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Abstract: The modeling of count data is found in many
fields, such as statistical physics, public health, medicine,
epidemiology, applied science, sociology, and agriculture.
In many physical situations, it has been observed that
many times in the real world, the original variables may
be continuous in nature, but discrete by observation. In
this study, the a-quantile residual life function for discrete
lifetime models is defined and some attributes are investi-
gated. The relation between this measure and the hazard
rate function is studied. We discuss how this measure
could be useful for finding the burn-in time of a lifetime
dataset. Then, a new stochastic order based on the a-quan-
tile residual life is proposed and studied.

Keywords: discrete lifetime model, a-quantile residual life,
hazard rate function, stochastic orders

1 Introduction

In statistical physics, modern stochastic analysis, and tra-
ditional probability and statistics, there is a way to char-
acterize a static or dynamic distribution using its quantile
function. A direct understanding of this function offers
tangible benefits that cannot be derived directly from the
density function. For example, the simplest way to simulate
a non-uniform random variable is to apply its quantile func-
tion to uniform deviations. Modern Monte Carlo simulation
methods, techniques based on low-discrepancy sequences,
and copula methods require the use of marginal distribution
quantile functions. Consequently, the study of quantile func-
tions is as important for management as many classical
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special functions in mathematical physics and applied ana-
lysis. In certain situations, the lifetime of an object should be
measured on a discrete scale, e.g., the number of power
fluctuations an electrical device endures before it fails, the
number of days a patient stays in the hospital, the number
of days/weeks/months/years a kidney patient survives after
treatment, modeling the number of times a pendulum
moves before it comes to rest, the number of times a device
switches on and off, and many other applications. An appro-
priate model for such data is the discrete lifetime model.
Many authors have defined reliability measures for discrete
data and investigated their properties. Salvia and Bollinger
[1] introduced the hazard rate (HR) function for a discrete
life model and studied its basic properties. Takahashi [2]
proposed a definition of HR of nonequispaced discrete dis-
tributions. Singer and Willett [3] have used an empirical
example and mathematical arguments to show how the
methods of discrete-time survival analysis provide educa-
tional statisticians with an ideal framework for studying
the occurrence of events. Shaked et al [4] established a
necessary and sufficient condition for a set of functions to
be discrete multivariate conditional HR functions. Gupta et al
[5] have developed techniques to determine the increasing
failure rate property and the decreasing failure rate property
for a broad class of discrete distributions. Sandoh et al [6]
proposed a new modified discrete preventive maintenance
policy in which failures of a system can be detected only by
inspection and remedied by minimal repair. Roy and Das-
gupta [7] have introduced a new discretization approach to
assess the reliability of complex systems for which analytical
methods do not provide a closed-form solution. Xie et al. [8]
have introduced a different definition of the discrete failure
rate function and provide the failure rate functions according
to this definition for a number of useful discrete reliability
functions. A thorough overview of discrete probability distri-
butions used in reliability theory to represent the discrete
lifetime of non-repairable systems was given by Bracque-
mond and Gaudoin [9]. To give a methodological summary
of the conservation of some classes of discrete distributions
under convolution and mixture, Pavlova et al [10] studied
some commonly used classes of discrete distributions. A
failure and repair model, which is a discrete-time variant of
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the pure birth shock model, was presented by Belzunce et al
[11]. A novel survival tree approach for discrete-time survival
data with time-varying variables is presented by Bou-Hamad
et al [12]. Furthermore, Eryilmaz [13] investigated a shock
model in which the shocks occur according to a binomial
process and determined the probability mass function and
the probability-generating function of the lifetime of the
system. Schmid et al [14] have proposed a technique based
on the result that the likelihood of a discrete survival model is
equivalent to the likelihood of a regression model for binary
outcome data. Li et al [15] discussed a repairable system
operating in dynamic regimes under the hypothesis of dis-
crete time. Alkaff [16] proposed modeling techniques for the
exact dynamic reliability analysis of systems in which the
lifetimes of all components follow independent and non-iden-
tical distributions of the discrete phase type. A discrete-time
version of the nonhomogeneous Poisson process has been
defined and its properties were studied by Cha and Lim-
nios [17].

As for continuous random lifetimes, the mean resi-
dual life (MRL) of discrete models has been considered by
many authors. Ebrahimi [18] proposed the decreasing and
increasing MRL classes of discrete lifetime distributions,
Guess and Park [19] discussed some different shapes of
the MRL function, Mi [20] determined the shape of the
MRL function when the HR function is bathtub (BT)-
shaped or upside-down bathtub (UBT)-shaped, and Salvia
[21] determined some bounds for the MRL function.

Under certain circumstances, the a-quantile residual
life function (a-QRL) may be preferred to the MRL, e.g., if
we have outliers in the data or the data are skewed or
heavily censored. In addition, the concept of a-QRL for
continuous random lifetimes has received considerable
attention. Joe and Proschan [22] have introduced two
classes of life distributions defined by the a-percentile resi-
dual life function. As Jeong and Fin [23] have shown, the
quantile residual life function can be strongly influenced
by competing events. Franco-Pereira and de Ufia-Alvarez
[24] introduced a new estimator of a percentile residual
life function with censored data under a monotonicity
constraint.

A method for calculating the quantile residual life
function that relaxes the condition of independent cen-
soring and takes covariates into account was proposed
by Noughabi et al. [25]. Noughabi and Kayid [26] proposed
and investigated the bivariate a-quantile residual life mea-
sure. Noughabi and Franco-Pereira [27] have shown that a
mixture model is bounded by its components over the quan-
tile residual life, and they investigated how mixture models
are ordered with respect to the quantile residual life func-
tion when their components are ordered. However, in the
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reliability literature on discrete life models, the a-QRL has
not received the attention it deserves. This motivated us to
define and investigate the a-QRL sequence as a reliability
measure.

The remainder of this study is organized as in the fol-
lowing. In Section 2, we set notations and present some
preliminaries. In Section 3, the a-QRL sequence is defined
and studied. The relation between the a-QRL sequence and
the HR sequence is discussed, and in particular, the form of
it when the HR is increasing, decreasing, BT, or UBT is
explored. In Section 4, a new stochastic order for discrete
lifetime variables based on the a-QRL concept is defined and
its connection with the HR order is investigated. Section 5
includes the conclusions and future topics.

2 Notations and preparatory
contents

Let T represent a discrete random lifetime with the support
to, t, b, .., t; € W and W Dbe the set of all whole numbers, ie.,
W =1{0,1, 2, 3, ..}. The probability mass function and the relia-
bility function are corresponding to sequences p,, p;, Py, ... and
Ry, Ry, Ry,... where p; = P(T =t;) and R; = P(T = t;) respec-
tively. The support of T may be bounded from above by ¢, ie.,
p;>0fori=0,1,2,..,mandp; = 0fori > m + 1. Usually, in
the reliability theory and survival analysis literature, the sup-
port of a lifetime variable is considered to be W'.

The residual life given survival up to time ¢; is denoted
by the sequence of conditional random variables T® =
T-t|T=zt, i=0,1,2,..,which guide us to the condi-
tional reliability function

RO =P(TO=1), t=0. @

The following HR function was traditionally defined by
Salvia and Bollinger [1]:

b

h; ,
i R

iew. #))]
The HR function h; characterizes the distribution func-
tion. Shaked et al. [4] investigated that a sequence h; should
satisfy one of the following necessary and sufficient condi-
tions, based on the support of the underline model, to be an
HR function:
* There exists one m € W such that for everyi < m, h; <1
and hy, = 1.
* For everyi € W, h;<1and Y gh; = o.
Xie et al. [8] explored and discussed several draw-
backs of the traditional definition of the HR function and
redefined this concept in the following:
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R;
Rist’

r; = log iew. 3)
It could be checked that the sequences r; and h; are
in a one-to-one relation:

r=-logl-h), i€EW, 4

and implies that both have the same monotonicity attri-
bute. Also, this relation indicates that the sequence r;
characterizes the model as h; does.

The MRL function at t;, which shows the mean of the
remaining time to failure given survival up to ¢, is
defined precisely by

o0

1 .
EZT(tkH - )R+, TEW.  (5)

Lk=i

In the discrete case, HR, MRL, and the a-QRL and
other similar functions are in fact sequences, so they
are referred to as sequences too. It can be checked easily
that the MRL and the traditional HR sequences are
related by the following relation. Refer to Salvia [21]
for a similar form:

m=ET-¢t|Tzt)=

mA
Misy = ——— = (tig = B,

[ EW.
1-h 1eEW (6)

The fact that an object or process has an increasing risk
of failure due to aging or fatigue indicates that the true
model follows an increasing HR sequence. In this case, the
MRL sequence has a decreasing shape. However, in some
situations, an object may be exposed to excessive hazards in
its early-life phase, which decreases over time. Therefore,
the lifetime model should naturally assume an early-life
phase with decreasing and eventually increasing HR. A char-
acteristic of such objects is that instances that pass through
an early-life phase (ie., the burn-in phase) inevitably become
more reliable. In such cases, the MRL sequence has an
increasing and then a decreasing shape. It is obvious that
the larger the MRL of the object is, the more reliable the
condition it has for continuation. So, we can propose the
point maximizing the MRL function as the optimal burn-in
time, ie., the MRL burn-in time b* satisfies

b* = arg miax m, (€W. 7

An interesting topic of reliability theory and survival
analysis is the study of the shape of m;, particularly in
the context of the HR sequence. Guess and Park [19]
proposed a necessary and sufficient condition for which
the MRL function first increases and then decreases
(decreases and then increases). Mi [20] considered a dis-
crete lifetime model and proved that if the HR sequence
has a BT form, the MRL sequence is decreasing or UBT.
Tang et al. [28] complemented this result for the models
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with UBT HR sequences and showed that in this case, the
MRL sequence is increasing or BT. Nair et al. [29] pre-
sented discrete lifetime distributions with BT-HR func-
tions.

On the other hand, stochastic orderings have found
a wide field of application in probability, statistics, and
statistical decision theory. Two discrete random life-
times 7} and T,, with their corresponding reliability
sequences Ry; and Ry;, i € W, could be compared in
the sense of their different characteristics.
The simplest comparison is based on the reliability func-
tion, which states that T; is smaller than T; in the usual
stochastic order, T} < T, if R;; < Ry; for all i.

Ti is smaller than T; in likelihood ratio order, T; <, T, if

Biis an increasing sequence.

D

. . .0 Ryi .
o T; is smaller than T; in HR order, T <y T, if % is an
1,1

increasing sequence. Equivalently, Ty <p, T, if hy; = hy;
for every i.

. . o Y peltke1 = tORo i+
o T; is smaller than T; in MRL order, Ti < T, if Dt = tORsknt
Y keitkr1 = )Ry k41

is an increasing sequence. Equivalently, T <pn B, if
my; < my,; for every i.

It is known that T} <, T, implies T} <y T5. Also, Ty <y T
implies [y <4 T, and T <y . Refer to Dewan and
Sudheesh [30].

3 a-QRL sequence

For the random lifetime T, the ith element of a-QRL
sequence is the a-quantile of the remaining life T - ¢; given
that T > t; and can be expressed precisely by

qq; = inf{x, RO <a}, iew, (8)

where @ = 1 - a. Note that R®(x) is right continuous and
has step form with jumps at integer values of x and in turn
q,; receives just integer values. We can simplify the a-QRL
sequence (8) as in the following:

qq,; = inf{x : ROX) < @

infix: P(Tzx+¢t|T=2t) <a}

= inf{x: t; + x = t;, R, < AR} 9
= infly:y= tj,Rj SAaR} - t;
= R'@R) - t;, (€W,

where RY(p) = inf{y : y = t;, R; < p} is the inverse of the
reliability function. If the support of T is bounded from
above by t,, ie, ;>0 fori=0,1,2,..m and R; = 0 for
i>2m+1, then
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RYoR)->0, 0<i<m

Q(x,i = (10)

0, i>m.

To better illustrate the o- a-QRL and its applications,
let T plot the days between the treatment of a tumor and its
first recurrence in breast cancer patients. For treated
patients who have not experienced tumor recurrence after
i days, let q, ; be the number of days from i in which tumor
recurrence will occur in 100a% of these patients. Such
information could be useful for hospital management when
planning future patient visits. It is worth noting that Proschan
[31] considered the time interval between consecutive air
conditioning failures on a Boeing 720. After i days since the
last maintenance, q,, ; provides the number of days from i in
which the air conditioning will fail in 100a% of these aircraft.
Assume that we have a random lifetime T with the support
to, &, &, ., t; € W. For computing q, ;, we apply the following
steps:

* Compute aR; = aP(T = t;).
« To find R"¥(@R;), find the smallest ¢;, for that P(T > t;) is equal
to or less than the calculated aR;. Then, q,, ; = RY@R)) - t.

It can be checked easily from (6) that m;., - m; 2
t; — ti+1. The following lines show that a similar property
holds for a-QRL:
Qoiv1 ~ Qoi = infly : y = tj, R < OR;+1} — tist
-infly : y = tj, R; < R} + t;
2t ~ tiv.
The reliability function could be expressed in terms of
HR by

i-1

R; = |_| Ry,
k=0

where hy =1 - hy. Then, q,; can be expressed as in the
following:

Qo = Inf{x : &+ x = t;, Ry < ARy}

1 (1D
=infix: t; + x = ¢;, [| ke < @j.
k=i
Note that j > i. Now, by (4), we have
j-1
Qi = inf[x 4+ X =4, ) iz -logal. (12)
k=i

Egs. (11) and (12) reveal the close relationship between
the HR and the a-QRL sequences and give the main clue in
proving the following results:
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Theorem 1.
L. If h; is an increasing sequence, then q ; is decreasing.
ii. If h; is a decreasing sequence, then q, ; is increasing.

Proof. i. Let h; be increasing and i € W be arbitrary and
fixed. By (11), we have

j-1
Mh < a, (13)
k=i

wheret; = t; + q, ;. We must show thatq, ;,; < q, ;- Applying
(11) again, we can write

s-1
Quiv1 = Infix : t; = tisg + X, |_| Ek < ap. 14)
k=i+1
It is sufficient to show that
s-1
[ <a (15)
k=i+1

where t; = tis1 + q,;. Now, since h; is increasing, h; is
decreasing and

s-1 f_l -1 j-1
|-| I’_lk= 2 |-| }'_lil_lf_lkSC_l, (16)
k=i+1 h; k=j+1 k=i

where the inequality is true by (13) and the fact that j > i
and 0 < h; < 1 for any i. It proves part i. The proof of part ii
is completely similar.

Here, we state BT and UBT versions of sequences (func-
tions) that are suitable for describing the behavior of
a-QRL in the discrete case. O

Definition 1. A sequence g; is called BT with change points
0 <ip<i <o, if g is decreasing for 0 < i < iy, g > g; for
every0 <i<ip, g = 8 foriy < i< i, and for everyi = i, g
is increasing.

A sequence g; is called UBT with change points 0 < iy <
i < o if —g; is BT with change points 0 < iy < ij < .

Theorem 2.

i. Let HR sequence h; be BT with change points 0 < k, <
ki < o, then q, ; is decreasing for k = k', where k’q < ko.

ii. Let HR sequence h; be UBT with change points 0 < ky <
ki < o, then q, ; is increasing for k = k’o, where k’q < ko.

Proof.

i. Similar to the proof of Theorem 1, we can show that g, ;
is decreasing for k > kq. Thus, there exists k’y < kg such
that g, ; is decreasing for k > k.

ii. The proof is similar to part i. O
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When lifetime data exhibit a BT HR model, we can
define the burn-in time b* = ¢; maximizing the a-QRL, spe-
cially the median residual life. Theorem 2 shows that the
burn-in time b* is not greater than the first change point of
the HR sequence.

Example 1. Lai and Wang [32] studied the attributes of a
discrete BT HR model with the following density function:

l‘a

Ik

D, i=1,2..,N, a€R,N=123,..(7)

The reliability and HR sequences are

N
_:ka
(= zﬁ;“ , i=1,2.,N, (18)
2k=1k?
and
l'a
i = ) =112) -)N- (19)
LTk

Also, the a-QRL sequence is

N N
=infix i x2i,x=j, ) kt<a) k% - i,
Qa, JkZJ kZ 0)

i=12..,N.

Lai and Wang [32] proved that the HR is increasing for
a 2 0, and BT for a < 0. Thus, by Theorem 1, when a > 0,
the a-QRL is decreasing. When a < 0, the a-QRL is even-
tually decreases, and it has at least one maximum. Figure 1
shows the density and HR sequences of the MP model for
some different parameters. For a = -1,-2,-3, the HR
sequences take their minimums at i = 8, 10, 12, respectively.
Also, the median residual life sequences are maximized at
i =5, 6, 6, respectively, for a = -1, -2, -3.

Example 2. A very flexible model which is suitable in
situations we deal with monotone, BT, and UBT HR func-
tions is the competing risk model with the following relia-
bility function:

R =2@-@» j=012. ab>0 @D

Table 1 shows the number of cycles to failure for 60
electrical appliances in a life test. This dataset was reported
by Lawless [33] and analyzed by many authors, e.g., Beb-
bington et al. [34]. Shafaei et al. [35] showed that the model
(21) could be a good candidate for this dataset. The max-
imume-likelihood estimate of the parameters is reported to
be @ = 0.000311 and b = 0.5954. Figure 2 shows the density
and FR function of the estimated competing risk at the data
points. These plots exhibit a BT form for the HR function
and a unimodal form for the median residual life. The HR
is minimized at i = 776 and the median residual life is
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maximized at { = 234, and this point could be considered
as a burn-in time for the appliances.

Theorem 3. Suppose that the support of T is regular and
the corresponding q, ; is strictly decreasing in i for all

o € {hg, hy, hy,...}. Then, h; is strictly increasing in i.

Proof. Let &, = h, for all possible r indices. Assume that h;
is not strictly increasing. Then, there exists i such that
Ei < El‘+1. Thus,

hi < hisq = Qar.

Then,

j-1
Qi = X2 G = 6+ X, [he S G = i -t (22

k=i

and
j-1
o =iInfix ot = g + X, he < @

Qoo i+1 j = tin kﬂl Kk < Aisy 23

= tivg — lis.

Since the support of T is regular, (22) and (23) indicate
that ¢, ; = qy,, 11> Which contradicts with the assump-
tions. So, the HR must be strictly increasing. O

Definition 2. A lifetime random variable T is new better
than used in o-QRL (a-NBUQ) if q, 4 = q,; for every i > 0.
Similarly, T is new worse than used in a-QRL (@-NWUQ) if
o0 < Gy, for every i > 0.

Theorem 1. shows that if h; is increasing (decreasing), then
the corresponding T is a-NBUQ (0-NWUQ).

Assume a discrete lifetime T with reliability sequence
R;, i € W. Now, if this object is exposed to stress, shock, or
environmental factors, its corresponding reliability sequence
may be expressed by

Ri* = Rl'e, 6> 0, (24)

and based on the fact that the affecting factor causes
smaller or bigger lifetime, 8 >1 or 0 <1. The corre-
sponding HR, defined by Xie et al. [8], of this model is

=f0log—— =6r, 0> 0,
i1 & Ri+q :

r¥ = log (25)

Ri* Rl

i
and due to this relation, the model (24) is called the propor-
tional HR model. Let T be a discrete random lifetime and
T* correspond to one proportional HR model of it. By the
fact that the forms of h; and r; are the same, it follows that a
discrete random lifetime T is IHR if and only if T* is.
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Figure 1: Density and HR sequences of the MP model for some values of parameters.
Table 1: Number of cycles to failure for 60 electrical appliances
0014 0034 0059 0061 0069 0080 0123 0142 0165 0210
0381 0464 0479 0556 0574 0839 0917 0969 0991 1,064
1,088 1,091 1,174 1,270 1,275 1,355 1,397 1,477 1,578 1,649
1,702 1,893 1,932 2,001 2,161 2,292 2,326 2,337 2,628 2,785
2,31 2,386 2,993 3,122 3,248 3,715 3,790 3,857 3,912 4,100
4,106 4116 4315 4,510 4,584 5,267 5,299 5,583 6,065 9,701

Dewan and Sudheesh [30] showed that T is decreasing
mean residual life (increasing mean residual life) if and
only if T* is. Assume that g, is the a-QRL of T*. Then,

Qo= Infly:y=t, R <aR}-t
= infly:y=1t,R! <a’Rf} - ¢; (26)
= q,;i, i=0,1,2,..
where B =1-a’ The following result follows directly

from (26).

Corollary 1. Let B = 1 - @°.

2]

3 -

S

o
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€14 -
=) at®
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s T T T T T

0 2000 4000 6000 8000 10000

t

i. T is a-decreasing quantile residual life (a-increasing
quantile residual life) if and only if T* is B-decreasing
quantile residual life (B-increasing quantile residual life).

ii. T is a-NBUQ (a-NWUQ) if and only if T* is S-NBUQ
(B-NWUQ).

4 a-QRL order

Let T; and T; represent two discrete random lifetimes with
common support ty, 4, &, .. and the a-QRL sequences of Tj
and T, be denoted by ¢q, , ; and g, , ;, respectively.

2000
|

"'i
\\
"y

.i.".

1500
|

1000
|

Median residual life

T T T T T
2000 4000 6000 8000 10000

o

Figure 2: Density and FR function of the estimated competing risk model (21).
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Definition 3. T; is smaller than T, in a-QRL order, i <q-qrL T,
if for every i in the support, q; , ; < ¢, o ;-

From (10), it is clear that if T <,-qrr. T; and the support
of T, is bounded from above by ¢, then the support of T; is
bounded from above by t’;, < t,.

Theorem 4. T; <y, T; implies T} <q-qri I

Proof. Since T <p; T, hy; < hy; for every i in the support.
Using (11), the a-QRL of T; at i is

j-1
Qo = Infix i i+ x = ¢, [1hox < af.
k=i
. . i-1i —
Now, for a specific j that [T/-;f,x < @, we have
j-1 j1
[Nk < [hox < @,
k=i k=i

which proves that q, ,; < q,,; for every i and completes
the proof. O

Theorem 5. Let T SG—QRL T fOT" all a € {}'_11,0, El,ly fll,z, N
then T} <py .

Proof. We should show that hy; = hy; for all i. Let i be

arbitrary and denote @; = flu. Then O
j-1

Qi = infix:t;+x = t, rlhl,i A=t -t @270
k=i

Since T; <q-qr. b, we have

j1
Qyiq = Infix: i+ x = ¢ [k < @
k=i

(28)

2 tiv1 — L.

Then, comparing (27) and (28) shows that hy; = hy; or
equivalently hy; > hy;, which completes the proof.

Assume that T;* and T, correspond to the proportional
HR models of T; and T, respectively. The following theorem
shows that the o — QRL order implies an order for the pro-
portional HR models. The proof follows from (26) directly.

Corollary 2. T; <qqr. T3 if and only if T{" <g_qri, T5, where
B=1-a°.

5 Conclusion

The a-QRL sequence for discrete data was defined, and its
relationship to the HR sequence was investigated. An
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increasing (decreasing) HR sequence implies a decreasing
(increasing) a-QRL. If the HR sequence has a BT (UBT) form,
the a-QRL usually has a UBT (BT) form. If the HR has a BT
form, the point that maximizes the a-QRL can be used as a
suitable burn-in time point. The a-QRL order in the discrete
context is defined, and it is proved that this order is weaker
than the HR order. In addition, the basic properties of
a-QRL in the proportional HR model are discussed. Some
interesting topics that can be considered in future research
are listed in the following:

* To the best of our knowledge, the a-QRL for a value of a
does not clearly characterize the base model. Therefore,
the question of how the model can be characterized by
a-QRL sequences remains an open problem.

Problems in estimating the proposed a-QRL sequence
can be extended to estimate monotonic a-QRL sequences.
For discrete models, the a-quantile past sequence can be
defined and analyzed in a similar way.

The concept of a-QRL can be extended to multivariate
relationships when two or more dependent lifetime
random variables are involved. In this context, the pro-
blem of estimating the a-QRL function in a multivariate
context is interesting.

Although all observations are effectively discrete, they
can have a very different observational resolution/accu-
racy if the observations are actually related to a contin-
uous variable. For example, an underlying time variable
can be observed with the unit one of a week or with the
unit one of an hour. The relationship between these two
resolutions based on the quintile residual life sequence is
an interesting and remains an open problem.
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