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Abstract: This study focuses on the propagation behavior
of traveling wave solution in microcrystalline materials using
the polynomial complete discriminant system method. By
establishing a complete discriminant system, we systematically
analyze the formation and evolution process of traveling wave
solution in microcrystalline materials. Specifically, we apply
the cubic polynomial extension to the strain wave equation
to obtain more accurate analytical solutions. Additionally,
two-dimensional, three-dimensional, and contour plots are
generated to visually illustrate the characteristics of the
obtained solutions, facilitating a more intuitive understanding
of their physical significance. These findings not only help
reveal the propagation mechanism of traveling wave solution
but also provide a theoretical foundation for the application of
microcrystalline materials.
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1 Introduction

In recent years, research on microcrystalline materials has
attracted widespread attention due to their unique proper-
ties at the nanoscale [1–3]. These materials exhibit different
characteristics from their macroscopic counterparts, and
their optical properties may vary with different grain sizes
and arrangements, making them an interesting subject
for materials science and engineering research. A crucial

aspect of studying microcrystals is analyzing the traveling
wave solution within their structure [4–7]. Traveling wave
solutions are self-reinforcing waves that propagate as loca-
lized energy packets in nonlinear media with stable shapes
and speeds, and they are widely used in fields such as optical
communication, fiber lasers, and superconductivity. The
importance of the traveling wave solution in physics is evident.
Nonlinear partial differential equation (NLPDE) [8–14] plays a
crucial role in describing the behavior of microcrystals. These
equations are widely used to describe the behavior and evolu-
tion of complex systems in various fields such as physics, aero-
dynamics, fluid dynamics, atmospheric and ocean physics,
explosion physics, chemistry, physiology, biology, and ecology.
They provide the necessary mathematical tools for under-
standing and solving natural phenomena and engineering pro-
blems. Traveling wave solutions of NLPDE are widely used in
the theory and applications of nonlinear science. Additionally,
NLPDEs consider various factors that affect the response of
microcrystalline materials, capturing the complex interactions
at the nanoscale. Obtaining the traveling wave solution of
these equation is essential for accurately predicting and ana-
lyzing the behavior of microcrystalline materials in different
environments.

Recently, the polynomial complete discriminant system
method [15] provides a systematic approach to analyzing
NLPDE. This method offers a comprehensive framework for
discerning the complex dynamics of microcrystals and their
response to external stimuli. In this article, we extend the
polynomial complete discriminant system method to the
strain wave equation and classify its solutions to obtain
more accurate analytical solutions of traveling waves.
Usually, the strain wave equation in micro-crystalline
solids is described as follows [16]:

− − − + =a l l l 0,tt xx xx xxxx xxtt1
2

2 3� � � � �[ ( ) ] (1.1)

where = x t,� �( ) represents the microstrain wave func-
tion. a stands for the coefficient related to elastic strain,
and li ( =i 1, 2, 3) represent the nonzero real numbers. In
this article, Eq. (1.1) is commonly used to describe the math-
ematical model of microcrystalline solids, which are



* Corresponding author: Musong Gu, College of Computer Science,
Chengdu University, Chengdu, 610106, China,
e-mail: msgu@cdu.edu.cn
Jiale Li, Fanming Liu, Zhao Li, Chen Peng: College of Computer
Science, Chengdu University, Chengdu, 610106, China

Open Physics 2024; 22: 20240093

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2024-0093
mailto:msgu@cdu.edu.cn


composed of many small grains or microcrystals. Micro-
crystalline solid materials are one of the most important
materials worth paying attention to in materials physics.
The propagation model of waves in microcrystalline mate-
rials is usually simulated using Eq. (1.1), and the study of the
traveling wave solution of this equation is crucial. Currently,
research methods for the strain wave equation include the
modified exp-function method [17], generalized Jacobi elliptic
equation method [18], ′G

G
2( )-expansion method [19], modified

extended mapping method [20], generalized ′∕G G( )-expansion
method [21], exponential expansion method [22]. Although
many predecessors have used different methods to study the
traveling wave solution of Eq. (1.1), research on the strain wave
equation is still ongoing. Particularly, for the study of the Jaco-
bian function solution of Eq. (1.1), we still need to construct it.
As early as 2010, Professor Liu [23] proposed the complete
discriminant system method and used it to study the traveling
wave solutions of NLPDE. This article is based on the fully
discriminative systemmethod to study the travelingwave solu-
tion of the strain wave equation. Using this method, the
rational number solutions, trigonometric function solutions,
hyperbolic function solutions, and Jacobian elliptic function
solutions of the Strain wave equation are obtained.

The remaining sections of this article are arranged as
follows: in Section 2, the traveling wave transform was
applied to Eq. (1.1) to obtain a third-order polynomial. In
Section 3, the solutions of Eq. (1.1) are constructed. In Sec-
tion 4, the results through plotted graphs are presented.
Finally, a brief summary is provided in Section 5.

2 Mathematical analysis

First, we make the transformation

= = +x t ξ ξ kx ωt, , ,� �( ) ( ) (2.1)

where k and ω are the real numbers.
Substituting transformation (2.1) into Eq. (1.1), we obtain
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Integrating both sides of Eq. (2.2) simultaneously twice,
we have
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where c1 is the second integration constant.
Integrating Eq. (2.3) once, we can obtain

′ = + + +a a a a ,
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where = −a
l

l k l ω
3

2

3

1

2
2

3
2 , = − −

−a
k ω

ak l k l ω
2

2 2

2
2

2
3

2( )
, a1 and a0 are arbi-

trary constants.
Next, we make the assumptions
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Substituting Eq. (2.5) into Eq. (2.4) yields
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Its integral form is
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where ξ0 is the integration constant.

3 Traveling wave solution of
Eq. (1.1)

First, we provide an assumption that

= + + +f ψ ψ ψ ψϒ ϒ ϒ .3
2

2
1 0( ) (3.1)

Next, based on the complete discriminant system method
(see Ref. [23]), we can obtain a third-order discriminant
system as follows:
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Case 1. =Δ 0 and <D 01

In the case, the polynomial (3.1) can be written as
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Integrating Eq. (3.6), the solution of Eq. (1.1) can be
constructed
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Case 2. =Δ 0 and =D 01

Suppose that

= −f ψ ψ ρ ,
3

3( ) ( ) (3.4)

where ρ
3
is the root of equation =f ψ 0( ) . Substituting Eq.

(3.4) into Eq. (2.7), then the solution of Eq. (1.1) can be
constructed
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Case 3. >Δ 0 and <D 01

Assume that
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Integrating Eq. (3.6), the solution of Eq. (2.7) is given as
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Therefore, the solution of Eq. (1.1) is given as
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Case 4. <Δ 0

Assume that
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When >ψ ρ, we have
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Similarly, the solutions of Eq. (1.1) is given as
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4 Numerical simulation
The solution of the strain wave equation plays a crucial
role in the propagation of various waves in microstruc-
tured solids. In this section, we plotted the three-dimen-
sional, two-dimensional, and density plots of the solution to

Eq. (1.1). Obviously, when = =k l2, 31 , =l2

3

4
, =l 13 , = −a

1

8
,

=ω 1, =ξ 00 , the solution t x,1� ( ) is the hyperbolic func-
tion, solution, as shown in Figure 1. When =k 2, =l 31 ,

=l 12 , =l 23 , =a
1

8
, =ω 1, and =ξ 00 , the solution t x,4� ( )

is the rational function solution, as shown in Figure 2. From
Figure 1, it can be seen that solution t x,1� ( ) is a twisted
solitary wave solution with an upper bound. However, it

Figure 1: Solution t x,1� ( ) of Eq. (1.1) when =k 2, =l 31 , =l2

3

4
, =l 13 , =a

1

8
, =ω 1, =ξ 00 : (a) 3D diagram, (b) 2D diagram, and (c) contour plot.

Figure 2: Solution t x,4� ( ) of Eq. (1.1) when =k 2, =l 31 , =l 12 , =l 23 , =a
1

8
, =ω 1, =ξ 00 : (a) 3D diagram, (b) 2D diagram, and (c) contour plot.
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can be seen from Figure 2 that the solution t x,4� ( ) is a
function solution with a lower bound and no upper bound.

5 Conclusion

This study focuses on analyzing specific mathematical
equations using analytical techniques, with a focus on
studying the strain wave equation from the perspective
of microcrystalline solids. Moreover, we successfully
obtain the traveling wave solutions of solitary wave pro-
pagation in microcrystalline materials through the polyno-
mial complete discriminant system method. We use sym-
bolic computation to create 3D diagram, contour plot, and
2D diagram to enhance the visualization and analysis of
mathematical solutions. The results show that the pro-
posed strategy can provide a wide range of new wave
solutions for various real-world nonlinear models.
Compared with the study of Asghar et al. [16], the results
obtained in this paper not only construct the trigonometric
and hyperbolic function solutions of Eq. (1.1), but also
obtain the Jacobian function solution. The Jacobian func-
tion solution obtained in this article has not been reported
in the study of Asghar et al. [16]. This research enhances
our understanding of nonlinear equations and solutions,
laying the foundation for future studies.
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