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Abstract: In this article, we take into consideration the
stochastic Schrödinger equation (SSE) perturbed in the
Itô sense by the multiplicative Wiener process. We employ
an appropriate transformation to turn the SSE into another
Schrödinger equation with random variable coefficients
(SE-RVCs). We used the generalizing Riccati equation map-
ping method and the Jacobi elliptic function method to find
novel hyperbolic, trigonometric, rational, and elliptic func-
tions solutions for SE-RVCs. After that, we can acquire the
SSE solutions. For the first time, in this work, we assume
that the solution to the wave equation for the Schrödinger
equation is stochastic, whereas all earlier studies assumed
it to be deterministic. Furthermore, we give various
graphs to display the effect of multiplicative Wiener pro-
cess on the exact solutions to the SSE. We deduce that the
multiplicative Wiener process stabilizes the solutions of
the SSE.

Keywords: random variable coefficients, Schrödinger equa-
tion, stability by noise, generalizing Riccati equation mapping
method

1 Introduction

Partial differential equations (PDEs) are used to model various
physical phenomena in fields such as physics, engineering, and

biology. Solving PDEs can be challenging due to their com-
plexity, but there are several techniques that can be used to
find solutions. Some of these methods are the F-expansion
method [1], the Laplace adomian decomposition method
[2,3], the generalized Adams-Bashforth-Moulton method
[4], the ϕ6-model expansion method [5], the modified
generalized exponential rational function [6,7], the He’s
semi-inverse [8], the bilinear method [9,10], Bernoulli
( ′∕G G)-expansion method [11,12], the −ψ zexp( ( ))-expansion
method [13], the generalized Riccati equation mapping method
[14], the Lie symmetry method [15], the multivariate general-
ized exponential rational integral function [16], and the mod-
ified generalized Riccati equation mapping approach [17].

One of the most well-known examples of a PDE is the
Schrödinger equation [18], which has a wide range appli-
cations in various fields such as nonlinear optics, heat
pulses in materials, plasma physics, nonlinear acoustics,
hydrodynamics, and several other nonlinear instability
phenomenon [19–22]. Also, it has been used to investigate
the behavior of quantum fields, for instance, the wave
equation for photons in quantum electrodynamics. Scien-
tists can obtain a better knowledge of the fundamental
principles of quantum mechanics and change many disci-
plines of science and industry by solving the Schrödinger
equation.

On the other hand, random fluctuations in the Schrödinger
equation are a key aspect of quantum mechanics, emphasizing
the unpredictability and probabilistic nature of quantum sys-
tems. While these fluctuations make it hard to predict a par-
ticle’s exact behavior in a quantum system, they also open up
new possibilities such as quantum tunneling and superposi-
tion. Harnessing these random fluctuations has resulted in
technical advances in areas such as quantum computing and
cryptography.

Consequently, it is important to consider the following
Schrödinger equation with stochastic term:

− + − =i δ δ δ iσ ,t xx t1 2
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where x t,�( ) is a complex-valued process, x and t denote
the spatial coordinate and time, respectively, = −i 1 , δ δ, ,1 2

and δ3 are arbitrary constants, t�( ) is the standard Wiener
process, = ∂

∂t t
�

� and σ are the noise amplitude.
Because of the significance of the Schrödinger equa-

tion (1), several researchers obtain its solutions with =σ 0

by using diverse approaches such as first integral method
[23], ( ′∕ ∕G G G, 1 )-expansion and ∕ ′G1( )-expansion methods
[24], the generalized exp −φ ξ( ( ))-expansion method [25],
mapping and generalized Riccati equationmethods [26], map-
ping method [27], sine–cosine and the tanh methods [28],
modified generalized Riccati equation mapping approach
[29], and extended generalized Riccati equation mapping
method [30]. While the analytical solutions of stochastic
Schrödinger equation (SSE) have been achieved by employing
different approaches such as Riccati-Bernoulli sub-ODEmethod
and sine–cosine method [31], tanh–coth and He’s semi-inverse
techniques [32], unified technique [33], and modified mapping
method [34]. Previous studies [31–33] assumed deterministic
solutions to the wave equation, but this work assumes sto-
chastic solutions.

Our objective of this article is to find the exact solu-
tions to the SSE (1). To achieve this goal, we convert the SSE
into another nonlinear Schrödinger equation with random
variable coefficients (SE-RVCs) by using suitable transfor-
mation. After that, we obtain the exact solutions for SE-
RVCs by using the generalizing Riccati equation mapping
method (GREM method) and the Jacobi elliptic function
method (JEF method). Finally, by using the used transfor-
mation, we can acquire the stochastic solutions for the SSE
(1). In this work, we assume for the first time that the
solution of the wave equation for the Schrödinger equation
is stochastic, whereas all earlier studies assumed that it
was deterministic. These acquired solutions are crucial in
understanding several difficult physical processes due to
the importance of Schrödinger equation (1) in various
areas of physics, chemistry, and engineering. To see the
influence of stochastic term, we provide some figures by
utilizing MATLAB tools. In the end, we address the effect of
noise on the obtained solutions.

Here is how the remainder of the article is structured:
In Section 2, we derive SE-RVCs from SSE (1) and by uti-
lizing the GREM method and JEF method to find the exact
solutions of SE-RVCs. In Section 3, we acquire the solutions
of SSE (1). In Section 4, we discuss the results that we
obtained and the impacts of noise. Finally, we provide
the article’s conclusions.

2 Schrödinger equation with RVCs
and its solutions

Here, we obtain the Schrödinger equation with random
variable coefficients (SE-RVCs). Using the transformation

= + −x t x t i x t σ t σ t, , exp ,
1

2
,2� � � �( ) ( ) [ ( ) ( ) ] (2)

and the Itô derivatives, we obtain SE-RVCs as follows:
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where � is a stochastic real function and =A t( )
−δ eσ t σ t

2

1

2

2
�( ) . Putting imaginary and real parts equal

zero, we have

− − =δ δ2 0,t x x xx1 1� � � � � (4)

and

− − + + − =δ δ A t δ 0.t xx x1 1
2 3
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2.1 GREM method

To find the solutions of the SE-RVCs (3), we assume the
solutions of Eqs (4) and (5) in the following special forms:

∫∑= = +
=

x t α t μ μ kx λ τ τ, , d ,

k

m

k
k

t

0
0

� �( ) ( ) ( ) ( ) (6)

and

= +x t φ t xφ t, ,
0 1

�( ) ( ) ( ) (7)

where λ φ φ, ,
0 1

, α0, −α α,…, m1 1, and ≠α 0m are functions of t,

and � satisfies

′ = + +s r p.2� � � (8)

First, let us compute the value of m by balancing ″� with
3� in Eq. (5) as follows:

+ = ⇒ =m m m2 3 1.

Eq. (6) is rewritten as follows:

= +x t α t α t μ, .0 1� �( ) ( ) ( ) ( ) (9)

Differentiating Eqs (9) and (7) with respect to t and x , we
have
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� � � (11)

Eqs. (7), (9), (10), and (11) are substituted into Eqs (4) and (5).
After that, by equating each coefficient of k� to zero, we
have
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We solve these equations to obtain
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where b and ℓ are constants. Hence, by utilizing Eq. (9), the
solutions of the SE-RVCs (3) are
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To determine �, there exist several families for the
solutions of Eq. (8) depending on p and s, as follows:

Family I: If >ps 0, then Eq. (8) has the solutions:
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Then, SE-RVCs (3) has the trigonometric functions solutions:
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Family II: If <ps 0, then Eq. (8) has the solutions:
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Then, SE-RVCs (3) has the hyperbolic functions solution:
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Family III: If =p 0 and ≠s 0, then the solution of Eq.
(8) is:
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2.2 JEF method

Supposing the solutions of Eqs (4) and (5), with =m 1, has
the form

= +x t a t a t J μ, ,0 1�( ) ( ) ( ) ( ) (23)

where J μ( ) is one of the following elliptic functions
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with respect to t and x , we have
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where B1 and B2 are constants depending on ω n k, ˇ, , and
they will be defined later. Eqs. (24) and (11) are plugged into
Eqs (4) and (5). After that, by equating each coefficient of Jk

to zero, we have
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We solve these equations to obtain

= = = =a t a
A t

B
φ ε0, ℏ, δ

ℏ
, ,0 1 1

2

2
1

( )
( )

and

∫= − +
−

=φ δ t
ε B

B
A τ τ λ t

εk

B
A t

ℏ
d ,

2 ℏ
,

t

0 3

2 2
1

2
0

2

2

( )
( ) ( ) ( )

where ε and ℏ are constants. Hence, by utilizing Eq. (23),
the solutions of the SE-RVCs (3) are as follows:
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Let us now define J μ( ) as follows:
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3 Exact solutions of SSE

By substituting Eq. (12) into Eq. (2), we attain the solution of
SSE (1) as follows:
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3.1 GREM method

Plugging Eqs (13)–(22) into (29), then the SSE has the
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for >ps 0,

∫

=
− ⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥− ⎡⎣ + − ⎤⎦

x t
p

s
ps kx

b δ

ks
e τ e

, tanh

d ,

t

σ τ σ τ i σ t σ t

6

2
2

2

0

1

2

2 1

2

2

�

� � �

( ) ℓ

ℓ
( ) ( )

(35)

∫

=
− ⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥− ⎡⎣ + − ⎤⎦

x t
p

s
ps kx

b δ

ks
e τ e

, coth

d ,

t

σ τ σ τ i σ t σ t

7

2
2

2

0

1

2

2 1

2

2

�

� � �

( ) ℓ

ℓ
( ) ( )

(36)

∫

∫

=
− ⎛

⎝
⎜⎜

⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥

+
⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥
⎞

⎠
⎟⎟

−

− ⎡⎣ + − ⎤⎦

x t
p

s
ps kx

b δ

ks
e τ

ps kx

b δ

ks
e τ e

, coth 4

d

csch 4

d ,

t

σ τ σ τ

t

σ τ σ τ i σ t σ t

8

2
2

2

0

2
2

2

0

1

2

2

1

2

2 1

2

2

�

�

� � �

( ) ℓ

ℓ

ℓ

( )

( ) ( )

(37)

∫

∫

= −
− ⎛

⎝
⎜⎜

⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥

+
⎡

⎣
⎢ −

⎛

⎝
⎜

+
⎞

⎠
⎟
⎤

⎦
⎥
⎞

⎠
⎟⎟

−

− ⎡⎣ + − ⎤⎦

x t
p

s
ps kx

b δ

ks
e τ

ps kx

b δ

ks
e τ e

,
1

2
tanh

1

2

d

coth
1

2

d ,

t

σ τ σ τ

t

σ τ σ τ i σ t σ t

9

2
2

2

0

2
2

2

0

1

2

2

1

2

2 1

2

2

�

�

� � �

( ) ℓ

ℓ

ℓ

( )

( ) ( )

(38)

for <ps 0, and
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where

∫= − +
− −x t bx δ t

δ b spk
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e τ,

2

2
d .

t

σ τ σ τ
3

2
2 2 2

2 2

0

1

2

2

� �( )
ℓ ( )

( )

Remark 1. Putting =σ 0 (i.e., no noise) and =δ 03 in Eqs
(32), (33), and (37), we have the same results that stated
in [24].

Remark 2. Putting =σ 0 and =δ 03 in Eqs (30) and (35), we
have the same results that stated in [23].

3.2 JEF method

Substituting Eqs (26)–(28) into (29), then the SSE has the
solutions:

∫=
⎛
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(40)
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and
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where

∫= − +
−

εx δ t
ε B

B
A τ τ

ℏ
d .

t

3

2 2
1

2
0

�
( )

( )

When →ň 1, then Eqs (40)–(42) tend to
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Figure 1: (a)–(e) Exhibit 3D-profile of x t,�∣ ( )∣ described in Eq. (41) with = =nℏ ˇ 0.5, =δ 22 , =ε 1, = =ω k 1, ∈x 4, 4[ ], and ∈t 0, 4[ ], (f) 2D-profile of
Eq. (41) with =σ 0, 0.1, 0.3, 1, and 2. (a) =σ 0, (b) =σ 0.1, (c) =σ 0.3, (d) =σ 1, (e) =σ 2, (f) =σ 0, 0.1, 0.3, 1, 2.
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Figure 2: (a)–(e) Exhibit 3D-profile of x t,�∣ ( )∣ introduced in Eq. (43) with = =nℏ ˇ 1, =δ 22 , =ε 1, = =ω k 1, ∈x 4, 4[ ], and ∈t 0, 4[ ] (f) displays 2D-
profile of Eq. (43) with =σ 0, 0.1, 0.3, 1, and 2. (a) =σ 0, (b) =σ 1, (c) =σ 0.3, (d) =σ 1, (e) =σ 2, and (f) =σ 0, 0.1, 0.3, 1, 2.
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Figure 3: (a)–(e) Exhibit 3D-profile of x t,�∣ ( )∣ introduced in Eq. (44) with = =nℏ ˇ 0.5, = =δ ε2, 12 , = =ω k 1, ∈x 4, 4[ ], and ∈t 0, 3[ ] (f) displays
2D-profile of Eq. (44) with =σ 0, 0.1, 0.3, 1, and 2. (a) =σ 0, (b) =σ 0.1, (c) =σ 0, (d) =σ 1, (e) =σ 2, and (f) =σ 0, 0.1, 0.3, 1, 2.
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(43)

and
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(44)

4 Physical meaning and effect of
noise

Physical meaning: The SSE provides a powerful tool for
studying the behavior of quantum systems in the presence
of stochastic influences. By incorporating random fluctua-
tions into the evolution of quantum states, this equation
offers amore realistic and nuanced understanding of quantum
phenomena. Through its ability to capture the physical impli-
cations of noise and uncertainty in quantum systems, the
stochastic Schrödinger equation helps to deepen our under-
standing of the inherently probabilistic nature of the
quantumworld. Here, we obtained the exact stochastic solu-
tions of the SSE (1). We utilized two methods including the
GREMmethod and the JEF method. There are many kinds of
solutions including singular periodic solutions, dark solu-
tions, and light solutions. Singular solitons are important
because of their special properties that allow for effective
information transfer and the investigation of complex wave
dynamics in many different fields of science. In nonlinear
optics, singular solitons play an essential role in light trans-
mission over optical fibers. Solitons, unlike regular light
waves, do not scatter over long distances due to their self-
focusing qualities, allowing for the effective transport of
information at high rates. This makes them crucial in tele-
communications, where data transfer over vast distances is
critical for preserving network connectivity and speed.

Effect of noise: Now, we address the impact of multi-
plicative white noise on the exact solutions of the SSE (1).
Numerous numerical simulations of various solutions with
different intensity of noise are shown. Figures 1–3 display
the solutions x t,�( ) described in Eqs (41), (43) and (44) for
different intensity of noise σ as follows:

Figures 1–3 show that when noise is ignored (i.e.,
=σ 0), different kinds of solutions appear, including peri-

odic solutions, singular solutions, optical light solutions,

dark solutions, and so on. When noise is introduced at
=σ 0.1, 0.3, 1, 2, the surface flattens after some transit

patterns. This result shows how multiplicative white
noise affects the SSE (1) solutions, stabilizing them around
zero.

5 Conclusion

In this article, we considered the SSE (1) driven by multi-
plicative Wiener process in the Itô sense. By using appro-
priate transformation, we converted the SSE to another
Schrödinger equation with random variable coefficients
(3) (SE-RVCs). By using the GREM method and JEF method,
we obtained a new stochastic exact solutions for SE-RVCs in
the type of trigonometric, hyperbolic, rational, and elliptic
functions. After that, we acquired the obtained solutions of
SSE (1). Moreover, we generalized some previous solutions
such as the results reported in previous studies [23,24].
Because of the importance of Schrödinger equation in non-
linear waves in a liquid-filled elastic tube, solitary wave
and nonlinear instability problems, plasma waves and
hydromagnetic, heat transfer in a solid, nonlinear optics,
and propagation in the piezoelectric semi- conductors, the
acquired solutions are crucial in understanding several
difficult physical processes. Finally, some graphics were
included to demonstrate the effect of stochastic term on
the stochastic exact solutions of the SSE. We deduced that
the multiplicative Wiener process stabilized the solutions
of SSE (1). In the future work, we can address the Schrö-
dinger equation (1) with additive noise.
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