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Abstract: Fractional stochastic differential equations (FSDEs)
with fractional derivatives describe the anomalous diffusion
processes by incorporating the memory effects and spatial
heterogeneities of the porous medium. The stochastic compo-
nent addresses the random nature of the fluid flow due to the
variability in pore sizes and connectivity. The first objective
of this research is to prove the well-posedness of a class of
generalized proportional FSDEs, and we acquire the global
existence and uniqueness of findings under certain settings
that are coherent with the classic SDEs. The secondary pur-
pose is to evaluate the continuity of findings in fractional-
order formulations. The Carathéodory approximation is
taken into account for a class of generalized proportional
FSDEs, which is pivotal and provides well-known bounds on
the norm of the solutions. Carathéodory’s approximation
aids in approximating the FSDEs governing turbulent flows,
ensuring the solutions are mathematically robust and phy-
sically meaningful. As is widely documented, the existence
and uniqueness of solutions to certain types of differential
equations can be formed under Lipschitz and linear growth
conditions. Furthermore, a class of generalized proportional
FSDEs with time delays is considered according to certain
new requirements. With the aid of well-known inequalities
and Itd isometry technique, the Ulam-Hyers stability of the
analyzed framework is addressed utilizing Lipschitz and
non-Lipschitz characteristics, respectively. Additionally, we
provide two illustrative examples as applications to demon-
strate the authenticity of our interpretations. The demon-
strated outcomes will generalize some previously published
findings. Finally, this deviation from fractional Brownian
motion necessitates a model that can capture the subdiffu-
sive or superdiffusive behavior.
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1 Introduction

Fractional calculus is very pertinent in meaningful mani-
festations due to certain similar characteristics, including
memory. Numerous sorts of kernels are used in fractional
formulations [1,2]. Kochubei [3] investigated a very particular
form of kernel known as a general fractional integral/deriva-
tive. Luchko [4] examined such generally designed integrals
and derivatives in adequate functional spaces within the
structure of applied mathematics. Luchko also probed the
quantifiable attributes of multiple sorts of differential equa-
tions (DEs) solutions with broad sense fractional derivatives
[5-7]. Several researchers have examined the stability and
performance of fractional DEs (FDEs) [8,9]. For a framework
to be reliable in the context of Lyapunov, its generalized
vitality is not required to decay exponentially, and previously,
the Mittag-Leffler (M-L) strength and the fractional Lya-
punov communicative approach for multiple kinds of FDEs
were initiated [10,11].

Recently, FDEs have grown in importance in both the-
oretical and practical aspects, attracting a considerable amount
of interest from academics [12-14]. Numerous researchers con-
centrate on aspects of stochastic DEs (SDEs) including solution
existence and uniqueness (E-U), continuous reliance of strate-
gies on initialization and complex behavior [15-18]. Moreover,
no scholars are interested in the continuity of findings on the
fractional scaling factor of this type of formula; specifically,
none of them are curious about the interaction between the
alternatives of classical SDEs and the fractional ones. In this
work, we continued our investigation of the proportional frac-
tional derivatives and integrals revealed in the study by Jarad
et al [19], which was guided by the previously mentioned
investigations. We show how fractional integral operators
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affect differential operators, and vice versa. Furthermore, this
research examined this intriguing topic of SDEs and revealed
the connection among them. If the fractional order and pro-
portional index of the generalized proportional fractional
(GPF) derivative converge to one, the findings of GPF SDEs
reduces to the solutions of Caputo fractional SDEs and classic
SDEs, respectively.

FDEs are an essential mechanism in many disciplines
of scientific domains because of their non-local feature of
GPF derivatives in time [20,21]. The kernel impact or non-
local feature is represented by a convolution integral with
an exponential function memory kernel that also gives the
GPF-DEs a greater capability in dynamic structures; this is
among the primary strengths of FDEs (non-local) in corre-
lation with traditional (local) configurations [22-24]. The
analysis of revolutionary calculus and FDEs is becoming
increasingly popular (see [25-27], as well as the reference
materials therein). In fluid physics, stochastic FDEs incor-
porating Carathéodory’s approximation offer a sophisti-
cated framework for modeling complex phenomena such
as turbulence, anomalous diffusion, viscoelastic fluid beha-
vior, and particle dynamics. By ensuring the existence, unique-
ness, and stability of solutions, Carathéodory’s approximation
makes it feasible to apply these advanced mathematical tools
to real-world fluid dynamics problems, leading to deeper
insights and more accurate predictions. Moreover, stochastic
FDEs tracking the movement of individual fluid particles (the
Lagrangian approach) provide insights into mixing, disper-
sion, and turbulence. The random motion of particles is influ-
enced by both the deterministic flow field and stochastic
environmental factors for Lagrangian stochastic models of
fluid particles.

However, because noisy perturbations are prevalent
in complicated processes, stochastic modeling has played
a significant role in a variety of research and industry.
Plenty of efforts on SDEs or SPDEs have been made, with
numerous scientific preferences having similar properties
such as well-posedness, continuity, variability, transformed
manifolds, and irreducible measure. Conga et al. [28] inves-
tigated the existence of reliable configurations for a parti-
cular class of stochastic differential equations. Xu et al.
[29] presented the approximation concept for SDEs via the
Caputo fractional derivative. Wang et al. [30] contem-
plated the asymptotic dynamics of stochastic lattice fra-
meworks involving Caputo fractional time derivatives.
Doan et al. [31] expounded a spatial and temporal weighted
norm that is employed to evaluate the asymptotic distance
between two distinguishable strategies. It is interesting to
note that Doan et al. [32] founded the Euler—-Maruyama form
estimation outcome for Caputo FSDEs. Carahéodory initially
regarded the Carathéodory approximate solution framework
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for ordinary DEs, and then Bell, Mohammad, and Mao length-
ened it to include the specific instances of SDEs [33]. Wang
et al. [34] examined the continuity, and Guo et al. [35] applied
Carathéodory’s approximation for a Caputo-type FSDES.

In a presentation at Wisconsin University in 1940,
Ulam suggested the reliability of systems of equations
[36]. In 1941, Hyers [37] became the best person to respond
to the inquiry. The Ulam-Hyers stability (U-Hs) was cre-
ated as a result. In the meantime, an expanding number of
individuals have been eager to look into the U-Hs. The
characteristics of canonical and generalized M-L functions,
as well as the U-Hs of sequential FDEs, had been demon-
strated using fractional calculus and the Laplace transform
technique in the study by Wang and Li [38]. Researchers
examined the U-Hs, generalized U-Hs, U-H-Rassias stability,
and U-H-Rassias stability of impulsive integrodifferential
formulations incorporating Riemann-Liouville boundary
assumptions in the study by Zada et al [39]. For further
investigation on U-Hs, we refer the readers to previous
studies [40-42] and references cited therein.

To the highest potential of our expertise, no research
has been conducted that focuses on the continuity of the
findings of the GPF-SDEs in respect of fractional order, if it
tends to the solution of the Caputo FSDEs and classical
SDEs when the 1, and ¥ tend to 1, respectively. We begin
by considering the well-posedness of generalized propor-
tional FSDEs on the Banach space, employing various
approximate techniques, and then, we deduce the global
E-U of findings under certain settings that are coherent
with classical SDEs. More specifically, we will analyze the
well-posedness and continuity of the solutions of GPF-SDEs
with the aid of the Carathéodory approximation listed in
the following:

D} VX, = F(t, X)d( + G(6, X)dW,, (20,

€ 1/2,1),
Xo = iy € LX(D, 4).

1.1

Motivated by the aforesaid proclivity, in this work, we will
investigate the existence and U-Hs of time-delayed gener-
alized proportional FSDEs:

DY YX, = F((, X((), X({ - w))

dW()
FGEXDXE- =g gy
(e g =100,z
X)) =2() ¢<[0,E]
where 1, € 1/2,1], F:[0,E] xR*>xR?*~ R? and

G :[0,E] x R? x R® » R>™*™ are the measurable contin-
uous mappings. Also, there is an my-dimensional
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Brownian motion ‘W({) defined on a complete probability
space {¥, ¥, P} and a continuous mapping ®({) : [-w, 0]
~ R4 having E||®({)|* < », where E is the mathematical
expectation.

In comparison with the previous scientific studies
[34,35], the significant achievements of this article encom-
pass at least three components:

In this article, we only examine the scenario of 5, € (1/2,1)
and use it to investigate the well-posedness and continuity
with respect to the generalized proportional FSDEs. The
asymptotic behavior of solutions is then taken into account.
The methodologies we utilize to determine the E-U of
generalized proportional FSDE solutions are quite revo-
lutionary than those of previous studies [34, 35]. Krasnosels-
kii’s and Moénch’s fixed-point hypothesis were employed
in previous studies [29, 30] to investigate the E-U. However,
we use Carathéodory’s approximation in this article to
examine the E-U.

Several previous studies [43,44] have employed a stronger
Lipschitz assumption in the investigation of multiple stabi-
lities, E-U of FSDEs. Even so, in this article, we discussed the
U-Hs of GPF-SDEs via weak non-Lipschitz assumptions. This
is a significant step forward in the investigation of the
stability of GPF-SDEs.

This work is structured as follows. In Section 2, we will
present certain fundamental assumptions and outcomes.
Section 3 will go over the well-posedness and continuity
of GPF-SDE using the Itd isometry and well-known inequal-
ities. A novel way the Carathéodory approximation is
adopted to find the E-U of the generalized proportional
FSDEs. Section 4 is dedicated to demonstrating the stability
outcomes for generalized proportional FSDEs with time
delays. Section 5 provides the illustrations to validate the
implementation of our research results.

2 Preliminaries

This portion outlines several terminologies, interpreta-
tions, and key formulas that will be employed throughout
the remainder of the article. The viewer can refer to the
article [19] for its explanation and verification.
Abdeljawad [45] and Khalil et al [46] provided the
following limit form description of the well-known con-
formable derivative:
F(L+egt™™)

DUF(() = lim ———=—7
gm0 £

2.1
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It is self-evident that when a mapping ¥ is differentiable,
its conformable derivative interprets

DWF) = {THFQ). 22)

The major disadvantage of this derivative is that the
mapping ¥ is not achieved when 1, =0 or n, = 0, ie,
DO = F. Anderson et al. [47] categorized the reconfigured
conformable derivative to address this issue and take
advantage of the proportional derivative for process vari-
ables with two confinement specifications.

Definition 2.1. [47] For ¢ € (0, 1] and assume that there are
two continuous mappings kg, k; : [0,1] x R = [0, ©) such
that V{ € R, we have

lim (¥, {) =1,
¥r0°

lim x(y, ¢) = 0,
poT

lim ko(¥, {) = 0,
¥-0°

lim ko(¥, {) = 1,
poT

and k¥, {) # 0, Ko(¥, {) # 0, % € (0, 1]. Then, the propor-
tional derivative of order ¢ is stated as

DYF() = k@, HFE) + Ko(¥, OHF (D).

We recommend the viewer refer to previous studies
[47,48] for more information on the control theory of the
proportional derivative and its constituent mappings kg
and k. We will confine ourselves to the particular instance
where K (¥, {)=1-1¢ and k¥, {) = 1. Consequently,
(2.3) reduces to

DYF(() = A= YFQ) + YF(©).

It is simple to understand that limy..¢D¥F({) = ({) and
limy.+DYF(() = F/({). And hence, the derivative (2.4) is
thought to be quite comprehensive compared to the con-
formable derivative, which clearly does not approach the
intended mappings in the same way that { approaches to 0.

The integral and derivative of the GPF are described in
the following.

23)

(2.4

Definition 2.2. [19] For ¥ € (0,1], n, € C, and R(n,) > 0,
then there is a GPF integral of order ,, which is stated as

¢
J’ewxll((“")(( - W 1F(w)dw
4 2.5)

= lp"he%( [all”l[elwd/f F( )]]

1
JMYFQ) = )
1

Definition 2.3. [19] For ¥ € (0,1], n, € C, and 2(n,) = 0,
then there is a GPF derivative of order n;, which is stated as
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o DMFC) = (DM IMFYC)

ny ¢
D! -
et S = P P
T '71)'[9 SO - gy

n = [R)] + 1.

(2.6)

Fw)dw,

Definition 2.4. [19] Let ¢ € (0,1]. Then, the fractional
operator

o D"
. jewwl((—w)(( - P prbE)  (@27)
YrI(n - ny) "
x (Wdo, n=[RA)]+1

is the left-sided GPF derivative of the function # in the
context of Caputo of order n,, where n = [n,] + 1.

By letting 1 =1 in Definitions 2.3 and 2.4, then we
obtain the left Riemann-Liouville (R-L) and Caputo frac-
tional derivatives. Furthermore, it is noticeable that

lirr})(ﬂ)”l"/’?)(( )=7(() and
m-=
’}iﬂ(ﬂ”l’wf)(f ) = (DWF)).

Furthermore, we implement the respective approaches to
ensure the solution’s global E-U. Assume that 4 signifies the
Hilbert space and ||. || represents its norm. For the pur-
poses of clarity, we will suppose that the functions k,({)
have the identical upper estimate & for ¢ = 1, 2.

(A9): Lipschitz condition: V{ > 0, 3 a bounded mapping
k({) such that Vu,v € A

IF (¢, w) = FEIP+IGE W) = G I < (Dl = vP

(A2): Growth condition: V{ = 0, 3 a bounded mapping k()
such that Vu € 4

IF I+ 16 w1 < k(A + [ul).

To cope with FDEs, we require the following generalized
Gronwall’s lemma for exponential function-type kernel
(see [49]) as follows:

Lemma 2.1. For n; > 0,y € (0,1] and suppose that there
are two non-negative locally integrable mappings defined
on [0, E] and b({) is a positive, increasing, and continuous
mapping on { € [0, E) having

a({) < a(d) + )b a)(), 238)

then

DE GRUYTER

@) <a()
. [le _eorayr
0 |n=1 F(nr]l)e%@‘“’)
¢el0,9),

where I'(.) is the Euler-Gamma function.

(- p)nla(p)de, 2.9)

3 Main results

In this section, we will present the well-posedness and the
continuity of the solution of (1.1).

3.1 Well-posedness

First, we surmise the E-U of mild solutions for the subse-
quent equation using the aforementioned hypotheses (A;)
and (Ay):

D} VX, = (6, Xpd( + G(¢, XpdW,, (=0,

n € (1/2,1),
XO = l’lO € LZ(?S’ A):

(3.1

where W; denotes the Brownian evolution and ¥ and G
are A-valued mappings.

Definition 3.1. Suppose there is an A-valued §;-adapted sto-
chastic technique X, ¢ € [0, E] is termed as the mild solu-
tions of the initial value problem (2.6), if X; € C([0, E];
LX6, A)) and fulfills the subsequent integral formulation:

¢
1 ¥-1
= — e s €O - p)yn1
Xe=Ho * Gt {ew (¢ - (0, X,

: (3.2)

[e o - pyiGp, X)W,
0

+

1
Yhr(n,)

Theorem 3.1. Under the suppositions (A;) and (Ay), for
each y, € LXO,4), then (3.1) has only one mild solution
X € C([0, E]; LXD, 4)) such that

sup E [X;|? < oo,
(E[0,E]

Proof. The proof of the theorem will be classified into three
cases.

Case I: Here, we intend to consider the simplistic form
of arithmetic variant

lay + ay + ag* < |aif* + |ayf* + |asf. 3.3
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We have

E |X/|? < 3E ol
2

o 9)n (9, X,)dg

‘ Ynren,) |

2

( w_l
(o) VY
N {e b OG- oG9, Xp)AW,

=T+ T+ Ts

In view of Cauchy-Schwarz inequality and assumption
(Ay), utilizing them for 7;, we have

¢

EK Z[E(c—w)] -

< ——— eV - @21 + E [X,[)do,
> w%(rml»Z{e (£~ 9P17V(1 + E [X,P)dp

. ¥-1
since [es )| < 1, we have

EK [ ¢m1
Y¥((n))? |20, - 1

NEE

.
v
s el ke g
0
KE2M

= VT4, - 1)

g
K 2|4 _

" Y, Je [0l — v x,fdo.
0

For 73, utilizing the Itd’s symmetry technique and assump-
tion (A,), we have

c
S g L) -
wzﬂl(r(ql))z _([e [ ¥ ](( (P)Z(rl D1+E |X¢|2)dq)

KE2m-1
<
(T ()20, - 1)

J3<

p

Ek 2[—””'1@—@] _

+—= (A - 0)2mDE |X,[2do.
wz’h(r(fh))z-o[ €-9 Xolde

Thus, we have

.
E X <7+
0

1
A0l - pyen-v-ig x, g,

letting
KE2mYE + 1)
nn=3E 2+3 (3.4)
1= 3B S Sy, - D
and
=+1
L Ch) (3.5)

Y#(T(n))*

Analysis of a generalized proportional FSDE === 5

Using the fact of Lemma 2.1 yields
E X,

(BI(2n - D) [%((—q;)] @
~ea 7 — n r)l—l)—ld
T, — ) ¢-9) o

[ j m
=)
(BT(2n, - DE2MTyr
@y -n+1)
< Al + gy -11(BIQ2N, - DEPHT} < oo,

IA

771[1+ >

n=1

V(€ [0, E],

where &y, -11(.) represents the Mittag-Leffler function of
two parametric form [10,11]. Thus, we have

sup E |X|? < oo,
(€[0,E]

which predicts X; € £%([0, Z],
Case II. In this -case,

LYB;4)).

we will illustrate that

E [X; - Xgl?

1
< BT,y

[t
x| [e v O - pyirie, X o
0

2

Q g1
- [e 7 @G - pmir, X g

0

(3.6)

1
2 Y

-

[e v ©o¢ - pymigeo, Xpaw,
0

2

Q yq
- [e 7 TG - oG9, X AW,
0

= 20y + 0y).

Furthermore, we intend to prove that ©; and ©, are
bounded for every provided &, whenever the factors of {;
are close to {. In general, suppose that 0 < {; < {< E and
the case for 0 < { < {p < E is analogous.

For ©4, we obtain

1
01 = 2B )y

¢y g
x |[e v O - pyniFp, Xp)dp

[

% (3.7
1 y-1
JF———— 5 (Go—9) - p)h?
iy [J¢° o
2

- (& - @) F(p, Xy)do

=201 + 20q3.
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Again, using the fact of the Cauchy-Schwarz inequality, we
provide a bound to 0y as follows:

P j {0 - paa
s o e - @)yhTae
vy 3

.
x [E170. X,

[
< K (C - )2m-1
wz’;(r(m))z(zm -1 =% 3.8)
x I[1 + E |X,|%]do
[

Mk e '
S gaayraen —p¢ "

A% < 1].

It is not challenging to illustrate that 34 such that
V0 < (- {y <A, we have 0y < % For Oy, as a result, we
have the foregoing:

x |since

%
O = je § GO - gyt

lﬁz”l(l"( D)

2

- (& - " F(, Xp)de
&

P
YT, 3

p-1 2
e( w (4 ?)) [((_ (p)’ll_l

- (G- oy I[l +E X,P1dp 69

wzfd(r?f))z I[(( P2~ (g - )2 Hdp

_ MEKy (& (0)2’71‘1 . (02’)1_1 _ (2171—1

YT (n))*| 2, -1 2, -1 2p, -1
MEr (- Gyt
SPna)? 2 -1

(Zrlrl
<1, and observe that 22
-1

using the fact that ‘e%fﬂ i
_ {1

20 -1
(€[0,E] and 0 < { - {y <A, we can obtain the bound
0y, < &/8. For ©,, employing It6’s isometry technique, it
makes a bound that is equivalent to ©;. So, we intend to
demonstrate that 3A; > 0 such that for ¢ € [0,Z] and
0 < { - {p < A3, we express as

< 0. Choosing appropriately /4, given that
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- 2n,-1
0, < 2MK 2(( o) <E
Ym@(n))*  2n -1 4
As aresult of the foregoing analysis for ©; and ©,, choosing
A =min{A;}, t = 1,2, 3 and incorporating all of the previous
assumptions yields the result, for all (€ [0,Z] and

0<{-GQ<A

(3.10)

= E[X() - X{l*<e.

Case III. Here, we employ the Banach fp hypothesis, and
we will demonstrate that (2.6) has only one result in
([0, E]; LXT, A))VE < ., Now, introducing the functional
®(.) on C([0, E]; LD, 4)) as follows:

(@X)(¢)

e’V O - T (p, X,)do

= U+ Ph r(’l) (3.11)

e €07 - pynIG(p, Xp)dW,.

lP” F(n )

Cases I and II demonstrate that the function ¢(.) from
([0, E]; LXT, A)) to C([0, E]; LA, A)) is well defined.-
furthermore, the Banach fixed point theorem will then
be utilized to demonstrate the E-U of solutions for all
{ € [0, ). For X, Y; € ([0, E]; LY, 4)) having u, = v,
the norm of C([0, E]; L%T, 4)) is defined by

IF(Dle = sup E[F(I? < .

rero.z] (3.12)
Therefore,
E |(@X)({) - (@Y)(( )2
(( ) ’
w'hrw) (€ = oy 7 (0, Xy)
2
- (9, Yy)]ldo
(3.13)

¢y
5 ((=0) » _ -
E| it {e 8O- oG9, Xy)

2
- Q(q), Y(p)]d(w(p

Choosing n, = 2n, - 1> 0, making use of Cauchy-Schwarz
variant, and Itd’s isometry technique, then we have

E |(2X)(0) - (<I>Y)(( I?
2k +E)
PP((n))? ))2

(314)
I(( o), - 1E X, - Y| do,

2

using the fact that | e e o<1 and we assert that
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E [(2"X)(0) = (@"V)(D)I?

()" (26T + D" (3.15)
< qzr(nl’lz) lqul(r(’h))Z] ( U |X( - YC'Q
For n = 1, we obtain
, 2KT 1
E [(@X)({) - (PY)(()I* < 4;]2 % IX; - Yl (316)

If we make the assumption that (3.15) is true for n = ¢, we
can conclude that it is indeed valid for n = ¢ + 1,

E [(@7*1X)({) - (@7 1Y)({)|?

¢ 2
¥-1
< 2Kr(’71 + 1) I‘ T((‘(ﬂ) ((_ (p)qz—l

S Pnam)? )

x E [(2X)() - (2°Y)(p)I*dg

26T(n + 1) J- w 1o f et Ty
T YPm(T(ny))? n,I(eny)
3.17)
2xT(n, + 1)
2KT(1yy +1)]“1 Ty
YIIn))? |  nleen) ¢ e

.
x [~ pyripmag.
0

2
. -1 . .
Using the fact that |e s ¢| <1 and to obtain our assertion

for n = ¢ + 1, we simply have to evaluate the aforemen-

tioned integral Ig (¢ - @)1 1p¢ndg. Utilizing the supposi-

tion ¢ = (v, then

¢
[@- oyigrmag
0

1
I(] - V)’Iz‘1(’12+€’12v€’lzdv

0 (3.18)
1

((e+1)q2J'(1 — V)Llytngy
0

T(n)I(¢n, + 1)
L((¢ + D, + 1)

= ((“D’Iz

Merging the aforesaid identity with (3.17), then we have

Analysis of a generalized proportional FSDE =~ == 7

E [(@°1X)({) - (@21Y)(O)I?

2kT(n, + D) Ty’
l/)Z’“(F('h))Z ’72I‘(€’72)

T )T(en, + 1)
- (e+p, 127 2 e 77
e Y ST e+ o, + 1)

2kT(n, + 1)]“1 (T(n,))f*1

Y2(L(n,))? m, (319)
. I(én, +1)
x |X; - Y(|Q((€ D T(n,)I((¢ + D, + 1)
< [ZKF(’h + D) @)
YH(I(n,))? o
e+ on,
T+ oy XV

Then, for all n, we come to the respective approximation:
E [(2"X)({) - (@"V)(D)I?

2T (np, + )| (T(pp))" B
l/JZ"l(F('h))Z Ny r(nrlz)

(3.20)

X - Y,

Now, simply to demonstrate the respective evidence to
apply the Banach fixed point theorem and deduce the E-U
of solutions, for this, we have

2T + 1) ] T e
wzrll(r(’h))z n, T(nny)

Then, all that remains is to demonstrate

Z 2kT(n, + 1)’ TN B

=0, asnw~ oo,

W\ YPmT))? ) ny Tlnigy)

Moreover, employing the D’Alembert discriminant tech-
nique, we simply have to prove the foregoing:

@)™t vm

[ 2kT(n, +1) ]n+1

X qul(r(ql))Z M T((n+ 1)’72)
lim n <1
e I +D) | @) g
Y| ny T(nny)

After simplification,

lim 2kI(n, + 1) I(n,)E™I(nn,) -
nee PPI(T(N;))? T((n + Dipy)
It is worth noting that when uw~ o, the correlation

between the Gamma function and the Stirling approxima-
tion generates the following:
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T(u) = /27 exp(-p)u*~05.
Therefore,
im 2KT(ny + 1) T(n,)E%L (ni,)
wee YH(T(n))* T((n + Dny)
2kT'(n, + 1)
YA,

n+1
n

= lim

n—o

2
] T(n,)E" exp(n,)

n " 1

n+!

(nny + )" i}

X

For sufficiently large n, then <1, this

Tk+x | (T(p)rEm
YnHI(ng) n,T(nny)

indicates that @() is a contraction mapping on
([0, E]; L4, A)), VE < . The confirmation is now com-

plete. O

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 satis-
fies. Then, for each E € [0, ), 3 a constant M(n;; ¥, E)
such that

sup E |X; - Y(|2 < My ¥, E)E |y - vol?, (3.21)
¢€[0,2]

where u, and vy are the ICs for X, and Y;, respectively.
Proof. Considering inequality (3.3) and implementing on

the following expression:

E X(0) - (O

< 3E |.u0 - V0|2
1 ¢ y-1 ¢ i
+ 3E e v ¢ - o) F(p, Xp)d
l/}’hf(m)'! (£~ 910, X )
1 6o 2
() -1
* ey - P)7IG(p, X AW,
w’hr(nl)£ (€~ PG (0. X AW,
=Nt Tet Js

Adopting the same technique of Theorem 3.1 and Lemma
2.1, we can establish the proof. Therefore, we omitted the
details. O

DE GRUYTER

3.2 Continuity via GPF

Here, we contemplate the continuity of the system of (1.1)
on the GPF order for SDEs, i.e., when n, - n,, the correla-
tion exists between the following:

Dgl; wX( = F(t, Xpd{ + G(t, Xp)dW,, (=20,

m € 1/2,71), (3.22)
XO = yO € LZ(G’ A)y
and
DY VX, = (6, X0 + G(t, X)dW,, (=0,
(3.23)

’12 € (1/2; 1))
Xo = Uy € LY, ).
Specifically, letting 1, = 1, then we explore a correlation of

findings between the FSDEe and the classical SDE. For this,
we have the following important consequence.

Theorem 3.3. Under the hypothesis (A;) and (Ay), then the
solution of (3.22) tends to the solution of (3.23) in the context
of C([0, E]; L4, 4)), when n, = n,, for 05 <n, <n, < 1.

Proof. By means of inequality (3.3), we have

E X} - Y2

¢
1 y-1
Y207 — oy~ m
E ﬂw( PARMRURACES)

41 2
e v - o IF (9. XY)

de

) Yr(n,)

1
2E
)y

.
1 y-1

Y007 - Y- m

,ﬂwml"(nl)ew ¢ - oG (p, XeH

y-1 2
e v - G0, X

dw,

) Yr(n,)
= 2Y, + 2Ys,.

Taking the following bound for Y;, we have
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y-1
ew((q))

.
o YPn(r(ny))?
x ({ - 9)M2E |F7(p, X3) - Fo, XP)|"dg

¢ 1
+ 28
‘(l:[ YmT(n,)

e%““/’)(( - g)n1

YL g) ’
- We b O - oL E [F (o, XP)| do
2
p-1
P
<ukE|l—— e
'[ lﬁz”l(T(’l ))?
x ({ - 9)™n~2E |X§ - X¢'do
¢ 2
- 1 Lt 7 _
+ ZM‘:J—‘I/)ZUl(r—(fh))Z ey (- @)?m2
2 (( §0) _ Ny+n,=2
T G |¢ €=
1 Ple- 1
vl C I CRE
v1, o f
o Yoo 2,2
=kE|——le ¥ - @)2h2E
[aayy €9
2n-1
x |X§ - Xg|'dp + 2ME 4
Xy’ = Xl dp T, - )
20 M+l
l/)n1+'12r(’71)r(’72)(’71 0, - 1)
q2n, -1 ]
IPZ”Z(F(UZ)) @n, -1
1 ¥ g) ’
=kE | ——— |e ¥ (¢ - p)m2
! PHI(,))?
x E [X¢' - X¢l'do + ex(ny, 1y,

1,2
where we have used the fact that |e%5 | <lande&(n,n,)=

(2111*1
YT ()A2n - 1)

20m*ne~1
YHEL(nT(n)(ny + 0y — 1)

¢2ny -1
YHAT()Y22n, - D) [

2M E‘

In view of the continuity of the gamma function, we
have lim,, ., &(ny, n,) = 0. Then, for every £ > 0,34 > 0
such that for 0 < np, -
which indicates

1, < A, we have &(n,, n,) € (0, €/2),

y-1
< 9= ew(((ﬂ)

(- gy

I P2 (F('l ))?

x E |X¢' - X&) dgo + % when 0 <n, = n; < h.
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For Y,, using It6’s isometry technique and a analogous
bound as Y, yields

y-1
ew((«))

Y, < ZKJ’%
) ()
x (¢ - @)™ 2E |X{' - X 'do
(2:11—1
2
"M {twl(r(nl))mn1 )
_ 20 M1
w’h“?zf(rh)[‘(r’z)(rh + ’]2 - 1)
{2, -1 ’
+
W2(T(n,)22n, ~ 1)

E ~ 2
v O (¢ - gy

~ o 1
)y

2
x E |X¢ - X¢1do + &, ),

{qu—l
YH1((m))*(2n - 1)

— 2¢m*-1
YIEL(n () (g + 0, — 1)

where &(1;, n,) = ZM[

{2, -1

+ wZ”Z(F('b)V(an-l)’ Moreover, for any € > 0,34, > 0 such

that for 0<n, -
which means that

n, <A, we have &(n,n,) € (0,¢&/2),

y-1
Y, < 2 TR

I Y2 (1"(’) ))?

x (C~ g R XY - XiT'dg +

when 0 <n, - n, < A.

Mingling the bounds of ¥; and Y, and selecting A =
min{A;, 4}, then for any &> 0,31 >0 such that for
0 <n, - n, <A, we have

E X - X§°

p-1 P
< 2K(E + -9

1
1 -
){ Y(L(n))?
x (¢ - @) DTIE |X{ - X dg + &

: v-1 2 .
Using the fact that ‘e v ((“/’)‘ <1 and making use of
Lemma 2.1, we have

h_ gy M — 1)=2n-1
E [Xg - Xg| < efl + Egp1a P, I(2n, - DE™N
- 0,
as € = 0. This is the desired outcome. (]
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3.3 Carathéodory’s approximation Proof. By means of the hypothesis described in (3.3),
we have
Here, the CA for SDE is discussed in this portion. We
attempt to define Carathéodory’s approximate findings for E |1, (0)|* < 3E|yy| + 3E L
SFDEs in the same way that we did for SDEs. For each integer YHrQn,)
n 2 1, we describe u,({) = u, for { € [-1, 0] and ¢y 1 2
< T((‘(ﬂ)((_ )q1—1¢[ , [ - _]]d
1 Ie ® LR L |
1o (§) = pg + ——— 0

eV O - oG

Yhr(n,)
et

.
x _[e%' 0 - co)"l‘lf[(p, un[ﬁv - %]]dcv

0 2

i e's C-o)(( - pyn-lg [(p, ‘u“[(P ]]d(Wq,
w ' (’] ) =30, + 3U; + 3Us.

x [(0, Hn[(ﬂ - E]]d’qu, v{e (0,E] In view of Cauchy-Schwarz variant and supposition (Ay),
the component U, can be estimated as follows:
It is worth noting that u,({) can be calculated for

- ¢
{ €1[0,1/n] by Bk
U, < wqu(r(nl))z _(I:

y-1
ew(”’)

1
w,(0) = py + —1/1”11"(’)1) 2]
do

x (- @l + E ‘un[co =

¢
x Je O~ oniFio, updp

0 L K I gemt J‘ RS of
1 e PRI |21 -1 4
+ e v O - oM IG(0, u)dW,,
wlrml){ €~ 9160, ) o
X ({= @y D1+ E ‘un[co - —] do
then for ¢ € [1/n, 2/n], we have "
KEZMh Bk

=@, - DY) YER(I(n,)

1 1
;un(() = Uy ; + 1/)’711“(:11)

- 1
(e rp)’h‘lf{w, un[(ﬂ - E]]df/) ;[
-1, 2
Using the fact of |ewwl( | <1. Accordingly, with the aid of
Itd’s isometry methodology and assumption (A;), we can

b1
e v | ({-@)¥mD sup E |u,(r)]%dg.
rE[0,0]

X

3 s ey

je (SO

l/"hr('”h) approximate the stochastic integral factor as
X (o, ulo - —]ldW¢, Uis— N —(( q))
[ n . w%(r(n ))2
and henceforth. Using this method, we can evaluate u,({) 12
one by one on the intervals [0, 1/n], (1/n, 2/n],.... x (¢ = @)*m1+E ‘l‘n[ﬁo - ;] de
KkE2m-1 K

Lemma 3.1. Under the hypothesis (A;), Vn < 1, then

sup E |y, (DI*< T ¢
E[0,2] (3.24) < J

= A1 + Egy,-11(BI(2N, — DET)) < oo, 0

=@y - DY) T YR (n,)R

v-1, 0 F
e v ©P1 (- @) sup E fu, ().
11€(0,¢]

where T, and T, are defined in (3.4) and (3.5), respectively, and  Taking into account (3.4) and (3.5), then using the terms
Ean,-1,1 denotes the Mittag-Leffler function containing two Uy, Uy, and Us, we have
parameters.
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¢ 2 1
P-1 S
Elu, @< +nfler 0 - genv K= 2 )y
0 e v-1 1 2
x sup E |u,(m)|%do. x J37<f—w>((_(p)m-1¢[¢, Hn[q,__]]d@
r1€[0,9] 0 n
Observe that, for {, = {, we have 1 o)
E— e ()] m-1
G s p E gy |60 9
[lew @) @ - g)em 1 sup E fu,(m)l%dg N
0 e - (G- co)’h‘l]F[q), un[fp - ;]]dw
¢ 2
y-1 _
> [lew ©9| - )@ sup E Ju,(m)do. " R+ R
ri€[0,9]

0 By means of the Cauchy-Schwarz inequality, { - {; < 1, we

Therefore, we have provide the subsequent bounds for Ry; as

0
(- @@ sup E |u,(r)|%dg. 2
€[0,0] 1
o - XIEH“”“'*[“";]]
Utilizing the fact that |e # ¢| < 1, and considering Lemma %
2.1, we can achieve straightforwardly K

= W), - 1)

sup E |u, (1)
r1€[0,9]

¢
5‘1+;72Ie

0

E ~ 2
wzwr(n ) [e# 7| € o

v-1
lp(((/))

de

(¢ = Goy*mt

sup E |u,(r)|? r
o x [+ E fu [ﬂo - ‘] ]%
¢
| re@en -y o
<nfi-2 Ttazn, - 1) ¢ T @R
o n=l ¢2n1(r(nl))2(znl _ 1) s
< (BI2n, - 1z2m-1n y-1 2
= i (O]
rl[]_ + ‘Zl r(n(zl’h - 1) + 1) x|Since |e ¥ <1 ,

< A{l + 8gp-11(BIQ2N, - DEXRN} < 0, VI E [0, E],
1 2n,-1,1(RL (20, where O = {{l + &y, -11(RI(2n, - 1E*n"1)} has been stated
which is the desired result. O in Lemma 3.1.

. As a consequence, for Ry;, we have the aforementioned:
Lemma 3.2. Under the supposition (Ay),Vn=1 and

0 < {p<{<Ehaving (- { <1, then j‘
Rp=E———— | [ev @[ - pyn?
E |1,(0) = u,(Q)* < M = Gy, WF( )’
, : . 1), F
Proof. By the given hypothesis, we observe that = (6o = 9" F| 9, lln o - ; de
&
E 1,(0) = 1, (o)l 1 b :
‘ g, >>ZI A Lk
S Ie%“"”)(( - <0)”1‘1?[<0 u [fp - l]]fifp g
YA(T(ny) 0 o n L 0 1P
) = (G- ) ]dwj 1+E un[w - ;] dg
Q yq 1 0
_ (=9 » _ -1 _ = - QO 4o
J(;e ¥ ()L 7’[‘/% .Un[(/’ n]]d(/) __KMS %@0_@ 2 - o
. YATO))* |
1 Y0 - gyn- [ [ , l” - (§ - )
2E P J:e v ¢ - o)nTIG o, u |0 - dw, (6o — @)*m~?]de

__emE [@-gnt g
TYmE?| 2 -1 -1

y-1,
<1,

2

([] E . 1
- v @0, - fp)”l‘lg[@ un[q) - ;]]dWw
0 2
= 2R) + 2R, T 1’
For R, we have < KME (- gnt
T YM(T(n))? 2 -1

since e ¥ ©
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For R,, employing the It6 isometry strategy and assump-
tion (Ay), and equivalent analytical approaches to Ry, it can
be demonstrated that

L KME (-t
CM@n) 2y -1

Mingling all the concluding mathematical expressions
yields

2

E |1, (0) = 1, ()| < M({ = )™,
This yields the desired outcome. O
Theorem 3.4. Under the hypothesis of (A;) and (A,), assume
that there is a unique solution u({) of (2.6). Then, for n 2 1,

sup E |u({) = u,(O)I* £ Mnl2m,
¢z

Proof. Observe that
u(§) = 1, (0)

1
Yhr(ny)

.
- eV - ¢>"1‘1¢[¢, ﬂn[<0 - %]]dw

0

¢
lje”if<<‘-¢><c - o)1 (g, u(p))dp
0

.
1 |fe, )
" YTy "o[e FEE oG, u@nEW,

.
- J'ewv?l““/”(( - (p)”l‘lg[(p, #n[f/) - %]]d(w‘”
0

So, applying the well-known inequality defined in (3.3),
we have

E u(@) = u, (O

1
= BTy

.
[ o - oy, uig)do

0

= 1
- je b O - w)%*?[@, un[</> - ;]]dw

0

2

+

¢
[ @0z - oG, ueaw,
0

1
YhI(n,)

£y 1 ’
- Jev @ <p)"1‘1§[<p, un[co - ;]]d(ww
0
=2Q1 + Q).

For Q4, we have

DE GRUYTER

c

[ eox¢ - pyniF(o, utp)do
0

1
Q= 2 Ty

¢

o R (SO TR O RO
0

¢
1 y-1

+ JF———— €O - @) 1F (g, 1, (@))d

T {ew (€= @7 (9, uy(9))de

e 2

¥-1
- fev ©O¢- fp)"l‘1¢{<p, un[co - %]]dfp
0
= 2Qu + Qu).

Taking into consideration the Cauchy-Schwarz variant
and assumption (A;), we have the aforementioned inter-
pretation for Qq;:

— ¢
Kz
Qll < wqu(r(nl))z _(])—

E 3 2
e (s (P)((_ (p)2q1—2

X

E |u(9) - u,(@)l*do.

Analogously, for Qy;, we obtain

KE2h~1
<
(2, = DY*1(T(n,))®

¢
X J[—‘,

0
Furthermore, we can categorize Q, into two components
as follows:

QlZ

2
do.

1
U() - lln[fﬂ - ;J

¢
[ - oym1Gp, u(p)de

0

1
L= 2 Sy

¢
_ J‘ew!;l((-@(( - 0)h71G(o, U, (@)dW,
0

1

r
+ ZEW J'e‘”;((—(p)(( - )11G(0, 1, (9))do
1

0

e 2

¥, 1
- e - w)”l‘lg[fp, un[qo - ;]]d(wq,
0

=2Qu + Q).

Utilizing the It6’s isometry formulation, we have

1P
, b CP1 (- )M 2E |u(p) - 1, (¢)%de

L
AR

and
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vl ol

Qp < (( - @) 2E

‘

¢2 1(1( ]1)) 0

2
dq’.

1
wiw-alo -

Incorporating the assumptions for Q; and Q;, it is calculated
that

E |u(0) = 1, (DI

K(” +1) y1
= P(rn,)? | ‘ oo

x ({ - @)~ 2E lu(p) - un(co)lzdco

KE2n-1
wzﬂl(r(nl))Z(Zm -1 J (3.25)
x| uy(p) - unlco - —] do
Kk E(4’-@)
' zpzm(r(m»ZI ¢

2

x ({ - gy E do.

1
U, (@) - un[co - ;]

Utilizing Lemma 3.2, if ¢ > 1/n, then

2
< Mnl=2m,

1
Elu,(o) - #n[(ﬂ - ;]

On the other hand, if ¢ € [0, 1/n),

2

1
E |u.(9) - M[‘P - ;]
= E |u,(9) = 1,(0)]* < Mnl=2m,

From (3.25), we have
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E |u(0) = 1, (DI

KE+D ] Pl ol
= YTy ))2 3l ‘ ’
x ({ - @)™ 2E lu(@) - p,(p)|*de

KEZn1

)@, - 1)

2

¢
1
x JE (@) - un[fp - ;] do
0
¢ 2
ol -1
= ——((-9)
+———=||e?
201(T 2.[
Y)Y 4 326)
1\
x (- @)*m™%E |u () - un[w - ;] de
¢ 2
1+Z ¥l
< ;<( + )ZJ'M@(;J)
YI(T(n))
x (¢ = )M %E |u(p) - u,(p)I*dg
=2m-1 =
+ —K“;l a+ ;) 1-2m
Y*m(T(n,)
¢ 2
¥-1
=i flev © (- gy
0
E |u(p) - (@)% + 7.
In view of Lemma 2.1, we find
E @) = i, < 751 + Eana (BT = DED) )
= Mnl_zrll, .
This yields the desired outcome. O

Some remarkable results of the aforesaid findings are
as follows:

Remark 3.1. (i) Letting ¥ =1, then (1.1) reduces to the
Caputo-type FSDE (2.6), the convergent rate of the frame-
work in Theorem 3.4 corresponds to the widely recognized
convergent rate of the fractional Carathéodory’s find-
ings [35].
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(ii) Letting ¥ = n, =1, then (2.6) reduces to the SDE
(2.6), the convergent rate of the framework in Theorem 3.4
corresponds to the widely recognized convergent rate of
the Carathéodory’s findings [33].

4 Ulam-Hyers stability

Definition 4.1. Suppose there is R%-value stochastic process
{X(O}re[-w,z) 1s termed as a solution to (1.2) if it meets the
addresses criteria:

(1) {X({)} is {-continuous and §; adapted.

(i) {F(¢ X, X(), X(¢ - w)} € L([0, E] x R® x R%R?)
and {G({, X(, X({), X({ - w))} € LX[0, E] x R® x R%RY™™),
(iii) For V({ € [-w, E],

X($)
1 g y-1
ST IQT(( “O({ - )yn1
7%
Fo, X(9), X(9 - w))dp

1
Yhr(n,)
- w)dW(p), (€ T,
(), { € [-w,0],

where E(J"_ [IX(Q)|Pdg) < e.
(iv) For every other solution

PX(0) = X({), (€ [-w,E]} = 1.

o, +

) @.1)
je%“ O - )16 (0, X(0), X(9
0

+

X, find

we

Definition 4.2. Assume that system (1.2) is U-Hs if 3 a real
number A > 0 such that Ve > 0 and for every differentiable

mapping Y(¢) € ([0, £], RY):

E| sup ||I°DFYQ) - TG, Y(©), Y - @)
el X 4.2)
d
- GEYO. G- )T ) <
and 3 a solution X({) € ([0, E], R?) of (1.2) satisfying
E| sup ||[Y() - X(O||?| < e 4.3
(€[0,E]

Remark 4.1. Suppose there is a mapping Y({) € ([0, Z], R®)
is a solution of (4.2) if and only if 3 a mapping A({) €
([0, E], R®) such that

DE GRUYTER
(@ EGuplAQlEepz) < &,
i) “OFYY() = 7, Y, Y( - )
+ G(0,Y(0), Y(C - ) g + h(O)

(By) (Lipschitz assumption) For every 7, G € R?, there is a
fixed M > 0 such that VX;, X,, ¥, , € R?, { € [0, E],

”T((: Xls Yl) - 7:(() XZ) YZ)”

V”g((: Xl) Yl) - g((? XZ’ YZ)”
< L% = Xoll + I1Ya - Yll),

(4.4)

where ¥ and G are uniformly continuous mappings and v
signifies as X; v Xy = max{Xj, Xp}.

(Bz)  (Non-Lipschitz  condition)
A, Uy, Uy) [0, +0) x RT x RY = RY
VX, X5, ¥, Y, € R? and ¢ € [0, E]

17, X1, Yo) = F(, X, B)II?

V”g((’ Xl: Yl) - g((: XZ) YZ)”Z
< AG X - X (1% 1% - % 119,

A mapping
such that (a)

(4.5)

where ¥ and G are continuous and bounded mappings.
Also, A({, U1, Uy) is monotone, increasingly continuous,
and concave mapping having A({, 0,0) = 0, { > 0.

(b) For each { € R* and every positive mapping Y({)
such that

¢
Y(O) < mu[ Ao, Y(9))do, 46)
0

where m; >0 is a constant and A(p, Y(), Y(9)) =
Ao, Y(¢)), we have Y({) = 0.
(B3)3 three mappings a@({), b({), and §({) such that

A, Uy, Up) < a(Q) + b(OUL + QU Uy, Uy > 0,

]

acg)dg < e,

ot—t
© by 11

B <, [qar <. @D
0

In order to find the solution X({), { € [0, Z] of system
(1.2) is U-Hs and investigate the stability of the findings of
FSDEs (1.2) considering Lipchitz and non-Lipschitz
assumptions.

Theorem 4.1. Under assumption (By) and 12M?E*h=1/2
< (4ny = )Y2Y!(T(n,))?, then the GPF-SDE (12) is U-Hs
at [0, Z].

Proof. By means of Definition 4.1 and Remark 4.1, we write
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XQ)=thy * G )Jew o) X(0) - Y({) = w'lr( 5] 50 - gyt
x ({ = @)" ' (9, X(), X(9p - w))dg x (F(o, X(co), X(p - w))
¢
1 p-1 - Fo, Y((ﬂ), Y(¢ - w))de
=07 - pyn-1 4.8)
' VR Oe “’ Y Yl¢-9) m-
xG(o, X«o) X(9 - )W, wmq) eV gy
* G ;e o= onnione, 0 X0 Xo -0

- G(o, Y(co) Y(p - w))dW,

In view of Definition 4.1 and utilizing (4.8), we have

wmrm) ew“ 2~ gy (p)do.

Making use of Jensen’s variant, we find

sup IIX(C) - Y(()Ilzy

(G[
( 2
)
WE sup. [e v 0 - oy (70, X(9), X(g - ) - F(o, ¥(g), Y(p — 0))do
1 0
3 £ vt 2
T [e 70 - o169, X(0), X9 - ) - 6(0, Y(9), ¥( -~ )W,
1 €[0,2 0
{ 2
3 1.
gy, || Je v e oo
s 0
Employing the Hélder inequality and assumption (B,),
one can find
lpth(r(nl))z S I el ¢ 9)m-2dg | x Ejum, X(9), X(p - ) = F(p, ¥(9), ¥(p - w)|*dg
= 0

 ME ) - Y K - ) - ¥ -
@y - DY)ty por ’ ’ ’

4.9)

6M 2522m -1
< Gn = DPIT)) I(Enxw) - Y(@)II? + ElIX(p - w) - Y(p - 0)|dp
1 1

= R J(EIIX(¢) Y(@)l|)dg + B I(Euxap—w)—Y(qo—w)uZ)dqo,

b1 2
where we have gsed the fact that ’87:

and 7 = Mt
57 (any - DY)

<1

Now, utilizing the It6 isometry and the Hélder
inequality, we find
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p-1
je 5 E0E - )G9, X(9), X(p - @) - G(p, Y(p), Y(p — @)AW,

e (& - o) (G0, X(9), X(9 - W) - G(9, Y(9), Y(p - w))

DE GRUYTER

2

2

; .
2= et
wzm(r(n )? {
1/2
m ] ooy
X(9), X(p - w)) = G(9, Y(9), Y( — w)||*dW,)!/2
352111—3/2

= an, - 3)TI(I(n,)

= T_hEZ”l_Ble

2
<1 and

v-1,
where we have used the fact that ‘eT‘

_ 3
B = Gn =3 iy G0, X(9), X(9 - w)) -

G(0,Y(0), Y(p - w))||* is a continuous mapping on [0, E],
making use of mean value theorem for integrals
3y € [0, Z] such that

Since

[16(0, X(0), X0 - w))
0

- G(0,Y(9), Y(¢ - 0))||*de (4.10)
= B, X(P), XU - w))
-G, YP), YU - o)l

Under assumption (B;) and Jensen’s inequality, we find

T2 < HEMIZE|G (Y, X(2), X( - w))
-GG, YF), YU - w)|? @i
< 2MPREMTUHENX() - YE)II? + EIXG -
- Y@ - w)ld.

Thus, applying the Cauchy-Schwarz variant and Remark
4.1 to produce

E(( -9) ’
T3 ———E ey
wzwr(nlnz

i

¢
Inh(qo)ncho

sup
{€[0,Z]

x (( = @)m~dg

(4.12)
3521

= @, - DEI(,)?
322m-1
< &
(2ny = DY n(T(ny))*
= ]7752’718,

jE( sup @)

E IIIQ((/), X(9), X(9 - w)) = G(9, Y(9), Y(p — w)||*dW,)""?
0

[16(0. X(0), X(p - ) - G0, ¥(p), ¥(p - )| dW2
0

here = 3
WRere 17 = o ()

It follows that

E| sup IIX(C) - Y(()IIZ]

{€[0,5]
< REmt IE(MX«») - Y(@)l15dg + [E(IX(0 - )
0 0
- (g - w)|P)dg) + 2MREE|X()
- YOI + EIXG - 0) - Y( - 0)l|% + rene
< mEt [ sup Xy - Yw)lYde
o (viEloe]
+ fsEZ’h‘le sup [IX(v; - w) = Y(v; - w)|1*|de
0 v1€[0,0]

+ ZMzr_Bsznl_l/ZE sup ||X()71) - Y()jl)”Z

1 €[0y]

+ 2MPIREMTVZE sup [IX(Y; - w) - YO, - w)l|?

J1€[0.5]

+ ]7'732’118_

In contrast to the methodology of interacting with the
delay [50,51], we acquire

UE) = E] sup |IX(0) - Y(()||2],

(€[0,E]

also,

sup [IX({) - Y(()||2] =0

(€[-w,0]

and then we attain
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El sup [IX(¢ - @) = Y(¢ - 0| = Ua(p - w).

V1€[0,0]

So that

UYE) £ 775;52'71_1[‘[112((/))(1(/’ + I(Uz((l’ - w)de
0 0

+ 2MIEI VA UG + Uy(J, - w))) + HEMe,

Define a set U4(E) = supwe[_w’a]‘uz(zzf), then Uy(p) < Uy (p)
and Uy - w) < Uy(¢ — w). Therefore,

UE) < 255071 [Uy(p)dp + AMTEM L) + FEMe.
0

For w € [0. Z], we find

o
Uiw) < 5™ [ U)o + AMPRw ™ UU(F)
0
+ Fw?he

w
<2727 [U(p)p + AMIREI () + T
0

Therefore, we find

UE)= sup Uxw)
TE[-w,E]
<maxj sup Uyw), sup Uy w)
we[-w,0] we[0,E]

w
< 20807 [44i(p)dp + AMPRENILU(E) + e,
0

E

sup [|X({) - Y(C)Ilzy
celo gl
.

E| sup

3
< —
wznl(r(’h))z {€10,2]

0

¢

3
sup

+—> _F
YT reroz 0

r
3 Y l-g)
+ ————F| su e v "¢ - o)1 1n(p)d
Y21(T(n,))? (e[o?s] { i’ S
=H, + Hy + H3.

Attempting to take variant (4.9) and supposition (B;)
into consideration,

¥-1
[e 5 €0 - oy (70, X(9), X0 - w)) - (o, Y(9), Y(p - w)))dp

P-1
[e v ¢ - oG9, X(0), X9 - ) - 6(0, Y(9), (9 - w))dAW,

Analysis of a generalized proportional FSDE =~ === 17

Thus,

27E2m-1
1 - AMZRE2M=1/2

7E2he

U(E) < 1= apMrEenie

[uipydp +
0

According to Lemma 2.1, we find

FE2he [

27552
1 - 4MPEem112 '

UE) = 1= AMREn12

Clearly, we see that

E| sup [IX(0) - Y(()||2’
{€[0,5]
f752”18 27‘552:71
T 1= AMPREITIZT - AMPRERIZ |
i REM, 2REMM
FlnaHY’ for every € g 0’ 31= 1—4/ZZFG;"1-1/28[1—4Mr;f632f71-1/2]
such that
E| sup [IX({) - Y(OII?| < eA.
(€[0,E]
As a result, this theorem is established. O

Theorem 4.2. Under the supposition (B;) and (Bs)
satisfy,  BMEMVZ < (4n, - VAYIN(I())’, M =
max{sup(E[OJE]E (€), sup;eqo,5d(¢)}, and3 a constantJ fulfilling
(3(4n, = 3)Y2E2m +3(2n, - DEXV2(2n, - 1)(4n, - )V 2p*n
T - 6(2n, - 1)M52"1‘1/23up56[0’51) <7Je, 1 €(0.751).
The GPF-FSDE is U-Hs at [0, E].

Proof. By means of the variant 4.9, we find

2

2

2
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3g2m-1 (
[0, (92, X(p - w))
0

< E
20, - DY?m(T(ny))*

H

- Fo, Y(9), Y(p - w))||*dyp

< REmn [EAGp, [1X(p) - Y@)II% [X(p - )
0

- Y(p - w)||Hdo,
3

where i3 = [RSTEIeR

Combining (4.10)—(4.12) and assumption (B;), we find

H, < R PEG(F, X(), XU - w))
- G0, YP), YU - w)ll?
< REMTIZEAQY, IX(P) - YODII% IX(G - w)
-Y§ - w)l?).

It is simple to achieve employing supposition (Bs), we find

Hy + I < &2 [EAGp, [X(9) - Y@)IF, [X( - )
0

- Y(p - w)|P)dg + iEm 2 [EAG, X))
0
- YOI IXG - 0) - YG - 0)ll?)
< et [E(a(p) + B(o)IX(p) - Y()]|2
0

+ 4(@)NIX(p - w) - Y(p - w)[Hde
+ RETZE@®y) + bOHIXQG) - YO)II?
+qMIXQ - w) - YOG - w)lI®)

< (RE2m + RpEX~12) sup a(e)
9el0.2]

+ RMEN [(EIX(p) - Y(p)]12 + ElIX(0 - w)
0
- Y(p - w)|P)de + RE*V2AE|X(Y) - YOI
+EIXF - w) - YF - w)|).
Utilizing the variant (4.12), we have
H; < 7_”752’718.

Then,

DE GRUYTER

E| sup [|X({) - Y(()IF’
(€[0,E]
< (REM + REMU2) sup a(e)
9€E[0,E]

sup [IX(v1) - Y(upl?|de
v1€[0,9]

+ @Maznl-le
0

¥ fg/\?tszﬂrlIE
0

sup [X(v1 - w) - Y(vy - w)||?
v1€[0,0]

do

+ EME-12E,

sup ||X(vz) - Y(vz)||2’ + i MEZ-U2E

v2€[0,5]
x [ sup [IX(v; - w) - Y(v; - w)||?
v2€[0,9]
+ 77752'718.

Define a set Ux(E) = E(sup,epozlIX(0) - Y(¢ I and
E(sup;e(-q,ol1X({) = Y(O)||* = 0, we can find

E| sup [|X(v; - w) - Y(v; - )]|?

(€[0,8]

= U - w).

Evidently, we can draw the conclusion that

Uy(E) < FME

Jukpdp + [0 - widg
0 0

+ RMEVAUAF) + Uy(F - w))

+ (REM + REMMYZ) sup a(g) + HEMe.
9€[0,2]

Choosing Uy (E) = SUPe[—q zU2Aw), then Uyp) < Uy (o)
and Uy — w) < U(p). Therefore,

UE) < MEN [ U()dp + 2MENTU(F)
0
+ (REMM + REXMY2) sup a(p) + HEMhe.
»€E[0,E]

For every w € [0, ], we attain that

o
Uiw) < M [Ui(p)dp + RMEU()
0

+ (Bw?h + fw?h~12) sup a(p) + Hw?he
9e0,m]

< WMET [Uy(p)dg + 2mMENU(F)
0

-

+ (REMM + REXMYZ) sup a(p) + HEMe.
9€[0,2]
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Furthermore, we have

U E)= sup Uyw)
WE[-w,E]
<max] sup Uyw), sup Uy w)
wE[-,0] @e[0,E]

< 2 ME _[ U(p)dg + 2MTEPN 124y (E)
0
+ (REM + REPMYZ) sup a(p) + HEMhe.
9el0,2]
Also,

2MREM
1 - AMREM12

x [Up)dp +
0

U(E) <

REZM + FpE2m-1/2
1- 2MREim-12

FE2me

X sup d((p) + W

9€[0,E]
According to Lemma 2.1, we find

RE2ZM + FpEZm-1/2

B R TE

sup a(e)

9el0g]
2M =2
1 - AMREI12 |

FE2he

+ =
1 - 2MREM 12

Clearly, we see that

sup [IX(¢) - Y(()Ilzy

(e[o o

RRE2M + FpE2m-1/2

1- 2hmame S, @

€[0,E]

FE2nhe
" 1= ampE

2MTRE2M

1 - AMRpEM12
FE2hg 2MRpEMm 1

< |17+ —~ € = )

1 - 2MREMYZ 77| 1 - 4MFEM 12

752
Finally, for every e>0, 31 = [J + #ﬁ;uz]
2MrgEtm
& HM;W such that
E| sup [IX({) - Y({)II?| < eA.
C€[0,E]
As a result, this theorem is established. O

Analysis of a generalized proportional FSDE == 19

5 Examples

In this section, we will present illustrative examples for the
previous findings.

Example 5.1. Assume the U-Hs and E-U of the result to the
subsequent equation:

can ¥ 1 : 2

Dy X)) = 5 sinX({) + — cosX(( - W)

rane)
By 0s’X({) +

N 49
i
where n, = 0.8, % =1, and ¢ € [0, 8]. Since the mappings ¥
and G are uniformly continuous.

X(Z (5.1)

Now, we have
F( X(0), X(¢ - w))

= %sz(() + icosX(( W),

5.2
G X, XC - ) o2
- I coexy + 22X - )

Thus, we have
17(¢, X($), X(¢ - w)) = F(¢, Y(0), Y(¢ - w))l
H —sinX({) + — cosX(( W) - 15 sinY({)

23 cosY(( w)H

2
EIIX(C) ~ YOI + 55 lIX(¢ - ) = Y = w)|

IA

< %(IIX(C) ~ YOIl + I1X({ - w) = Y(¢ -~ w)D).

Analogously, we have
16(¢, X(D), X(¢ - w)) = G({, Y({), Y((- w)l
e X - 0)

———1lcosX({) - cosY({)|| + ;15
- Y((‘ )|l
< %(IIX(O - YOIl + IIX(C - @) - Y({ - o)),

F X)), X((-w) and G((,X((), X(( - w)) fulfills
assumption (By), 3Y5E2h7IM = 315 x 2 x 506 x (2/23)% =
9/10 < (i, - 0.75)°3(T(n,))* = +/0.05T%0.75) = 3/10 and
12M2E27112 = 12(2/23)2 X511 = 27/50 < (4, - 3)*TX(y,) =
J0.2T%0.8) = 3/5. As a consequence of Remark 4.1 and
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Figure 1: X(0) = 1, h = £'/2, E(Sup;elo,sﬂlh(()llz) = E(SUP(e[o,s]HSUZHZ)
=0.001.

Theorem 4.1, we discovered that equation (5.1) has only one
solution, i.e., U-H stable.

Finally, we will perform a graphical illustration to
ensure that the finding of (5.2) is U-H stable, as shown in
Figure 1.

Example 5.2. Assume that U-H stability of the subsequent
FSDEs having time delays

YK = KO + X - w)

(5.3)
1 g .
+ EX(( ) + T sin

1 ]dw@)
X(¢-w)] d¢ ’

where n, = 0.83, { € [0,2], n 212, F({, X({), X({ - w)) =
1/nX({) + EX({ - w), and G(¢, X({), X({ - w)) = 1/n?*X({)
+ £2/4sin1/X({ - w) are the measurable continuous map-
pings, £ is an arbitrary number and £ € (0, 1/4+/2).

Now, we have

7S, X(0), X(¢ - w)) = F(L, Y(O), Y - w)?
+ 16(8, X(), X(¢ - w)) - G({, Y(), Y(C - w)I?

2

1 3 1 3
= ;X(()+ﬁX((—w)—;Y(()—ﬁY((—w)
1 g 1 1 g2 1P
ROy T O T T

4
< £ SIXQO - YOI+ BIXC- @) - YE - o))
- A IXQ) - YOI IXG - @) - ¥¢ - )l

evidently, A ({, [IX({) = YOI IX( - w) - Y({ - w)||?) is
increasing, continuous and concave mapping and M =

90

—X(¢)
—Y(Q)
Error
70 - 1

80

60 [ a

Figure 2: X(0) = 3, 1 = £/2/2, E(sup;¢;o g1({)I) = E(sup;epq glle/*/2]")
=0.007.

max{ sup b({), sup §({)} = max(4/n%&¥ = 1/25,

C€[0,E] ¢€[0,E]
6MEZ~05 = 25/50 < (4n, — 3)°5(T(n,))* = 57/100. For arbi-
trary constant &, it is noted that A({, 0, 0) = 0. For every
€ > 0, there exists J = 0.2¢ > 0 such that (3(4n, - 3)*5&2n +
3(2n, - DEMTO3(2n, - DA, - D(T(n)* - 62n - 1)
ME#05), Thus, the sup,eoza(() < (0.26)¢ = Je. That
accomplishes all of Theorem 4.2 settings. As a result, we
can say that framework (5.3) is U-Hs on [0, 2].

Finally, we will perform a graphical illustration to

ensure that the finding of (5.3) is U-Hs, as shown in
Figure 2.

6 Conclusion

Carathéodory’s approximation has helped approximate the
fractional derivatives, ensuring that the resulting FSDEs are
mathematically well posed. It has provided a framework for
analyzing the stability and uniqueness of solutions, which is
crucial for understanding the fluid’s behavior under various
conditions, especially in Lagrangian stochastic models of
fluid particles.

Figuring out the descriptive characteristics of DEs is
one of the most vital aspects of differential equation
theory. Integral equations are valuable techniques for
investigating such features. In this study, we first identified
the well-posedness for generalized proportional FSDEs
using various approximate techniques, and the restrictions
implanted on the global E-U of the findings are coherent
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with the Caputo FSDEs and traditional SDEs. Then, we
glanced at the continuity of findings with reverence for
the fractional-order of such formulae, especially if the pro-
portional index ¥ and fractional-order ), were noticeable.
When 1, and ¢ tend to 1, the solution of generalized pro-
portional FSDEs reduces to the Caputo-type FSDE and the
conventional SDEs solution. Besides that, we contemplate
Carathéodory’s approximate solution for GPF-SDEs as an
extension task for SDEs. Moreover, various generalizations
are employed to demonstrate the U-H stability of the GPF-
SDEs with time delays. Ultimately, we reveal two examples
to validate the envisaged method. Our forthcoming
research will concentrate on investigating the U-H stability
of multiple kinds of FDEs with weaker assumptions and the
requirements discovered will be applicable to a broader
spectrum of GPF-SDEs including an invariant manifold and
an invariant measure. By ensuring the existence, unique-
ness and stability of solutions, Carathéodory’s approxima-
tion makes it feasible to apply these advanced mathematical
tools to real-world fluid dynamics problems, leading to
deeper insights and more accurate predictions for future
research.
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