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Abstract: In this study, we introduce an efficient analysis
of a new equation, termed the time-fractional g-deformed
tanh-Gordon equation (TGE), which is the fractional form
of the g-deformed TGE that was recently introduced by Ali
and Alharbi. This equation represents a significant advance-
ment in the field of mathematical physics, which is due to its
applications in many fields including superconductivity and
fiber optics. It has many applications in condensed matter
physics and in modeling physical systems that exhibit vio-
lated symmetries. We investigate the g-deformed TGE in
fractional form using Caputo fractional derivative to capture
non-local and memory effects, which means they can take
into account the entire history of a function rather than just
its current value. Notably, this equation has not been pre-
viously solved in fractional form, making our approach pio-
neering in its analysis. We solve this equation utilizing the
modified double Laplace transform method, which is consid-
ered a semi-analytical technique that combines the double
Laplace transform with Adomian polynomials to enable us
to extract nonlinear terms. This method renowned for its
efficacy in handling fractional differential equations; this is
evident from the results obtained in the tables by comparing
the analytical solution with the approximate solution we
obtained, as well as by calculating the absolute error between
them. We examine the existence and the uniqueness of the
solution utilizing Schaefer’s fixed-point theorem. Different
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graphs in 2D and 3D are presented to clarify the effect of
different parameters on the behavior of the solution, specially
the fractional operator and the deformation parameter q.
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1 Introduction

Fractional calculus, a branch of mathematical analysis that
extends the concept of differentiation and integration to
non-integer orders, has found wide-ranging applications
across various fields [1]. In physics, fractional calculus offers
insights into anomalous diffusion processes, where particles
exhibit non-Gaussian behavior, as well as in modeling viscoe-
lastic materials and describing complex dynamical systems
[2-5]. Engineering disciplines benefit from fractional calculus
in signal processing, control theory, and electromagnetics,
where it aids in optimizing system performance and designing
efficient filters and antennas as well as fluid and optics fields
[6-9]. The biomedical domain utilizes fractional calculus to
model physiological processes such as drug release kinetics,
nerve conduction, and bioelectrical impedance analysis
[10,11]. Moreover, fractional calculus has made significant
contributions to economics and finance, enabling more
accurate modeling of long-term memory processes in asset
price fluctuations and improving risk management strate-
gies [12,13]. Its versatility and applicability continue to
inspire innovative solutions across diverse fields, driving
progress and fostering interdisciplinary collaborations.

Differential equations are powerful mathematical tools
that model a wide range of real-world physical phenomena,
enabling us to describe and predict systems with numerous
applications, from engineering and physics to biology and
economics [14,15].

The g-deformed function, introduced by Arai [16], is
incorporated in the dynamical system, system’s symmetry
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is broken, and symmetry breaking happens when a dyna-
mical system’s symmetry is not visible in its ground state
or equilibrium state. The g-deformed equations arise from
the concept of g-deformation, which is a generalization of cer-
tain algebraic structures, such as quantum groups, Lie alge-
bras, and associative algebras. These equations incorporate a
deformation parameter g into their formulation, leading to
nontrivial modifications to their properties compared to their
classical counterparts. These equations appear in versions of
physical systems, which describe the behavior of particles,
fields, and interactions in systems with noncommutative geo-
metry or quantum group symmetries. Examples include
q-deformed Schrodinger equations [17,18], g-deformed Klein-
Gordon equations [19], and g-deformed Sinh-Gordon equation
[20-22] that has been modified several times and solved either
in the integer-order or fractional-order form. Recently, Ali and
Alharbi [23] introduced a new equation called g-deformed
tanh-Gordon equation (TGE), which is considered as a general-
ization of g-deformed sinh-Gordon equation. They provided an
analytical solution to it using G’/G method as well as a numer-
ical solution using the finite difference method. In this study,
our aim is to extend the g-deformed TGE and represent it in
fractional form by incorporating the Caputo fractional deriva-
tive (CFD), aiming to find an approximate solution for this
equation. The integer-order TGE as presented in the study by
Ali and Alharbi [23] is in the form:

*uU U
on® ot?
= [tanh (e, OO (1400 + Bgyp g, tz0, D
0<qg=1,
where
el — go-U
tanhq(ﬂ) = ﬁ, )

and 0,4, P, g, and § are constants € R. As Eq. (1) repre-
sents a recently new equation, its solutions have been
explored on limited occasions. It is worth noting that Eq.
(1) has not yet been addressed or solved in a fractional
context; hence, the focus of this research lies in presenting
its solutions in fractional form, underscoring the signifi-
cant role that fractional calculus plays across numerous
scientific disciplines and clarifying the effect of fractional-
order derivative on the solution behavior.

In this article, we will solve the time-fractional g-deformed
TGE (TF g-deformed TGE) in the form:

“DUM, 1)
2 ®3)

= 200 ltanhy Lo 001 (€400 + fg)P + g
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constrained by the initial conditions:

UM, 0) =UM)
U(n, 0) = Uy(n),

where CZ)? is the CFG with respect to time, and © is the
fractional-order derivative,1 < © < 2. We motivate to solve
Eq. (3) to combine the advantages of the g-deformed TGE
with the benefits of using fractional calculus. It has many
applications in condensed matter physics and modeling
physical systems that exhibit violated symmetries. Violation
of symmetries means deviation from standard symmetry
properties. Standard symmetry leads to conservation laws,
such as conservation of energy and momentum, when these
symmetries are violated, it can indicate new physics or phe-
nomena that are not captured by traditional models. The
q-deformed TGE is used to model optical solitons in fiber
optics, where light pulses can travel long distances without
changing shape. It is useful in studying phase transitions in
condensed matter systems; researchers can examine how
systems behave as they transition between different phases,
particularly in systems where standard symmetry proper-
ties are violated. The violation of symmetry allows for a
richer understanding of fundamental interactions and beha-
vior of particles in particle physics. We merge fractional
derivative to capture non-local and memory effects, which
means they can take into account the entire history of a
function rather than just its current value, and we may
predict what happened in the future, so using fractional
derivative in forming equations that have physical applica-
tions is very useful.

We will solve Eq. (3) using the modified double Laplace
transform method (M D L7 M). Utilizing the double Laplace
transform method (DLTM) technique to solve fractional par-
tial differential equations (FPDEs) presents a robust method
for addressing intricate mathematical challenges. This approach
entails the simultaneous transformation of hoth time and space
variables, facilitating the conversion of fractional derivatives
into simplified algebraic expressions; this reduction greatly
simplifies the solution process. Adomian polynomials (APs)
effectively decompose and manage nonlinear terms in the
equation. APs coupled with double Laplace transforms are
employed, resulting in a modified version known as
MDLTM. This strategy has garnered recognition for its
efficacy in managing equations featuring fractional operators
and PDEs with mixed derivatives such as U;y. For further
elaboration and applications, see previous studies [24-27].

The structure of this article is as follows: in Section 2,
we outline the basics of CFD, APs, and the DLTM. Section 3
discusses the existence and uniqueness of the solutions

under study. Section 4 introduces the implementation fra-
mework of MDLTM utilizing the Caputo definition.
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Section 5 presents the numerical outcomes for solving the
TF q-deformed TGE. These results are visually depicted in
Section 6. Finally, Section 7 offers concluding remarks on
the findings of this study.

2 Basic definitions

2.1 Fractional derivatives

There exist several definitions of fractional derivatives such
as Riemann-Liouville, Riesz, Hadmard, Caputo-Fabrizio, and
many others, each with its own advantages. The majority of
researchers in fractional calculus direct their attention toward
studying the CFD because it is widely adopted for modeling
real-world phenomena for two main reasons. First, the CFD is
constrained since it yields zero when applied to a constant,
ensuring boundedness. Second, it facilitates the representation
of initial conditions using an integer-order derivative. It is
crucial to highlight that Caputo’s definition is applicable only
to functions demonstrating differentiability [28,29].

Definition 2.1. [1] The Caputo derivative of ©® order is
defined by

k
Jk“a#ﬂfu), k-1<0 <Kk,
COLFU =) 4 @
WT((LI), 0 =Kk,

where J*© represents the Riemann-Liouville fractional
integral, which can be stated as

Uu
JOF(U) = ﬁ j(fu - V)@ DE(Y)dy, -
0

U>0,0€R,

where R* denotes all real positive numbers, and I'(.) is the
known Gamma function. The operator J® satisfies the fol-
lowing properties for a, f = -1:

JUBF(U) = JPF(U), ®)

JUBF(U) = PIF(U), ™

a U = M vta
U= o i ®)

CFD satisfies the following properties:

€D [WOF(U)] = F(U), 9)
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k-1 1
PIEDYFU)] = F(U) - zsﬂ(mf’—,, >0, (10)
1=0 :
0, for v< 0,
‘pPuyv=y T+ _ o 11
l"(v+1—®)w , for v > 0©.
2.2 APs

The Adomian decomposition method based on establish-
ing the unknown function YV in a form of series of
decompositions:

Y=Y

k=0

(12)

The components Y, are computed recursively. The non-
linear term F(Y), such as Y2 Y3, sinY, and e can be
expressed by APs .o in the form:

FO) = D (Yo, Y, s Vo). (13)

k=0

APs are applicable across various forms of nonlinearity.
Adomian initially introduced a technique for computing
these polynomials in the study by Adomian and Rach
[30], a method later supported by formal validations. Addi-
tional methods have surfaced, including those based on
Taylor series and similar techniques, as discussed in pre-
vious studies [31,32].

The calculation of APs, denoted as .o, for the non-
linear component F(Y), can be accomplished using the
general formula:

K
F Z ngg

£=0

1
k! dv¥

K

, k=0,12.. 149

v=0

Eq. (14) can be expanded as

A =F(Y),
o/ = Y1F (M),

1
oy = YoF (M) + Ey%F”(yo), 15)

1
otz = Y3F' (M) + Y1ioF" (M) + gy SF(Mo),
From Eq. (15), we note that .«4 depends only on Y, <%

depends only on Y, and Y, and .»%; depends only on Y,
y1, and yz.
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2.3 Double Laplace transform method

The double Laplace transform method is a mathematical
approach employed to solve fractional differential equa-
tions. It proves especially beneficial in tackling equations
containing CFD, as it entails applying the Laplace trans-
form twice, thereby converting a fractional differential
equation into a more manageable algebraic form. This
transformation aids in resolving fractional differential
equations, particularly those featuring intricate fractional
operators, especially when combined with APs to handle
nonlinear terms [33].

Definition 2.2. Double Laplace transform in Caputo sense
forp-1<0<pis

Ly LEEDIF(x, O} = SIF(S1, S2)

p-1 i
.. [8F(0, 1) (16)
- I=ZOS(19 1 ILt‘T ,
Ly LEEDYF(X, H)} = SIF(S1, S2)
nt - leFx o] an
_ 0-1-i 4

3 Existence and uniqueness
analysis

In this section, we will handle theoretical study about the TF
q-deformed TGE including studying the existence and the
uniqueness under CFD. Let us rewrite Eq. (3) in the form:

DMUM ) = E(U, Uyy),1<0 <2, 18)
subject to the initial constraints:

UM, 0) = h(n),

Ui(n, 0) = k(n).

To prove the uniqueness and the existence of the solution,
let us consider the following important notations.

Definition 3.1. Consider a normed space denoted by (U, ||. |]).
A contraction on U refers to a mapping M : U — U that
fulfills the condition U4, U, € U.

IM(UD = M(U)|| < e[ U~ U,
where ¢ is areal value 0 < ¢ < 1.
Theorem 3.2. [34] (Banach fixed point theorem) Each con-

traction mapping within a complete metric space possesses
a unique fixed point.
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Theorem 3.3. [35] (Schaefer—Krasnoselskii fixed point the-
orem) Suppose U represents a convex subset of a closed and
bounded Banach space X, and let M : U — U be a map-
ping that is completely continuous. In such a case, M neces-
sarily possesses a fixed point within M.

Definition 3.4. Consider C(2, R) is a Banach space of all
continuous functions from Q to R with ||. |l where
[[Ulo = sup{|U], (n,t) € Q}.

According to Eq. (18), suppose that the subsequent pro-
positions hold:
p1: There is a constant @ such that

|7/{1m4 - (L[2un| < ‘lD’|(L{1 - 7/[Zl’
which is valid for all (u,t) € Q and U € C(Q, R).
p.: There are constants 6; and 6, such that
|5(7/(1, (L{lnn) - E((le, (LIZMM)l
< 04U — Uy + 02 U — Unyds

which is valid for all (u,t) € Q and U € C(Q, R).

Theorem 3.5. If the aforementioned propositions are hold,

G
and if m(el + wb,) < 1,in that case, the problem described
in Eq. (18) possesses a unique solution.

Proof. We intend to convert the problem stated in Eq. (18)
into a fixed-point problem. Let us examine the operator:

A:CQ,R) - C(QR),
AUM, b)) = h(w) + tk(n) + JP(EU, Uy,)), 1< 0 < 2.

It is obvious that the operator A is the solution of the problem
under investigation. Now, we apply the Banach fixed-point
theorem to demonstrate that the operator A possesses a fixed
point. Let Uy, U, € C(R, R), then for every (u, t) € Q:
AU, 1) = AU (1, 1))

= J?|E(‘L{1, (Lllnn) - E(WZ: (LIZMM)I

< IR0 UL~ Uyl + O3 U — Unl)

IR0 UL~ Uy| + 0, Uy ~ Us)).

Hence,

AU (1, 1) = AU, 1)

(¢

< m(‘% + 0,0)| U1 - Uy
)

< m(@ + 0,w) sup| Uy — Uy
(¢

< T+ 1) 01 + 0,@)||UL - Us ||



DE GRUYTER

Thus, according to the relation r(9+1)(91 + @wb,) <1, the
operator A is identified as a contraction. As an immediate
result of the Banach fixed-point theorem, it follows that A
possesses a unique fixed point, which concludes the theo-
rem’s proof. O

Next, we establish the conditions that guarantee the
existence of the solution utilizing Schaefer’s fixed-point
theorem.

Theorem 3.6. If the following conditions are met, then, the
equation presented in (18) possesses at least one solution
within C(Q, R).

Suppose that U : Q - R is continuous, and,
Condition 1: There is a constant v > 0 in which

[E(U, Uy < v, for each (n,t) €Q and U
€ C(Q,R).
Condition 2: There are two constants gy, o, > 0 in which

[E(UO, ), U, 1) = E(UO, ), Unn(to, B))I
< Gll(L[(Mly tl) - (L[(MZ) t2)|
+ 0'2|7/l;41;41()41, t) - (L{uznz(MZ) t)l,

where (y, t) and (my, tp) € Q, and U € C(Q, R).
Condition 3: There is a constant g > 0 in which

[ U1, ) = Uny(M2, 1] < I U, ) — U, ),

for each (w, 1) and (np, 1) € Q, and U € C(Q, R).
Condition 4: There are two constants ¢,, ¢, > 0 in which

UM, t) — U, B)| < &1y — | + &l — 1.

Proof. Suppose that U, is a sequence converging to U in
C(Q, R), then, for each (x, t)Q, it holds that

AU, 1) = AUM, )| = IPIE U, Unpod = E(U, U

By utilizing the relation + wb,) <1, we have

t@
IO +1) Ch
)

AUROLY = AUOL YT < 1 (61 + @O U — Ul

©+1)
Since U is continuous, it follows that ||AU (1, t) = AUM, 1)||»
tends to zero as m tends to .
Now, we want to prove that the mapping A maps
bounded sets into bounded sets:

IAUO4 B = [h(0) + kOO + P EU, Uy

<|h0O| + Itk(0] + JP(v)
(]

<lh()| + [tk(n)| + Te+1

w).
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Hence, [|[AUM, )|l < [R(W)| + |tk(W)| + r(@ﬂ)(v) which
means that ||AU(n, t)||. < . Next, we want to show that
the mapping A is equicontinuous on C(Q, R). To do that, let
Oy, ty), (2, ) € Q and wy < wp, 1y < by, then
AU, t) = AU, B)]
= RIE( UM, 1), U0, 1) = E(UM, 1), Ungr (M2, 1))
< (@ U, 1) = U, b)| + 02 Uiy, 1)

- ﬂMzMz(MZs tZ) |)

< (ol U, t) = U, )| + 02| U, t)
- Uy, B))
0
< m((fh + 0u) (Gl — | + Gt - b))
0
< m((fh + 00)(G| — Wolls + &It — tllw)).
In conclusion, we obtain
AU, t) - AU, b))
i 19
1"(@) ) ———— (01 + )Gl — Nolle + &Ity = bl ).

The right-hand side of inequality (19) tends to zero as
w — w and t — t, and it is independent of U/, which
implies that the mapping A : (R, R) — C(Q, R) is contin-
uous and completely continuous.

As a result of Schaefer’s fixed point theorem, we con-
clude that operator A possesses a fixed point, serving as a
solution to the problem outlined in Eq. (18). O

4 Derivation of the TF g-deformed
TGE using MD LTM

For the following TF g-deformed TGE,

“DXUM, 1)
2 (20)

o“uU
= S~ tanh L0 BRI (400 + By + g,

Eq. (20) will be handled in two cases according to the
values of parameters g, P, 4, B, p, and g.
Casel:ForA=2,0=P=F=p=1and g=—q.

Using the relation presented in Eq. (2) with the values
of parameters, (20) can be simplified into:

DU = Uy - 4, 1<0 =<2, (1)

constrained by
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UM, 0) = UM),
U, 0) = Up(n).

Apply the Caputo double Laplace formula presented in Eq.
(17) into both sides of Eq. (21), we obtain

-£ y(.£ t{eZ’Ll } (22)

Ly LA DPUY = Lo LeUpd -

SOLLAUM, D} - SOTLLUM, 0) 23)
- 8O2L, UM, 0) = L, L{Ud - Ly Lfe*™}.

Hence,
1
Ly LdUM, D} = —Lﬂl(M 0) + o3 L, U1, 0)
(24)
-Ewﬁt{(unn} - @LMLt{ezw}-
Apply APs to the nonlinear term e?¥
F(U) = e,
< = ez(”ﬂ,
oy = 2U,e*, (25)

1
oy = 2U %0 + Ewﬂez‘%,

By applying inverse double Laplace transform into Eq. (24),
we obtain the following sequence:
Uy =UM, 0) +tUK, 0),

3>U(n, 0)

41
711=13n113t1‘@ n[«t[ Ew

- -E I-Lt ‘ M-Lt(&/o)
(26)
o*u,

ﬂz = ,£ 1‘£t ‘ Ln-[/t 6)’(2

—_—

- L 1-£t ‘ M-Lt(&/l)

Finally, we can truncate at n term; hence, the approxi-
mated series solution will be in a series form:

n
UMY = Y U,
p=0
Case I Foro=8=1,A=P =p=2,and g = ¢% Eq. (20)
will be simplified into the form:

27

‘OPU = Uy - e +2qe24, 1<0 <2 (28)

Apply the same steps in Egs. (22)—(24) to obtain the sequence
of the solution:

DE GRUYTER

Uy = UM, 0) + UM, 0),
azfuo]}

Uy = LML [ LMLt[
- LMLy ‘ nit(ﬂo)]
+ 2L L7 ‘ nzzt(%)]

oMU
(LI2=£1£t[ LMLt[ 1]]

M-Et(jo)’

(29)

_£1-£t

+2qL 1-£t L, LN )]

are the APs of the function F(U/) = e*¥
are the APs of the function F(U) = e*Y

where %, %1, ...
and A, A7, ...
represented as:
By = 841{0,
e2Uo,

,@1 = 4(L[1€4(u°,

2Uqe 2Uo, (0

No = and A5 =

In the following, we conclude the steps of solving the non-
linear FPDE in a form of algorithm:

Step 1: Formulate the problem

Assume the TF differential equation in the form:

‘O = L(U) + N(U), 1<0 <2, (1)

constrained by
UM, 0) = Um) and  Uin, 0) = Un(n),

where L(U) and N(U) are the linear and nonlinear terms,
respectively.
Step 2: Apply the double Laplace transform

LiLEDYUY = LiLALU + L LN} (32)
Then, apply the initial constrains.
Step 3: Decompose the nonlinear terms
K
NU)= Y A, Kk=0,1,2,.., 33)
=0

where .o, are the APs defined in Eq. (14).

Step 4: Inverse double Laplace

Apply the inverse double Laplace to Eq. (32) and put it
in the form of successive approximations:

Ui, 1) = 1:;11:{1[%1:”&@(%))]

4 1] 1 64
* LiLege Ll N (U}

k=0,1,2, ..
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Step 5: Formulate the final approximate series solution
The final truncated series solution will be in the form:

n
UOLY) = Y Uy,
k=0

where Uy = UM, 0) + tU(K, 0).

(35)

5 Application and numerical results
for the proposed model

In this section, we present the numerical results of the two
cases of the TF g-deformed TGE under CED. We present our
results supported by calculating the absolute error to con-
firm the accuracy of the obtained results.

Case I : Recall again the TF g-deformed TGE:
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1
“erce) P

(P2 + PHVE? - v

7/11:

2J&

. [ nNEE-av Ry +E92
P, sin ANOT TRV T OV

(o2 2 [ . oo2
UNEE - 4y Ry + EF?
2VE

UNEL - 4y Ry + E?
[Pl cos[ A L e

/ (39)

+ P,sin TE
Y

+
UNEE - 4y R, + EF?
NI

UNE? - 4y Ry + EF?
2J&

UNE? - 4y Ry + EF?
2J&

+PIRENMOLE? - 4v cos

X

8T(O + 2)

P4 cos

+ Pysin + .

Using the procedure discussed in Section 4 and with the aid
of Mathematica 13.2 program, we can calculate U,, Us, ...,
but we stop at the second term because of the huge calcu-
lations; hence, the approximate series solution for case I is

DU = Uy - ¥, 1<0 =<2, (36)
) U Y) = Uy + U + U, (40)
constrained by
. JE - 4y [chos %(‘KM)\/SZ - 4v] - P;sin %(‘}01)\/82 - 4\1]] s
U, 0)=Eln Ro + Ry -
Z[Plcos HIOOE? - 4v] + Pysin| ;(FOOVE? - 4v ]]
NE— [Pz cos|5(FE? - 4v] - Pysin|5(FOVE? - v ]] :
+ Ry -}
2
2[501 cos %(701)\/82 - 4v | + Pysin %(701)\/82 - 4v ]
UNE? = 4V Ry + EF?
U, 0) = 9P + PHVE? - 4v|P;sin v VR
NI
UV E? — dv Ry + E9? UNE? — dv Ry + EF?
- P,yc0s \/ \/ ! 2|P1 cos \/ \/ !
2JE 2J&
@7
U E? — dv Ry + EF? UNE? — dv Ry + EF?
+ P,sin v VR (P - P3)cos v JR
2J& JE
WNE? - 4y Ry + E9?
+ 2P1P,sin s
172 \/g
oy
where R, = %, Ry = %, and K = \/Rlﬁ&g Table 1 provides the analytical results and the approxi-

By substitution with the initial conditions on the solu-
tion sequence presented in Eq. (26), we obtain

Uy = UM, 0) + tUn, 0), (38)

mated results that we obtained and the absolute error at
different values of u for different time steps. One can note
that the value of t exceeds, as the accuracy of the solution
decreases, and this is normal behavior for all semi analytical
solutions that possess an approximate series. The results we
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Table 1: Comparison between analytical results in [23] and numerical values of U/(n, t) presented in Eq. (40) and absolute error at #; = 0.1,
P, = 0.0001, v = 0.01, R; = 0.001, & = 0.001, and & = 0.4 for © = 2

t=0.01 t=01 t=0.2 t=1
" Analy. Num. Error Analy. Num. Error Analy. Num. Error Error
-10 2.0590 2.0590 9.47 x 107 2.0583 2.0584 9.47 x 1075 2.0576 2.0580 3.79 x 104 9.50 x 103
-6 2.1621 2.1621 7.39 x 107 2.1611 2.1612 7.40 x 10-3 2.1599 2.1602 2.96 x 104 7.51 x 103
-2 2.2805 2.2805 1.65 x 107 2.2798 2.2798 1.66 x 10-5 2.2790 2.2790 6.73 x 10-5 1.82 x 103
2 2.2806 2.2806 1.64 x 107 2.2813 2.2813 1.63 x 10-° 2.2821 2.2821 6.44 x 10~ 1.46 x 103
6 2.1624 2.1624 7.39 x 10~ 2.1634 2.1635 7.37 x 10-3 2.1646 2.1643 2.94 x 104 7.27 x 1073
10 2.0591 2.0591 9.47 x 107 2.0598 2.0599 9.47 x 105 2.0605 2.0609 3.78 x 104 9.44 x 10-3
obtained illustrate the efficiency of the M D LT M in solving DU = Uy - Y +2ge*, 1<0 <2 41
nonlinear FPDEs. Subiect t
upject 1o:
Case II : For the TF g-deformed TGE, )
0.5
1 |1
JE? - 4v[$02 cos|, Kuy &% - 4v] - Pysin|;Kny E* - 4v]] S
UM, 0) = In|Ry + |Ry —E s
1 . |1
2[731 cos|; Ky &* - 4v] + Pysin|; KuN E - 4\;]]

2
U, 0) = = 025/qEPT + PY(E” - 4v)\/LIv2[‘K2‘ stiz 4\/] / W(O05(P] + PHGEHE - 4v)

+ 0.5(PH/PEE? - 4v) + 2P1PENE? - 4v - PF[2EHE? - 4v) )cos(Ku/E? - 4v) “
- 05(PYEVE? - W - 2P P, [PENE? - W) - PYENG? — W) sin(KUE? - ))),
where Ry = WSZ(Z%M) +q,and R; = W;Z—;f_m
By substitution with the initial conditions into the sequence (29), we obtain:
Uy = UM, 0) + tU, 0), (43)

U,y = 0.5P 3K 2q*vt® cos?

%‘KM\/M]/

1 1 ‘
x |[T(® + 1)[701 cos E‘KM\/SZ - 4v | + Pysin E‘Kn\/é‘z - 4y ]]
2
) V82—4v(7>zcos(%‘7(n\/82—4v)—Plsin(%%nvaz—%)) &
2q-E -
) 1 2 Prcos(yxnET=av) + Pysin(jrcn JET-wv ) 2 . e y
JPEAE? - 4v) JPEHE? - 4v) (44)
8 2
+ = [0.25PPIKCE JqEOH 2EHE? - 4v) \/qu[(KZ o= ?4‘) Sin(KuE? - 4v )'/

x (VI(O + 2)(0.5(P3 + P G*EXUE? - 4v) + 05(PL/GPEHE? - 4v) + 2P PqENE? - dv
- PLJGPEAE? = ) )cos(KUVE? = V) = 0.5(PIqENE? = 4v - 2P P\ PEHE? - 4v) — PIqENE? - 4v)
x Sin(FUNE? — 4v))?) + ...
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Table 2: Numerical results of the unknown function ¢/(1, t) introduced in Eq. (45) compared with the analytical solution obtained in the study by Ali
and Alharbi [23], and absolute error at #; = 0.4, P, = 0.01, v = 0.1, K = 0.3, & = 0.001, and g = 0.001 for © = 2

t=0.01 t=01 t=0.2 t=1

" Analy. Num. Error Analy. Num. Error Analy. Num. Error Error

-10 3.3561 3.3561 8.72 x 10711 3.3568 3.3568 8.40 x 109 3.3577 3.3577 2.98 x 108 2.46 x 1076
-6 3.3960 3.3960 6.20 x 10~1 3.3970 3.3970 5.39 x 109 3.3981 3.3981 1.19 x 108 7.31 x 10-6
-2 3.4349 3.4349 1.56 x 10~1 3.4355 3.4355 2.61 x 102 3.4361 3.4361 2.35 x 10-8 1.22 x 10-5
2 3.4348 3.4348 1.57 x 10~1 3.4342 3.4342 2.64 x 1079 3.4335 3.4335 2.31 x 108 9.41 x 10~
6 3.3958 3.3958 6.20 x 10~ 3.3948 3.3948 545 x 10~ 3.3936 3.3936 1.24 x 108 7.16 x 106
10 3.3559 3.3559 8.72 x 101 3.3552 3.3552 8.43 x 109 3.3544 3.3544 3.01 x 108 1.95 x 106

In this case, we can expand other terms, Us,, Us, ..., but we
stop at the second term; hence, the series that approxi-

mated the solution for case II is
UM, ) = Uy + UL+ Us. (45)

Table 2 represents the analytical solution and the
numerical solution we obtained in (45) from solving the

TF g-deformed TGE (case II) and the absolute error
at P,=04, £,=0.01, v=0.1, K=03, &=0.001, and
q = 0.001 for ® = 2. From the table, we note that, the
absolute error calculated by comparing the exact
solution with the approximate solution obtained
demonstrates the accuracy of the method used in the
solution.

Table 3: Numerical results for the function U (», t) introduced in Eq. (49), the analytical solution, and absolute error at #; = 0.3, £, = 0.4, v = 0.001,

K =04,85=01,andq =04 for® =2

t=0.01 t=01 t=0.2 t=1

" Analy. Num. Error Analy. Num. Error Analy. Num. Error Error

-10 1.7663 1.7663 1.74 x 1071 1.71M 1.71M 219 x 107 1.6516 1.6516 419 x 10-6 2.32 x 103
-6 1.8030 1.8030 1.27 x 10~ 1.7504 1.7504 1.56 x 107 1.6936 1.6936 2.94 x 106 1.67 x 103
-2 1.8410 1.8410 9.38 x 1012 1.7907 1.7907 112 x 1077 1.7364 1.7364 2.09 x 106 1.21 x 103
2 1.8803 1.8803 6.96 x 10-12 1.8320 1.8320 8.23 x 108 1.7799 1.7799 1.50 x 10-6 8.83 x 104
6 1.9206 1.9206 5.20 x 10-12 1.8742 1.8742 6.06 x 10-8 1.8241 1.8241 1.10 x 10-6 6.48 x 104
10 1.9620 1.9620 391 x 1012 1.9173 1.9173 450 x 108 1.8689 1.8689 8.09 x 107 479 x 10~4

(a)

(b)

Figure 1: Approximate solution of TF g-deformed TGE (case I) presented in (40) using MDLTM at P; = 0.1, £, = 0.0001, v = 0.01, R; = 0.001,
& =0.001, and & = 0.4: (a) at t = 3 for various values of ® and (b) at © = 2 for several steps of time.
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A

0.0~
23

uapprox (x,t) 2_2""[ uexact (x,t)

2.1

(a) (b)

Figure 2: 3D representation of the solution of TF g-deformed TGE (case I) at #; = 0.1, £, = 0.0001, v = 0.01, R, = 0.001, & = 0.001,4 = 0.4,and ® = 2.

(a) The estimated solution presented in (40) and (b) the exact solution.

To study the effect of different parameters on the equa- Case II under different initial condition: For the TF

tion, especially the parameter g, we will solve the second case g-deformed TGE (41) constrained by
again, but under the influence of different initial conditions.

0.5

VE?E - 4y

P, sinh[%‘l(n\/é‘2 - 4v] + P, cosh %‘KM\/SZ - 4v ]]
%7(%\/82 - 4v] + P,sinh %7(»1\/82 - 4\/]]

&
UM, 0) =In|Ry + |Ry _E

il

2[?1 cosh

e / (P2 - P EE ~ i)

- (PHPEAE? - W) - 2P PENE - 4v + PLGPEXE? - 4v) )cosh(Kny/E2 - 4v)
+ (PIENE?L - 4v + PIENE? - Av - 2P Py (*EHE? - 4v) )sinh(Kn/E? - 4v)),

where Ro = q - —L2 _ and Ry = 218
0=q JaE &R - )’ 1 JPENE - a)

2
U1, 0) = -2 /qEPI(v - 0.258%)+ P5(0.2582 - v))\/ qv2[7<2 - SZL]

Substituting the initial conditions into the sequence (29), we obtain the sequence terms:

Uy = UM, 0) + 11, 0),

4
%(KM\/SZ - 4\)]]

Uy = [0.573 5K 2q*vt® cosh?

i)

re + 1)[7’1 cosh

1
E‘Knx/Sz - 4v] + P,sinh

2

\/82—4v‘7’1$inh %’Ku \/82—4v]+702cosh %’KM \/82—4v]]
%‘7(»1\/82—4v]+$’zsinh %7(»(\/82—4\/]] q282

JPPEHE? - 4v) - JQEHER - a) v

2¢%8

0| M

2[?1 cosh

8 2
+PIPKE[qEHNO 2EHE? - 4v) \/ qv2[7<2 -2 i’ ™ sinh(Fu~/ % - 4v)/

x (VI8 + 2)(=(P] - PHJPEHE? - ) - (P PEHE? - 4v) - 2P1PqENE? - 4v
+ PLIG*EXE? - 4v))cosh(Ku/ E? - 4v)
+ (PIQENE? - 4v = 2P1P 1 *EHE? - 4v) + PIGEVE? = 4v)sinh(Kny E2 - 4v))?) + ...

(46)

47

(48)
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3.44; ~3-. ]
Qe
342)
—~ 340}
<
X 338f
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3.36] =13
3.34] oo
—=1.9
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-10 -5 0 5 10
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Figure 3: Approximate solution of TF g-deformed TGE (case II) presented in (45) using MDLTM atP; = 04, P, = 0.01,v = 0.1, K = 0.3, & = 0.001,
and q = 0.001: (a) at t = 4 for various values of © and (b) at ® = 2 for several stages of time.

o;%
<

uapprox (x,t) 3 40\g
¥ y

(a) (b)

Figure 4: 3D representation of the solution of TF g-deformed TGE (case II) at #; = 0.4, #, = 0.01, v = 0.1, K = 0.3, & = 0.001, g = 0.001, and © = 2:
(a) The estimated solution presented in (45) and (b) the exact solution.

2.3 R e g ' ' ' ]
22777 Tt ee ]
----- =0.01
240 :=0.02 1 T
~. 2.0} |==—q=0.03 ]

S _ — — 7 T T = _ _ ]
1.8} ] ]
17»/_-\< ]
1.65 ‘ ‘ E 0.0L. ‘ ‘ ]

-10 -5 0 5 10 -10 -5 0 5 10
X X
(a) (b)

Figure 5: Approximate solution of TF g-deformed TGE (case II) presented in (45) at #; = 0.4, = 0.01,v = 0.1, = 0.3, = 0.001,t =1,and ® = 2.
at different values of q.
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2.0,v T T - _‘<
18/ _-----""7"77 ]
----t=0
) = 18| ]
X X — - - -

= S 14F U 4
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1 1 1 1 1.0" 1 L “
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X x
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Figure 6: Estimated solution of TF g-deformed TGE (case II) presented in (49) at #; = 0.3, P, = 0.4, v = 0.001, K = 0.4, & = 0.1, and ¢ = 0.4: (a) at
t =2 and (b) at ® = 2 for distinct values of t.

uapprox (x,t) uexact (x,t)

(a) (b)

Figure 7: 3D representation of the solution of TF g-deformed TGE (case II) at #; = 0.3, £, = 0.4, v = 0.001, K = 04, & = 01, = 04, and © = 2:
(a) the estimated solution presented in (49) and (b) the exact solution.

_______ - 1.2} ]
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Figure 8: Estimated solution of TF g-deformed TGE (case II) presented in (49) at #; = 0.3, #; = 0.4,v = 0.001, K = 04,E = 0.1,t =2,and©® = 2. at
various values of q.
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As mentioned earlier, we can expand and compute U, Us, ...
for the solution, but we will suffice due to the enormity of the
computations; hence, the series that approximated the solu-
tion for case II using the second initial condition is

U, t) = Uy + UL+ U,. (49)

Table 3 serves as a comprehensive tool for elucidating
the analytical solutions outlined in the study of Ali and
Alharbi [23] and showcasing the corresponding approxi-
mate values obtained in our study. These values were
derived at various combinations of # and t, while main-
taining a fixed value of 6 = 2.

6 Visual representations

Visual representation, whether in two or three dimensions,
offers an innovative means of illustrating the behavior of
the studied model. These graphical representations facili-
tate a direct evaluation of the concurrence between the
precise and approximated solutions, thereby allowing
researchers to gauge the precision of the numerical tech-
nique utilized for generating the estimated solution. In this
study, set of graphs in 2D and 3D were showcased in the
context of solving the TF g-deformed TGE, contingent upon
the initial conditions imposed on the model. Figure 1 illus-
trates the 2D depiction of the solution derived from the
proposed model, considering initial conditions outlined
in case I, Figure 1(a) at various fractional-order parameter
values © with a constant time of t = 3, and Figure 1(b) at
0 = 2 across different time stages. In both cases, the solu-
tion is a soliton wave, and we observe that at time zero, the
wave is symmetric, and as time increases, the wave moves
to the right. Figure 2 represents the 3D configuration of
case 1, Figure 2(a) clarifies the approximate solution that
we obtained, and Figure 2(b) presents the analytical solu-
tion presented in [23], and the graphs are approximately
consistent under the same conditions, which reflects the
accuracy of the solutions we obtained. Figures 3 and 4
show the same representation in 2D and 3D for the solution
of case II. Figure 5 represents the 2D wave solution using
initial conditions in case I at fixed time t =1 and © = 2 at
different values of the deformation parameter g; this figure
is very important because it clarifies the effect of ¢ on the
solution curves. Figure 5(a) presents the small values of g;
in this case, decreasing q tends to dampen nonlinear effects
in the equation, which can lead to smoother and more
regular behavior in the solution, with less pronounced
solitons and nonlinear waves. While increasing the values

Innovative analysis to the time-fractional g-deformed TGE == 13

of q as presented in Figure 5(b) leads to stronger nonlinear
effects in the equation, this can result in the amplification of
soliton-like structures and nonlinear waves in the system.
Figures 6-8 present the solution of the TF g-deformed TGE
(case II) but under different initial conditions clarified in Eq.
(46) to clarify the effect of the starting conditions on the
behavior of solutions.

All graphs were plotted at the same parameter values
provided in the study [23], which is considered the first
study to introduce this equation, in order to obtain a com-
parative study to compare the results we obtained with the
accurate results to demonstrate the accuracy of the results
we obtained.

7 Conclusion

This study has introduced a novel equation called TF
q-deformed TGE. This novel equation incorporates both
fractional calculus and g-deformation, thereby offering a ver-
satile framework for modeling physical systems characterized
by violated symmetries. We solved this equation using a semi-
analytical technique called M D_L7 M which is a combination
between double Laplace transform method and APs. The
results we obtained demonstrate the efficiency and high accu-
racy of the solutions, which is evident from the calculation of
the absolute error shown in the tables pertaining to each case.
We have explored the existence and uniqueness of the solu-
tion. Moreover, the presentation of various 2D and 3D graphs
has offered insights into the influence of different parameters
on the solution’s behavior specially the effect of the fractional-
order parameter, the deformation parameter, and the time; the
3D profile clarify great matches between the exact and the
approximate solution, which reflects the validity of the tech-
nique we used.

For future directions, we aim to explore the TF
g-deformed TGE in higher dimensions and find its solution
using semi-analytical and numerical techniques. Moreover,
examining the stability analysis of these solutions could
pave the way for practical applications and simulations
across various domains.
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