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Abstract: In this study, we examine the movement of two
hard spheres aligned in a straight line within an incom-
pressible couple stress fluid under the impact of the mag-
netic field. Both objects have distinct shapes and move
along an axis connecting their centers with varying velo-
cities. As a first step, an incompressible analytical analysis
is performed on a fluid with couple stress properties
around an axially symmetric particle. Using the superposi-
tion principle, a general solution is developed for couple
stress fluid flows over two moving objects. In order to
achieve the boundary conditions, the boundary collocation
strategy is applied to the surfaces of the two spheres. A set
of tables and graphs illustrates numerical estimates of the
dimensionless drag forces acting on two spherical objects.
In addition, a drop in Hartmann number or an increase in
couple stress viscosity will increase the dimensionless drag
force on each spherical particle.

Keywords: magnetic field, couple stress fluid, drag force,
interaction, collocation method

1 Introduction

A wide variety of physical, geophysical, and industrial
domains use the motion of conducting fluids in an electro-
magnetic field. Magnetohydrodynamics (MHD) effects can
control fluid travel past solid objects in these real-world
contexts. The classical problem of Hartmann flow has
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numerous essential applications in many fields, including
MHD pumps and power generators, heating, polymer tech-
nology, aerodynamics, the petroleum industry, crude oil
purification, and heat exchanger design. The study of
transporting fluids past solid surfaces of diverse shapes
has also emerged due to recent breakthroughs in rocketry
and spacecraft. Bearman and Wadcock [1] discussed the
interaction between the flows around two circular cylin-
ders when they are shifted in a plane perpendicular to the
free stream and brought near together. A study was carried
out by Yutaka et al. [2] to investigate the fluid dynamic
interaction between two spheres to gather fundamental
knowledge about the flow of two-phase fluids, particularly
in the dense phase. Faltas et al. [3] proposed a solution for
the interaction between two spherical particles revolving
in a micropolar fluid. Shehadeh and Ashmawy [4] examined
the continuous linear movement of two aligned solid
spheres in an incompressible couple stress fluid.

Several investigations have sought to determine the
influence of an applied magnetic field on the movement
of an electrically conductive fluid around a spherical or
cylindrical object. MHD is an area of science that focuses
on comprehending the behavior of fluids when exposed to
a magnetic field’s influence. The presence of MHD in a fluid
flow has the potential to manage flow separation, optimize
heat transfer, and alter fluid flow velocity. Chandrasekhar
[5] has made observations about how a magnetic field
affects rotating cylinders’ viscous flow consistency. Davis
et al. [6] demonstrated the hydrodynamic modification of a
rigid elastic sphere that is submerged in a viscous fluid and
moving into another sphere or a solid surface. An inviscid
conducting fluid with a strong magnetic field was the sub-
ject of Stewartson’s [7] examination of a fully conducting
spherical in steady motion. When the sphere moves in the
same direction as the field, the streamlines outside the
sphere appear as straight lines. However, when the sphere
moves perpendicular to the field, the streamlines exhibit
abrupt twists. Saad [8] conducted a study on the influence
of a magnetic field on the flow around a porous sphere and
cylinders enclosed by a cell. Srivastava [9] investigated the
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implications of MHD regarding the hydrodynamic porosity
of a permeable membrane consisting of spherical particles.
Madasu and Bucha [10] examined the MHD impact of the
movement of fluid through a partially permeable spherical
particle and derived a clear expression for drag. Also, they
analyzed the flow of MHD past a cylindrical shill using
Brinkman’s model for the problem of parallel flow [11].
El-Sapa [12] investigated the impact of slip and magnetic
field on the motion of a solid sphere that is moving per-
pendicular to an infinite rigid wall in an unbounded vis-
cous fluid. El-Sapa and Alsudais [13] investigated, on the
assumption of Stock’s conditions, the effects of the mag-
netic field on two stiff spheres with varying slip conditions
on their surfaces in a permeable media. El-Sapa and Faltas
[14] studied the continuous and almost consistent straight
motion of two spherical particles immersed in an infinite
magnetomicropolar fluid. Several recent scholarly articles
have concentrated on the subject of how a magnetic field
affects the flow of fluid [15-19].

MHD and couple stress fluid are distinct ideas that can
be integrated to investigate the flow characteristics of elec-
trically conductive fluids with certain attributes. Through
the examination of MHD in the context of couple stress
fluid flow, scientists acquire a more profound comprehen-
sion of the intricacies of fluid dynamics in scenarios
encompassing: fluid with microstructure that can conduct
electricity, magnetic fields employed for regulating the
flow of a substance, enhancement of filtration, and lubri-
cation procedures. Nadeem and Akram [20] performed a
research investigation on the movement of fluid with qua-
lities of couple stress in a channel that is not symmetrical,
while considering the impact of the magnetic field that is
created. The solutions for the equations of magnetic field
and momentum have been accurately calculated, under
the assumption of the long wavelengths and a low, but
non-zero Reynolds number. Hassan [21] investigated the
examination of a hydromagnetic fluid flow that undergoes
a chemical reaction, specifically focusing on couple stress
fluids. The flow occurs through a channel that is filled with
porous particles. Srinivasacharaya and Rao [22] provided
numerical solutions for the constant flow of MHD blood via
a branched artery with a slight narrowing in the main
channel, including heat transfer and assuming blood to
be fluid with couple stress. Ali et al. [23] conducted a study
on the MHD flow and heat transfer of a couple stress fluid
across an oscillating stretching band in a porous medium
with a heat source/sink. Alotaibi and El-Sapa [24] investi-
gated the translation motion of a rigid sphere enclosed by a
concentric sphere filled with a MHD fluid that exhibits
coupling stress. The study considered the effects of slippage
and the Hatmann number. The investigation of couple
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stress fluids is seen crucial for comprehending various
physical phenomena, particularly in the field of biomedicine.

Drag force refers to the opposition encountered by an
object as it travels through a fluid, which be either a liquid
or a gas. This opposing force acts in the direction opposite
to an object’s motion. The amount of the drag force is
influenced by various parameters, such as the velocity of
the object, the dimensions and configuration of the item,
the density, and the consistency of the fluid. Hoffmann
et al. [25] analyzed the opposition encountered by a sphe-
rical object in micropolar fluids taking into account non-
uniform boundary conditions for the microrotation vector.
Ashmawy [26] derived a comprehensive equation for the
drag experienced by a sphere immersed in a slow and
time-varying flow of a micropolar fluid. Shu and Lee [27]
developed fundamental solutions for micropolar fluids
generated by a singular point force and a singular point
pair. Later on, the aforementioned solutions were used to
calculate the drag force applied to a solid sphere moving in
a micropolar flow with a low Reynolds number. Sherief et al.
[28] formulated a mathematical equation to determine the
drag force exerted on a symmetrical object that is in motion
at a consistent speed within a microstrech fluid.

Approximately 50 years ago, Gluchman et al. [29] cre-
ated a novel method for treating multiple particles that are
immersed in an infinitely slow viscous flow. This approach
is a numerical method commonly known as the Frontier
collocation technique. Their theoretically predicted drag
results show a high level of agreement with the experimental
evidence. The fundamental concept behind employing the
collection approach to address the flow issue at a low Rey-
nolds number is to compute the velocity field generated by
every coordinate boundary. This is achieved through the
methodical arrangement of fundamental solutions that are
suitable for the particular constant orthogonal surface. The
coefficients in the fundamental solutions are determined by
the specified boundary conditions. The series, which repre-
sents the solution, is shortened and the boundary criteria are
only applied at certain locations referred to as collocation
points. Several studies have made use of this approach
[30—34]. Conversely, several numerical techniques exist for
examining this interplay between the objects, and also show
the interactions and chemical applications, which are eluci-
dated through previous studies [35-41].

The purpose of this study is to demonstrate how two
rigid spheres traveling rectilinearly on a shared axis interact
with each other during axial movement. The spheres are
subjected to the impact of a magnetic field in an incompres-
sible fluid with couple stress properties. The surfaces of the
two spheres are exposed to boundary conditions where
there is no couple tension and no sliding. An incompressible
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object moving steadily in an infinite series may represent
the semi-analytical solution for the couple stress fluid via an
axis-symmetric object. The general solution for the stable
motion of a fluid with couple stress, as it flows past two
spheres that are moving in a straight line along their cen-
ters, is constructed by combining the obtained solution with
the superposition principle. Two spherical coordinate sys-
tems are employed, each with its origin located in the center
of a solid sphere. The collocation approach is utilized to
satisfy the prescribed border constraints on the spherical
surfaces. The dimensionless drag force acting based on the
solid spheres is calculated and sketched. Analyzing numer-
ical results will be accomplished by graphing the results.

2 MHD couple stress fluid
equations

Therefore, couple stresses primarily affect the creation of a
length-dependent impact, which is nonexistent from the
standard model of non-polar fluid dynamics. Couple stress
fluid hypothesis was introduced by Stokes [42] in 1984,
building over the well-known Navier-Stokes theories. The
current investigation is based on the assumptions that [43]
and [44] examine: (a) the fluid is incompressible because of
its homogeneous, isotropic density, (b) since the Lorentz
force is only magnetic, uneven polarization and electric
charge are inconsequential, (c) the movement is creeping
because magnetic Reynold’s number R = Uava and Rey-

nold’s number R = % are deemed to display an appropriate
level of humility. A term representing inertia is disregarded,
(d) the couple stress is ignored, as is the body force operating
across the flow direction, (e) there is no external electric
field, and (f) this analysis is isothermal. Moreover, previous
studies [43-45] provide the MHD couple stress fluid equa-
tions of motion as.

V-q =0, VA

UWAVAT+NVAVAVAVAQ

IR (2.2)
=-Vp+ulo(@ AH)AH,

where V is the spherical partial differential operator, ¢ is
the volume-averaged velocity, p is the pore average pres-
sure, u represents the viscosity of the fluid, n is the first
couple stress viscosity coefficient, " is the second couple
stress viscosity coefficient. If the couple stress coefficient
is taken zero, then the equation of motion (2.2) reduces to
the classical Navier-Stokes’s equation. The basis of clas-
sical electromagnetism is made up of the Lorentz force
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law and an ensemble of related partial differential equa-
tions known as the Maxwell-Heaviside equations are given
as

divE =0, divH =0,

oD 2.3)

C rlﬁ=_>+—,
wili =]+ 5,

\E = - 0B
cur = y,
where B =ueﬁ,ﬁ =¢E,B /\7 =B A(E + q A B), the
magnetic field vector is H , the electric field vector E ,
the fluid pressure is p, the magnetic permeation is u,, p is
the viscosity coefficient, the electric conduction is . n, and
n’ are the couple stress viscosities. Additionally, T B,and D
represent the current density, magnetic induction, and elec-
tric displacement vectors, accordingly. Whenever n = 0
(2.2) is provided the Newtonian fluids by Prasad and Sarkar
[43].
The constitutive relations listed in the following
describe couple stress fluids:

1
G = ~pSy + 2udy ~ S EjMskcas @4)

my = mé; + 4wy + Nwj ), (2.5)

where 7; and my; are the stress and couple stress tensors respec-
tively, the alternating tensor is &, and the Kronecker delta is &;.
Furthermore, the deformation stress tensor is d; = %(qi’j + qj’i),
and the spin function is w; = %Siijk,j.

These inequalities are satisfied by the viscosity coeffi-
cients in the couple stress fluid calculations:

0<u,0=sn,n-n<0,0<31+2u. (2.6)

Consequently, the earlier provided mathematical
equations have been assigned the subsequent non-dimen-
sional characteristics:

—% 6) —y _ AW ap « _ AGr
=0 =/, = v* ay, Ty = )
q U U p uu Vs Crr uu
2. @
a = 7, 2.7
4 22172
au - H u:a*Hyo
E = _[1 > H* = e RH = A .
n Hy V' ou

After substituting Eq. (2.7) into (2.2), disregarding the aster-
isks for simplicity, and using the slowing flow from the
earlier assumptions, we obtain [43]

1 — -
Vp+ ZVAVAVAVAG+VAVA
Pr g 1 1 2.8)
-RA AH)AH=0.
Using Lorentz’s force, the equation for a non-polar fluid
(2.8) is an updated version of the Stokes equation, where



4 —— Shreen El-Sapa and Munirah Aali Alotaibi

Ry represents the Hartmann number, if ¢ approaches infi-
nity. If Ry = 0, the Stokes approach to modeling the beha-
vior of a fluid with couple stress.

The function stream ¥ can be utilized for describing
the velocity features:

-1 oy 1y

hid = - 2.9
r2sing 96’ 96(r> ) rsing or’ (29)

q.(r,0) =

Additionally, the vorticity vector can be defined as follows:

5-lvag-Lly

“w=3 1= o sing

Then, with the help of Eq. (2.9) the continuity Eq. (2.1) is
immediately achieved, which reduces to:

op 1

(2.10)

9., 1 1 39
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Hy25ing 00’
19p 1 0 1 1 0o
__lop | 9oy 2 —EXE?
0 rod rsinfar &% rsing or ( 1/1)(2 12)
e L |
Hysing or’

9% 1-0% 9% .
where E2 = Pk rf 28 { = cosf. One can derive the sub-

sequent six-order partial differential formula by removing
pressure from Eqs (2.11) and (2.12)

EX(E? - kP)(E2 - Ky = 0, 213
where the roots of (3.6) are obtained by

K+ K = 8, Kk - £}

k‘=,/—‘difvf2_4&3 i=12[
1 2 bl )

3 MHD couple stress fluid over a
moving rigid sphere

(214)

Under the assumption that fluid motion is axisymmetric,
meaning that every value acts independently of ¢, (r, 6, ¢)
represents the spherical polar structure. The rigid sphere
of radius a is translated at a uniform velocity U through
unbounded MHD couple stress fluid. Furthermore, the
stream function, the velocities, and the vorticity compo-
nents are established by the following:

ED) [Anr‘"” + BrtK, s(kir)
n=2 (3-1)

+ G,y |60,
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q=- [Anr‘”‘1 + Bnr;stn_;(klr)
n=2 (3.2

+ G K1 0en) B

~ kirKo,1(kir)) + Gir 2 (nK,,_1(kor) (3.3)
Gn(9)
- kor Kn+;(k2r))]ﬁ-
From Eq. (3.3), the vorticity component is
T 2 Gn($)
W, = zgzrz[Bnlen_%(klr) + G| N

The set of constants A, B,, and C, must be computed using
the constraints on the boundary that have been applied to
the boundary region.

The formula can be used to calculate the force of the
drag produced by an incompressible medium [34]. The
flow of a couple stress fluid is characterized by infinite
stretching along the axisymmetric object as it moves in
the same direction.

(3.5)

k= 871;1}1}2 rsin?@’
The following formula is obtained by combining (3.1) with
the drag formula (3.5):
. (3.6)

2
F, = 2unR4Ua 34

As is well known, E, = —6ruUa represents the force of drag
operating on a rigid sphere traveling in a uniform incom-
pressible viscous flow of fluid [26]. When we compare our
findings to the special situation of viscous fluid, this latter
formula will be helpful.

4 Interaction of two rigid spheres
within magneto couple
stress fluid

This section analyzes the uniform-state translating motion
of an incompressible couple stress fluid past two inline
hard spheres. Two hard objects having radii of a;,j = 1, 2,
and uniform velocities of U, j = 1, 2, respectively, translate
along a common axis that connects their centers to pro-
duce the fluid motion. As seen in Figure 1, the two spherical
objects are situated outside of one another. It is believed
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Figure 1: Sketch of two spheres in a magneto-couple stress fluid.

that the fluid is at rest at a great distance from the two
spheres. Dual spherical coordinate systems, (11, 6, ¢) and
(n, 8, 9), having origins at the centers of spheres a; and ay,
respectively, are conveniently considered. While the bound-
aries are axisymmetric, the angle ¢ has no bearing on any of
the flow field functions. Furthermore, the following rela-
tions tie the two coordinate systems (r;, 6;) and (13, 8;) to
one another:

r?=rf + h% - 2rh cos6,,

4.1)
r} =rf+ h% + 2rh cos@.

The Stokesian flow presumption will be used, assuming
that the velocities are modest. In these conditions, all hydro-
dynamic functions are not dependent on ¢ and the flow is
axially symmetric. In the event when the second item is

absent, take ﬁ’j to represent the velocity vector of the couple
stress fluid caused by the existence of the spherical particles
. We select 7, 79, &V

manner.

. and m(]) in the following

7@, 6) = ¢, 61 + ¢ 21, 6,),

4.2)
m3(r;, 6)) =

flg(rl, 61) + mr(zzé(rz, 6,).

The separation of variables technique is the conven-
tional approach to solve a sixth-order linear partial differ-
ential Eq. (2.13):

2 ® 1
W(r, 0) = Z 2 |APr™ + BOrAK, (Rary)
j=1n=2 (4'3)

1
+ C,S’)ern—;(kzri) Gn({)-

The second-kind modified Bessel equations of degree n are
defined by K,(.), accordingly. The constants A, CY),
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BY EV, DY, FP,j=1,2 can be derived from the
boundary conditions (4.1). The components of velocity are

2 o« -3
=2 2 |APrm "+ BOr? Ky a(Kary)

j=1n=2 (4‘4)
-3
+ Cri Kyl j)]f’m((j)-
2 ® . o3
G = 2 |- AP + BPr? (nK,_1(kiry)
j=1n=2
=

- kariKy1(kary) + CPri? (nK,,_1(kary) (4.5)

Gn(4))

- kzijm;(kzrj))]ﬁ.

From Eq. (3.3), the vorticity and couple stress components
are

o

-1
L3 3 [k, s

] 1n=2 ] (( (46)
+ GO (k) |2
J1-¢
2 o -3 )
my(r, 0)= 3 1/ [B,Sf’kf (n - D2 - &K, 1
j=1n=2
- EUqriK,,. ;(klrj)]
4.7

+ Cé”kf[((n - DI - &K
Gn(())

era

For Eq. (2.14), we should have the six boundary conditions
to describe the problem fully. The assumptions of Stokes
[42] state that the physical interactions on the outer edge
are equal to force dispersion mainly because there are no
couple stresses at the spherical object interface. The two
spheres translate with different velocities Uj, j = 1, 2 such
that the kinematic and dynamic boundary conditions on

_ E—ZkZT"/‘Kn+%(k2rj ]

the two surfaces of the solid objects r; = a;,j = 1, 2 are
q,(rj, 6;) = Uj cosb,
qy(rj, 0;) = —U; sinb;, 4.8)

Myg(Tj, 6)) = 0

Inputting in the left-hand side of the boundary con-
straints (4.5)—(4.13) for r; = a;,j = 1, 2, we obtain the equa-
tions of velocity and couple stress provided by (4.4), (4.5),
and (4.7):
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Z APa™ 1 + BVa,? K,_1(la) > a? [BOK(n - 1)E2 - f"z)Kn_;(klal)
n=2 n=2
€ Ky o) [Bo@) - £k, ()
N i AP + BOry? 4.9) + CORY((n - DE2 - EDK,1(k
nT wor K, 1(kin) n Kz |((n = 1 = &K1 (k)
G
+C (’)rzzK - kK, 1(k2(11)] \/ﬂ
= 3 (4.13)
“ A& =  3n [ B ((n - DE - €K, 1(0er)
0 ﬁ n=2
Z A,gl)f”f"_l + Brsl)rlz Kn_%(klrl) 3 E_ZkerK 1(k1r2)
n=2 n+l
) 2
F e 1"‘2“)] i@ + CPI\(n = DE? = £, (k)
s (4.10)
+ Z Argz)az—n—l + BéZ)aZTKn_%(klaz) _ f_zkzrszl(kzrz)” L(Z)Z =,
n:'z 5 ) 2 ri=al \/1 - (Z
+ CYay? Ky_1(kat) [Po-1(G2) = ~UGa, o
Za1 B{Vk{ [((n - D& - §7HK,-1(kan)
n=2
-3
nzz (= mAla™ - Bl [ "'é(klal) - _Zklrle%(klrl)]
-3,
bk ia)| + Gy [nk- (ko) + G| (n = DE? - €DK,y ar)
Ga(&1)
—kaKn+1(ka)] —_— G
o g - f-Zkzrlxml(kzrl)]] Gle)
o -3, z ro=a2 1- (1 (4 14)
+ Z - n)ArEZ)rQWI + Brgz)rzz ["Kn—é(kﬂ”z) b -3 _ " '
ot 411 2IBPK|(n = DE2 = &K, -1(Fkan)
— &2
- kerKn+%(k1r2)] ¢ klazK"J'%(klaZ)
=3 @)1,2 _ 2 _ zr2
+C,([Z)r22 [TlKn-l(kze) - kzeKn+1(k2rz)]] M * Cn kz ((n-1¢ L ‘%(kzaZ)
2 2 ri=ap \/1 - (22 G (()
N -¢ _Zkzasz%(kzaz)] =2 > =
J1-¢2 ~ 6
o 3 This problem might be solved using the boundary colloca-
>l - AP + BVa,? [nKn_%(km) tion strategy established by Gluckman et al. [29]. But in
" 3 order to do this, the complete infinite system of equations
- kam%(klﬁ)] + CVay? nK,_1(ky11) involving the unknown constants would need to be solved,
6.0 which is not conceivable. Using the boundary colocation
- kzrle%(kzﬁ)]] "ﬁ}z approach developed by Gluckman et al. [29], this challenge
. T 1_ (4.12) may be overcome. The steps involved in this technique are
+ Y |- mAPa;" ! + BPa,? |nk,_1(kay) as follows: first, each infinite series must be truncated after
n=2 ! a certain number N = 60 of terms in order for the number
-3
- klasz%(klaz)] + CPay? nK,_1(ka;) of unknown constants to become finite; next, a sufficient

~ set of points on each spherical particle must be chosen as
| G — , colocation points; at these points, boundary conditions
J\/1 -G N1-G must be applied in order to yield the same number of
linear equations, 6N as those containing the unknown

y T kzasz%(kzaz)
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Figure 2: Drag force distribution versus the separation parameter § for

different first couple stress parameter ;7 with the constant values of
U

o =10, Zf =1.0, 7' = 0.01, and Ry = 1.0.
constants; and finally, the system of equations that results
is solved to yield the unknown constants, allowing us to
calculate the flow field. The hydrodynamic drag force F{/’
with respect to FY’ = -6unUa; acting on the particle a;
may be obtained by using formula (3.6):

FY = 2una’Uyg; (4.15)

2 (')]
—+ A
3 2

5 Numerical results

Non-Newtonian fluid flow has long been a topic of interest;
many practicals have been conducted to expand the

1.8

=g

I

08t |
06 |

04 .

0.2
10° 10"

Figure 3: Drag force distribution versus the separation parameter § for
different velocities ratios % with the constant values of% =10,7 =01,
7' =0.01, and Ry = 0.1.
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Figure 4: Drag force distribution versus the separation parameter § for
different size ratios Z—i with the constant values of % =10,7 =01,
' =0.01, and Ry = 1.0.

applications and advance contemporary technology.
Scholars examined many forms of fluids and contributed
to global modernization. One of the greatest subjects in
fluid dynamics is couple stress fluids. Chemical engi-
neering, manufacturing, polymer analysis, and biomedical
engineering all make use of non-Newtonian fluids. This
study shows the distributions of dimensionless drag force
E/E, versus the separation distance 6(=h/(a; + a)) for
unique values of couple stress parameters, 1, ’, the size
ratio a,/ay, the velocity ratio U,/U;, the Hartmann number
Ry, as shown in Figures 2-7 and Table 1. In addition, the
streamlines in terms of the stream functions are displayed
in Figures 8-12. The dimensionless Hartmann number

15
1 -/ -
05F,. = - ]
. mmmo NS SSSES S EsR e
llks Ry =15
ol = = Ry=20|_|
- = Ry=30
Ry =40
-------- Ry =50
05 1
-1
10° 10°

Figure 5: Drag force distribution versus the separation parameter § for
different Hartmann number RH with the constant values of % =10,
i =0.001, 7' = 0.01, j—j = 1.0.
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Figure 6: Drag force distribution versus the separation parameter § for
different Hartmann numbers with the constant values of% =10,
T =01, =001, and = 10.

measures the relative significance of magnetic induction
drag and viscous drag. Furthermore, the electric and mag-
netic fields have many applications. Given that blood is
a fluid that conducts electricity and the Lorentz force
opposes the motion of conducting fluids according to
Lenz’s law, the principles of MHD therapy can be used to
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Figure 7: Drag force distribution versus the separation parameter § for
different 7' with the constant values of% =10,7 =01, @ - 1.0,

1 a
and Ry = 1.0.

slow the flow of blood through the human artery system,

which can help treat certain cardiovascular disorders.

* Figure 2 represents the separation distance for different
first couple stress parameters, versus the normalized
drag force. It is observed that the drag force, increases
gradually with both the increase of separation distance

Table 1: Dimensionless drag force on the rigid sphere a; for different relevant factors with ' = 0.01 and the two equal spheres

E/Fy
Ry = 0.0 (Ref [4]) Ry = 1.0
L 5 ii = 0.001 il = 0.025 7=01 il = 0.001 il = 0.025 q=01
1

1.05 0.942388 0.961502 1.007459 0.423299 0.481470 0.705180
2.0 0.989002 1.009977 1.056119 0.580938 0.666808 1.023915
3.0 1.000166 1.022736 1.072481 0.588492 0.675521 1.041810

1.0 4.0 1.003849 1.027253 1.078907 0.588908 0.675904 1.042120
5.0 1.005496 1.029437 1.082338 0.588919 0.675875 1.041809
6.0 1.006375 1.030693 1.084480 0.588925 0.675866 1.041677
7.0 1.006902 1.031500 1.085948 0.588935 0.675872 1.041634
8.0 1.007244 1.032059 1.087020 0.588946 0.675881 1.041624
9.0 1.007481 1.032468 1.087837 0.588954 0.675889 1.041625
10.0 1.007653 1.032780 1.088482 0.588961 0.675896 1.041629
1.05 1.130650 1.185593 1315125 0.745426 0.859470 1393453
2.0 1.034587 1.070941 1153892 0.597014 0.684985 1.059540
3.0 1.019071 1.051395 1.124588 0.589474 0.676317 1.041456

1.0 4.0 1.014251 1.044880 1.113957 0.589064 0.675947 1.041205
5.0 1.012174 1.041874 1.108691 0.589054 0.675977 1.041523
6.0 1.011095 1.040207 1.105593 0.589048 0.675986 1.041657
7.0 1.010460 1.039167 1.103566 0.589037 0.675980 1.041700
8.0 1.010054 1.038463 1.102141 0.589027 0.675971 1.041709
9.0 1.009777 1.037960 1.101085 0.589018 0.675962 1.041708
10.0 1.009578 1.037583 1.100272 0.589012 0.675955 1.041704
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Figure 8: Streamlines for certain values of 7' = 0.01 B 1.0,7 = 0.001,

ay T U
~= =10, Ry =10, and § = 1.05.

a

Figure 9: Streamlines for certain values of 7’ = 0.01, % =1.0,7 = 0.001,
o =10, Ry =10,and § = 30.

Figure 10: Streamlines for certain values of 7’ = 0.01, % =20,
7 = 0.001, ¢ =10, Ry = 2.0, and § = 3.

-0.001 ,
——e e B , .,

Figure 11: Streamlines for certain values of 7" = 0.01, % =20,7 =0.01,
@ =20, Ry =20, and § = 3.0.

b
T

Figure 12: Streamlines for certain values of 7 = 0.01 =4.0,7 =01,

‘;—j = 4.0, Ry = 1.0, and & = 3.0.

and the first couple stress parameters, which physically
coincide with the fact that states when the sphere trans-
lates alone in the absence of the second force, it has a
significant force at the two spheres moving in the same
direction with the same velocities and equal in size with
certain values of Ry = 1.0, 7” = 0.01.

* In Figure 3, the normalized drag force is plotted against
the separation distance for different velocity ratio para-
meters. It has been observed that drag force increases
gradually as separation distance increases and decreases
as the velocity ratio increases. Physically, drag opposes
object motion just like friction does. In this case, two
solid spheres have the same size with equal speeds at
Ry =1.0,7" =0.01, and 7 = 0.1.

* Figure 4 illustrates the normalized drag force corre-
sponding to the separation distance for different size
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ratio parameters. It has been observed that when the
sphere a, = 10a; the drag force tends to unity and also
it increases with both the separation distance and the
size ratio. Physically, drag opposes object motion just
like friction does. In this case, the two solid spheres move
in the same direction with the same speeds with the other
certain values being Ry = 1.0, 7" = 0.01, and 7 = 0.1.
Figures 5 and 6 display the normalized drag force corre-
sponding to the separation distance for different Hart-
mann numbers. For high values f Ry, the normalized
drag force inclines with the increase of Ry at 7 = 0.001
but for small values of Ry at 7 = 0.1, the normalized drag
force increases with the increase of Ry with the other cer-
tain values being U,/U; = 1.0, 77 = 0.01, and a,/a; = 1.0.
Figure 7 shows the normalized drag force corresponding
to the separation distance for different second couple stress fluid
parameters. It seems that the improvement of the normalized
drag force improves with the increase of 7” with the other certain
values being U>/U; = 1.0, 7 = 0.1, ay/a; = 1.0, Ry = 1.0.
Figures 8-12 depict the streamlines of the constant
stream function with the other constant values of the
parameters U,/ Uy, 77, 1, az/ay, Ry, and &.

6 Conclusions

This article examines the migration of two rigid objects
moving in a straight line through an incompressible fluid
with couple stress properties. The migration is analyzed in
terms of its progression and uniformity, specifically under
the influence of a magnetic field. The concept of superposi-
tion is used to generate an infinite series, which serves as
the general solution for the continuous translational move-
ments of a couple stress fluid traveling through an axisym-
metric structure. Using this method to build two spherical
coordinate frames with origins at the centers of the two
spherical particles solves the problem. Using the boundary
collocation approach to limit the spherical bounds, we may
find the unknown constants in the truncated series. We
provide and display the numerical results of the normalized
drag applied to an object. These findings demonstrated how
quickly the numerical values converge to at least six decimal
places. The normalized force of drag is significantly influ-
enced by the physical parameters §, Us/Uy, az/ay, 17, ', and
Ry;. The key observations and the numerical findings of the
current study can be summarized as follows:
» The impact of Ry with 7 on the normalized force of drag
on each of the sphere is more significant.
o It is detected that the drag force generally rises as the
couple stress parameters rise and falls as the Hartmann
number rises. This is because permitting the microelements

DE GRUYTER

to generate less overall proportionate motion between the
fluid and the particle minimizes the drag force.

* At significantly higher-frequency parameters, the velo-
city is noted to approach zero at the center of the
microannulus.

¢ To further comprehend the behavior of fluid flow when
the magnetic field strength is raised, streamlines are
displayed.

* Finally, by setting the viscosity coefficient to zero and
Ry = 0, the specific case of binary translating spheres
in a viscous fluid is generated.

This study holds numerous applications in fluid dynamics
and couple stress fluids are one of the trendiest subjects.
Non-Newtonian fluids have applications in polymer ana-
lysis, manufacturing, chemical engineering, and biome-
dical engineering.
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