ) ( )= − +f t ρ μ ρ μ a t .
1 2 2 1

(5)
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4 The analytical solutions of the
SFKMNE

Here, the mapping method, which was reported by Peng
[41], is used. Let the solutions of Eq. (4) have the form
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where ℓ( )ti are unknown functions in t for =i K0, 1,…, ,
and � is the solution of

� � �′ = + +ℏ ℏ ℏ ,1
4

2
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where ℏ , ℏ1 2, and ℏ3 are real constants.
By balancing �″ with � 3 in Eq. (4), we can determine

K as follows:

+ = ⇒ =K K K2 3 1.

With =K 1, Eq. (6) becomes
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Differentiating Eq. (8) twice and using (7), we obtain
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By substituting Eqs. (8) and (9) into Eq. (4), we have
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When we solve these equations, we obtain three dif-
ferent sets:
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By utilizing Eqs. (2), (8), and (10), the solution of FSKMNE-
TDCs (1) is expressed as follows:
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There are many sets depending on ℏ , ℏ1 2, and ℏ :3
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(1), by using Eq. (12), is given as follows:
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At →m 1, Eq. (13) becomes
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(1), by using Eq. (12), is given as follows:
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When →m 1, Eq. (15) is typically
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At →m 0, Eq. (15) tends to
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Set 3: If = = − mℏ 1, ℏ 21 2
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At →m 1, Eq. (18) is typically
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If →m 0, then Eq. (18) becomes
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At →m 1, Eq. (21) tends to
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If →m 0, then Eq. (23) is typically
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At →m 0, Eq. (25) turns to
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When →m 1, Eq. (28) is typically
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FSKMN-TDCs (1) is given as follows:
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When →m 1, Eq. (30) tends to Eq. (29).
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When →m 0, Eq. (31) is typically
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Set 11: If = − = − mℏ 1, ℏ 21 2
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If →m 1, then Eq. (33) turns to Eq. (29).

Remark 1. Putting =α 1, ( ) =a t a, ( ) = = =b t b μ B μ B, ,
1 1 2 2,

=ρ k
1 1, =ρ k

2 2, and ( ) = −f t ρ in Eqs. (16), (20), and (29), we
have the same results that stated in [34].

5 Impact of MTD and physical
meaning

Impacts of MTD: Now, we study the impact of MTD on the
acquired solutions of the FSKMN-TDCs (1). A series of two-
dimensional and three-dimensional graphs are generated
by assigning suitable values to the unknown variables.
Figures 1 and 2 represent the behavior solutions of (13),
and (14), respectively. Figure 1 displays the periodic solu-
tions �∣ ( )∣x y t, , described in Eq. (13) for = = −μ ρ 1

1 2
,

= =ρ μ 1
1 2

, ( ) =a t t, ( ) =b t t , =δ 0.9, [ ]∈x 0, 4 , [ ]∈t 0, 3

and for =α 1, 0.8, 0.6. While Figure 2 displays the bright

Figure 1: (i)–(iii) 3D profile of the periodic solution �∣ ( )∣x y t, , described in Eq. (13) with =α 1, 0.8, 0.6 (iv) depict 2D profile of Eq. (13) with various
values of α. (i) =α 1, (ii) =α 0.8, (iii) =α 0.6, and (iv) =α 1, 0.8, 0.6.
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solutions �∣ ( )∣x y t, , described in Eq. (14) for = = −μ ρ 1
1 2

,
= =ρ μ 1

1 2
, ( ) =a t t, ( ) =b t t , [ ]∈x 0, 4 , =y 0, [ ]∈t 0, 3

and for =α 1, 0.8, 0.6. From these figures, we deduce that
when the derivative order α of MTD decreases, the surface
moves into the left side.

Impacts of TDCs: Now, we study the impact of the
TDCs on the acquired solutions of the FSKMN-TDCs ( 1).
Figures 3 and 4 display the solutions �∣ ( )∣x y t, , described
in Eqs. (13) and (14) for = = − = = =μ ρ ρ μ δ1, 1, 0,

1 2 1 2

[ ]∈x 0, 4 , =y 0, [ ]∈t 0, 3 and for =α 1. In Figures 3(i)
and 4(i), we assume ( ) ( )= =a t b t t , and this choice makes
the surface twist from the left. In Figures 3(ii) and 4(ii), we
assume ( ) ( ) ( )= =a t b t t1, sinh , and this option makes the
surface a little flat from the right. In Figures 3(iii) and 4(iii),
we assume ( ) ( ) ( )= =a t t b tcos , 1, and this choise effects on
the surface sides. While in Figures 3(v) and 4(v), we assume

( ) ( ) ( )= =a t b t W t ,t where ( )W tt is the derivative of Wiener
process ( )W t , and this option causes the surface to oscillate.

Physical meaning: The Kundu–Mukherjee–Naskar equa-
tion with TDCs offers a powerful tool for optimizing processes
or designing new technologies. By modeling the time-depen-
dent behavior of a system accurately, researchers can identify
critical points in the system where improvements can be
made or where potential issues may arise. This can lead to
more efficient processes, increased reliability, and better per-
formance in a wide range of applications, from aerospace

engineering to biomedical research. Therefore, the exact solu-
tions of the FSKMNE-TDCs (1) were acquired here. We applied
themappingmethod, which providedmany types of solutions
including periodic solutions, kink solutions, bright solutions,
dark optical solution, singular solution, etc.

6 Conclusions

In this article, we considered FSKMNE-TDCs (1). One of the
key advantages of the Kundu–Mukherjee–Naskar equation
with time-dependent coefficients is its ability to capture the
dynamic behavior of physical systems. By incorporating
TDCs into the equation, researchers can better model sys-
tems that exhibit nonconstant or nonlinear behavior over
time. This has important implications for understanding
complex phenomena such as turbulence in fluid flow,
quantum tunneling in particle physics, and time-varying
electromagnetic fields. We applied the mapping method to
obtain hyperbolic, elliptic, trigonometric, and rational frac-
tional solutions. These solutions are important for under-
standing some fundamentally complicated phenomena.
The acquired solutions are very helpful for applications
such as optical fiber wave propagation in a magnetized

Figure 2: (i)–(iii) 3D-profile of the bright solution �∣ ( )∣x y t, , described in Eq. (14) with =α 1, 0.8, 0.6 (iv) depict 2D-profile of Eq. (14) with various α.
(i) =α 1, (ii) =α 0.8, (iii) =α 0.6, and (iv) =α 1, 0.8, 0.6.
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plasma, oceanic rogue waves, and ion-acoustic waves.
Finally, we show how the MTD order affects the exact
solution of the FSKMNE-TDCs (1). We deduced that when

the derivative order α of MTD decreases, the surface moves
into the left side. In the future work, we can study (1) with
the stochastic term.

Figure 3: 3D and 2D profile for the solution �∣ ( )∣x y t, , stated in Eq. (13) with different TDCs. (i) ( ) ( )= =a t t b t t, , (ii) ( ) ( ) ( )= =a t b t t1, sinh ,
(iii) ( ) ( ) ( )= =a t t b tcos , 1, and (v) ( ) ( )= =a t W b t W,t t .

Optical solitons to the FSKMNE-TDCs  7



Figure 4: 3D and 2D profile for the solution �∣ ( )∣x y t, , stated in Eq. (14) with different TDCs. (i) ( ) ( )= =a t t b t t, , (ii) ( ) ( ) ( )= =a t b t t1, sinh ,
(iii) ( ) ( ) ( )= =a t t b tcos , 1, and (v) ( ) ( )= =a t W b t W,t t .
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