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Abstract: Fractional stochastic differential equations (FSDEs)
with fractional derivatives describe the anomalous diffusion
processes by incorporating the memory effects and spatial
heterogeneities of the porous medium. The stochastic compo-
nent addresses the random nature of the fluid flow due to the
variability in pore sizes and connectivity. The first objective
of this research is to prove the well-posedness of a class of
generalized proportional FSDEs, and we acquire the global
existence and uniqueness of findings under certain settings
that are coherent with the classic SDEs. The secondary pur-
pose is to evaluate the continuity of findings in fractional-
order formulations. The Carathéodory approximation is
taken into account for a class of generalized proportional
FSDEs, which is pivotal and provides well-known bounds on
the norm of the solutions. Carathéodory’s approximation
aids in approximating the FSDEs governing turbulent flows,
ensuring the solutions are mathematically robust and phy-
sically meaningful. As is widely documented, the existence
and uniqueness of solutions to certain types of differential
equations can be formed under Lipschitz and linear growth
conditions. Furthermore, a class of generalized proportional
FSDEs with time delays is considered according to certain
new requirements. With the aid of well-known inequalities
and Itô isometry technique, the Ulam–Hyers stability of the
analyzed framework is addressed utilizing Lipschitz and
non-Lipschitz characteristics, respectively. Additionally, we
provide two illustrative examples as applications to demon-
strate the authenticity of our interpretations. The demon-
strated outcomes will generalize some previously published
findings. Finally, this deviation from fractional Brownian
motion necessitates a model that can capture the subdiffu-
sive or superdiffusive behavior.

Keywords: generalized proportional fractional operators,
stochastic generalized proportional fractional differential
equations, Itô isometry formula, Carathéodry’s approxima-
tion, subdiffusive or superdiffusive behavior

1 Introduction

Fractional calculus is very pertinent in meaningful mani-
festations due to certain similar characteristics, including
memory. Numerous sorts of kernels are used in fractional
formulations [1,2]. Kochubei [3] investigated a very particular
form of kernel known as a general fractional integral/deriva-
tive. Luchko [4] examined such generally designed integrals
and derivatives in adequate functional spaces within the
structure of applied mathematics. Luchko also probed the
quantifiable attributes of multiple sorts of differential equa-
tions (DEs) solutions with broad sense fractional derivatives
[5–7]. Several researchers have examined the stability and
performance of fractional DEs (FDEs) [8,9]. For a framework
to be reliable in the context of Lyapunov, its generalized
vitality is not required to decay exponentially, and previously,
the Mittag–Leffler (M–L) strength and the fractional Lya-
punov communicative approach for multiple kinds of FDEs
were initiated [10,11].

Recently, FDEs have grown in importance in both the-
oretical and practical aspects, attracting a considerable amount
of interest from academics [12–14]. Numerous researchers con-
centrate on aspects of stochastic DEs (SDEs) including solution
existence and uniqueness (E-U), continuous reliance of strate-
gies on initialization and complex behavior [15–18]. Moreover,
no scholars are interested in the continuity of findings on the
fractional scaling factor of this type of formula; specifically,
none of them are curious about the interaction between the
alternatives of classical SDEs and the fractional ones. In this
work, we continued our investigation of the proportional frac-
tional derivatives and integrals revealed in the study by Jarad
et al. [19], which was guided by the previously mentioned
investigations. We show how fractional integral operators
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affect differential operators, and vice versa. Furthermore, this
research examined this intriguing topic of SDEs and revealed
the connection among them. If the fractional order and pro-
portional index of the generalized proportional fractional
(GPF) derivative converge to one, the findings of GPF SDEs
reduces to the solutions of Caputo fractional SDEs and classic
SDEs, respectively.

FDEs are an essential mechanism in many disciplines
of scientific domains because of their non-local feature of
GPF derivatives in time [20,21]. The kernel impact or non-
local feature is represented by a convolution integral with
an exponential function memory kernel that also gives the
GPF-DEs a greater capability in dynamic structures; this is
among the primary strengths of FDEs (non-local) in corre-
lation with traditional (local) configurations [22–24]. The
analysis of revolutionary calculus and FDEs is becoming
increasingly popular (see [25–27], as well as the reference
materials therein). In fluid physics, stochastic FDEs incor-
porating Carathéodory’s approximation offer a sophisti-
cated framework for modeling complex phenomena such
as turbulence, anomalous diffusion, viscoelastic fluid beha-
vior, and particle dynamics. By ensuring the existence, unique-
ness, and stability of solutions, Carathéodory’s approximation
makes it feasible to apply these advanced mathematical tools
to real-world fluid dynamics problems, leading to deeper
insights and more accurate predictions. Moreover, stochastic
FDEs tracking the movement of individual fluid particles (the
Lagrangian approach) provide insights into mixing, disper-
sion, and turbulence. The random motion of particles is influ-
enced by both the deterministic flow field and stochastic
environmental factors for Lagrangian stochastic models of
fluid particles.

However, because noisy perturbations are prevalent
in complicated processes, stochastic modeling has played
a significant role in a variety of research and industry.
Plenty of efforts on SDEs or SPDEs have been made, with
numerous scientific preferences having similar properties
such as well-posedness, continuity, variability, transformed
manifolds, and irreducible measure. Conga et al. [28] inves-
tigated the existence of reliable configurations for a parti-
cular class of stochastic differential equations. Xu et al.
[29] presented the approximation concept for SDEs via the
Caputo fractional derivative. Wang et al. [30] contem-
plated the asymptotic dynamics of stochastic lattice fra-
meworks involving Caputo fractional time derivatives.
Doan et al. [31] expounded a spatial and temporal weighted
norm that is employed to evaluate the asymptotic distance
between two distinguishable strategies. It is interesting to
note that Doan et al. [32] founded the Euler–Maruyama form
estimation outcome for Caputo FSDEs. Carahéodory initially
regarded the Carathéodory approximate solution framework

for ordinary DEs, and then Bell, Mohammad, andMao length-
ened it to include the specific instances of SDEs [33]. Wang
et al. [34] examined the continuity, and Guo et al. [35] applied
Carathéodory’s approximation for a Caputo-type FSDES.

In a presentation at Wisconsin University in 1940,
Ulam suggested the reliability of systems of equations
[36]. In 1941, Hyers [37] became the best person to respond
to the inquiry. The Ulam–Hyers stability (U–Hs) was cre-
ated as a result. In the meantime, an expanding number of
individuals have been eager to look into the U–Hs. The
characteristics of canonical and generalized M-L functions,
as well as the U–Hs of sequential FDEs, had been demon-
strated using fractional calculus and the Laplace transform
technique in the study by Wang and Li [38]. Researchers
examined the U–Hs, generalized U–Hs, U–H–Rassias stability,
and U–H–Rassias stability of impulsive integrodifferential
formulations incorporating Riemann–Liouville boundary
assumptions in the study by Zada et al. [39]. For further
investigation on U–Hs, we refer the readers to previous
studies [40–42] and references cited therein.

To the highest potential of our expertise, no research
has been conducted that focuses on the continuity of the
findings of the GPF-SDEs in respect of fractional order, if it
tends to the solution of the Caputo FSDEs and classical
SDEs when the η

1
and ψ tend to 1, respectively. We begin

by considering the well-posedness of generalized propor-
tional FSDEs on the Banach space, employing various
approximate techniques, and then, we deduce the global
E-U of findings under certain settings that are coherent
with classical SDEs. More specifically, we will analyze the
well-posedness and continuity of the solutions of GPF-SDEs
with the aid of the Carathéodory approximation listed in
the following:
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Motivated by the aforesaid proclivity, in this work, we will
investigate the existence and U–Hs of time-delayed gener-
alized proportional FSDEs:
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where ( ]∈ ∕η 1 2, 1
1

, d d d� � �� [ ] × × ↦: 0, Ξ , and
d d d� � �� [ ] × × ↦ ×: 0, Ξ m are the measurable contin-

uous mappings. Also, there is an m1-dimensional
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Brownian motion �( )ζ defined on a complete probability
space F{ }PΨ, , and a continuous mapping ( ) [ ]−ζ ωΦ : , 0

�↦ d having ‖ ( )‖ < ∞ζE Φ ,2 where E is the mathematical
expectation.

In comparison with the previous scientific studies
[34,35], the significant achievements of this article encom-
pass at least three components:
• In this article, we only examine the scenario of ( )∈ ∕η 1 2, 1

1

and use it to investigate the well-posedness and continuity
with respect to the generalized proportional FSDEs. The
asymptotic behavior of solutions is then taken into account.

• The methodologies we utilize to determine the E-U of
generalized proportional FSDE solutions are quite revo-
lutionary than those of previous studies [34, 35]. Krasnosels-
kii’s and Mönch’s fixed-point hypothesis were employed
in previous studies [29, 30] to investigate the E-U. However,
we use Carathéodory’s approximation in this article to
examine the E-U.

• Several previous studies [43,44] have employed a stronger
Lipschitz assumption in the investigation of multiple stabi-
lities, E-U of FSDEs. Even so, in this article, we discussed the
U-Hs of GPF-SDEs viaweak non-Lipschitz assumptions. This
is a significant step forward in the investigation of the
stability of GPF-SDEs.

This work is structured as follows. In Section 2, we will
present certain fundamental assumptions and outcomes.
Section 3 will go over the well-posedness and continuity
of GPF-SDE using the Itô isometry and well-known inequal-
ities. A novel way the Carathéodory approximation is
adopted to find the E-U of the generalized proportional
FSDEs. Section 4 is dedicated to demonstrating the stability
outcomes for generalized proportional FSDEs with time
delays. Section 5 provides the illustrations to validate the
implementation of our research results.

2 Preliminaries

This portion outlines several terminologies, interpreta-
tions, and key formulas that will be employed throughout
the remainder of the article. The viewer can refer to the
article [19] for its explanation and verification.

Abdeljawad [45] and Khalil et al. [46] provided the
following limit form description of the well-known con-
formable derivative:
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It is self-evident that when a mapping � is differentiable,
its conformable derivative interprets

� � �( ) ( )= ′−ζ ζ ζ .η η1
1 1 (2.2)

The major disadvantage of this derivative is that the
mapping � is not achieved when =η 0

1
or ↦η 0,

1
i.e.,

� � �≠ .0 Anderson et al. [47] categorized the reconfigured
conformable derivative to address this issue and take
advantage of the proportional derivative for process vari-
ables with two confinement specifications.

Definition 2.1. [47] For ( ]∈ψ 0, 1 and assume that there are
two continuous mappings �[ ] [ )× ↦ ∞κ κ, : 0, 1 0,0 1 such
that �∀ ∈ζ , we have
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and ( ) ( ) ( ]≠ ≠ ∈k ψ ζ κ ψ ζ ψ, 0, , 0, 0, 1 .1 0 Then, the propor-
tional derivative of order ψ is stated as

� � � �( ) ( ) ( ) ( ) ( )= + ′ζ κ ψ ζ ζ κ ψ ζ ζ, , .ψ
1 0 (2.3)

We recommend the viewer refer to previous studies
[47,48] for more information on the control theory of the
proportional derivative and its constituent mappings κ0

and κ .1 We will confine ourselves to the particular instance
where ( ) = −κ ψ ζ ψ, 11 and ( ) =κ ψ ζ ψ, .0 Consequently,
(2.3) reduces to

� � � �( ) ( ) ( ) ( )= − + ′ζ ψ ζ ψ ζ1 .ψ (2.4)

It is simple to understand that � � �( ) ( )=↦ + ζ ζlimψ
ψ

0 and
� � �( ) ( )= ′↦ − ζ ζlim .ψ

ψ
1 And hence, the derivative (2.4) is

thought to be quite comprehensive compared to the con-
formable derivative, which clearly does not approach the
intended mappings in the same way thatψ approaches to 0.

The integral and derivative of the GPF are described in
the following.

Definition 2.2. [19] For ( ]∈ ∈ ∁ψ η0, 1 ,
1

, and R( ) >η 0,
1

then there is a GPF integral of order η
1
, which is stated as
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Definition 2.3. [19] For ( ]∈ ∈ ∁ψ η0, 1 ,
1

, and R( ) ≥η 0,
1

then there is a GPF derivative of order η
1
, which is stated as
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Definition 2.4. [19] Let ( ]∈ψ 0, 1 . Then, the fractional
operator
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is the left-sided GPF derivative of the function � in the
context of Caputo of order η

1
, where n [ ]= +η 1

1
.

By letting =ψ 1 in Definitions 2.3 and 2.4, then we
obtain the left Riemann–Liouville (R-L) and Caputo frac-
tional derivatives. Furthermore, it is noticeable that
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Furthermore, we implement the respective approaches to
ensure the solution’s global E-U. Assume that Δ signifies the
Hilbert space and ‖ ‖. represents its norm. For the pur-
poses of clarity, we will suppose that the functions ( )k ζι

have the identical upper estimate k1 for =ι 1, 2.

(A1): Lipschitz condition:∀ ≥ ∃ζ 0, a bounded mapping
( )k ζ1 such that ∀ ∈μ ν Δ,
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To cope with FDEs, we require the following generalized
Gronwall’s lemma for exponential function-type kernel
(see [49]) as follows:

Lemma 2.1. For ( ]> ∈η ψ0, 0, 1
1

and suppose that there
are two non-negative locally integrable mappings defined
on [ ]0, Ξ and ( )b ζ¯ is a positive, increasing, and continuous
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where ( )Γ . is the Euler-Gamma function.

3 Main results

In this section, we will present the well-posedness and the
continuity of the solution of (1.1).

3.1 Well-posedness

First, we surmise the E-U of mild solutions for the subse-
quent equation using the aforementioned hypotheses ( )A1

and ( )A :2
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where �ζ denotes the Brownian evolution and � and �

are Δ-valued mappings.

Definition 3.1. Suppose there is an Δ-valued Fζ -adapted sto-
chastic technique [ ]∈ζX , 0, Ξζ is termed as the mild solu-
tions of the initial value problem (2.6), if ([ ]∈ ∁X 0, Ξ ;ζ

� ( ))Δ℧,2 and fulfills the subsequent integral formulation:
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Theorem 3.1. Under the suppositions ( )A1 and ( )A ,2 for
each � ( )∈μ Δ℧, ,

0

2 then (3.1) has only one mild solution
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Proof. The proof of the theorem will be classified into three
cases.

Case I: Here, we intend to consider the simplistic form
of arithmetic variant
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We have
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In view of Cauchy–Schwarz inequality and assumption
( )A2 , utilizing them for � ,2 we have
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For � ,3 utilizing the Itô’s symmetry technique and assump-
tion ( )A ,2 we have
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¯ 1 ¯ Γ 2 1 Ξ , 0, Ξ ,

ζ

ζ

ζ φ η

η

η
η

2

1

0
1

2 1

1

2 1 1

1

1

2 1

2 1

1

1 2 1,1 2 1

2 1

ψ

ψ

1

1

1

1

1

where � ( )− .η2 1,1
1

represents the Mittag–Leffler function of
two parametric form [10,11]. Thus, we have

∣ ∣
[ ]

< ∞
∈

E Xsup ,

ζ

ζ

0,Ξ

2

which predicts � �([ ] ( ))∈ ∞ ΔX 0, Ξ , ℧; .ζ
2

Case II. In this case, we will illustrate that
� �([ ] ( ))∈ ∞ ΔX 0, Ξ , ℧;ζ

2 ,

�

�

� �

� �

∣ ∣

( ( ))

( ) ( )

( ) ( )

( ( ))
( ) ( )

( ) ( )

( )

( )

( )

( )

( )

∫

∫

∫

∫

−

≤

× −

− −

+ −

− −

≔ +

−
− −

−
− −

− −

−
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−

ψ η

e ζ φ φ φ

e ζ φ φ φ

ψ η
e ζ φ φ

e ζ φ φ

E X X

E

X

X

E X

X

2
1

Γ

, d

, d

2
1

Γ
, d

, d

2 Θ Θ .

ζ ζ

η

ζ
ψ

ψ
ζ φ η

φ

ζ
ψ

ψ
ζ φ η

φ

η

ζ

ζ φ η
φ φ

ζ
ψ

ψ
ζ φ η

φ φ

2

2

1

2

0

1

1

0

1

0
1

2

2

1

2

0

1

0

1

0
1

2

1 2

ψ

ψ

0

1

1

0

0
1

1

1

1

0

0
1

(3.6)

Furthermore, we intend to prove that Θ1 and Θ2 are
bounded for every provided ε, whenever the factors of ζ0

are close to ζ . In general, suppose that < ≤ <ζ ζ0 Ξ0 and
the case for < ≤ <ζ ζ0 Ξ0 is analogous.

For Θ ,1 we obtain

�

�

( ( ))

( ) ( )

( ( ))
[( )

( ) ] ( )

( )

( )

∫

∫

≤

× −

+ −

− −

≔ +

−
− −

− −

−

−

ψ η

e ζ φ φ φ

ψ η
e ζ φ

ζ φ φ φ

E

X

E

X

Θ 2
1

Γ

, d

2
1

Γ

, d

2Θ 2Θ .

η

ζ

ζ
ψ

ψ
ζ φ η

φ

η

ζ

ζ φ η

η
φ

1 2

1

2

1

1

2

2

1

2

0

1

0
1

2

11 12

ψ

ψ

1

0

1

1

0

1

0 1

1

(3.7)
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Again, using the fact of the Cauchy–Schwarz inequality, we
provide a bound to Θ11 as follows:

�

	

( ( ))
( )

∣ ( )∣

( ( )) ( )
( )

[ ∣ ∣ ]

( ( )) ( )
( )

( )∫

∫

∫

⎟⎜

≤ −

×

≤
−

−

× +

≤
−

−

×
⎛

⎝
<
⎞

⎠

⎛
⎝ − ⎞

⎠ −

−

⎛
⎝

⎞
⎠

−

−

ψ η
e ζ φ φ

φ

κ

ψ η η
ζ ζ

φ

κ

ψ η η
ζ ζ

e

E X

E X

Θ
1

Γ
d

,

Γ 2 1

1 d

Γ 2 1

since 1 .

η

ζ

ζ

ζ φ η

ζ

ζ

φ

η

η

ζ

ζ

φ

η

η

ζ

11 2

1

2

2
2 2

2

2

1

2

1

0
2 1

2

2

1

2

1

0
2

2

ψ

ψ

ψ

ψ

1

0

1

1

0

1

1

0

1

1

1

(3.8)

It is not challenging to illustrate that ∃λ1 such that
∀ < − <ζ ζ λ0 ,0 1 we have <Θ

ε

11 8
. For Θ ,12 as a result, we

have the foregoing:

�

	

	

	

( ( ))
[( )

( ) ] ( )

( ( ))
[( )

( ) ] [ ∣ ∣ ]

( ( ))
[( ) ( ) ]

( ( ))

( )

( ( ))

( )

( )

( ( ))

∫

∫

∫

∫
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− −

≤ −

− − +

≤ − − −

=
⎧
⎨
⎩

−
−

+
−

−
−

⎫
⎬
⎭

≤
−

−

− −

−

−
− −

−

− −
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−

−

ψ η
e ζ φ

ζ φ φ φ

κ

ψ η
e ζ φ

ζ φ φ φ

κ

ψ η
ζ φ ζ φ φ

κ

ψ η

ζ ζ

η

ζ

η

ζ

η

κ

ψ η

ζ ζ

η

E

X
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Θ
1

Γ

, d

Γ

d 1 d

Ξ

Γ
d

Ξ

Γ 2 1 2 1 2 1

Ξ

Γ 2 1
,

η

ζ

ζ φ η

η
φ

η

ζ
ψ

ψ
ζ φ η

η

ζ

φ

η

ζ

η η

η

η η η

η

η

12 2

1

2

0

1

0
1

2

1

2

1

2

0

1
2

1

0
1 2

0

2

1

2

1

2

0

2 2
0

2 2 2

1

2

1

2

0
2 1

1

0

2 1

1

2 1

1

1

2

1

2

0
2 1

1

ψ

ψ

1

0

1

0 1

1

1

0

0
1

1

0

1

0

1 1

1

1
1

1

1

1

(3.9)

using the fact that <
−

e 1,
ζ

2ψ

ψ

1

0 and observe that
−

−
ζ

η2 1

η

0

2 1 1

1

− ≤−

−
0.

ζ

η2 1

η2 1 1

1

Choosing appropriately λ ,2 given that

[ ]∈ζ 0, Ξ and < − <ζ ζ λ0 ,0 2 we can obtain the bound
< ∕εΘ 8.12 For Θ ,2 employing Itô’s isometry technique, it

makes a bound that is equivalent to Θ1. So, we intend to
demonstrate that ∃ >λ 03 such that for [ ]∈ζ 0, Ξ and
< − <ζ ζ λ0 ,0 3 we express as

	

( ( ))

( )
≤

−
−

<
−κ

ψ η

ζ ζ

η

ε
Θ

Γ 2 1 4
.

η

η

2 2

1

2

0
2 1

1
1

1

(3.10)

As a result of the foregoing analysis forΘ1 andΘ ,2 choosing
{ }= =λ λ ιmin , 1, 2, 3ι and incorporating all of the previous

assumptions yields the result, for all [ ]∈ζ 0, Ξ and
< − <ζ ζ λ0 0

∣ ( ) ( )∣⇒ − <ζ ζ εE X X .0
2

Case III. Here, we employ the Banach f
p
hypothesis, and

we will demonstrate that (2.6) has only one result in
�([ ] ( ))∁ ∀ < ∞Δ0, Ξ ; ℧, Ξ .2 Now, introducing the functional

( )Φ . on �([ ] ( ))∁ Δ0, Ξ ; ℧,2 as follows:

�

� �

( )( )

( )
( ) ( )

( )
( ) ( )

( )

( )

∫

∫

= + −

+ −

− −

− −

−

−

ζ

μ
ψ η

e ζ φ φ φ

ψ η
e ζ φ φ

X

X

X

Φ

1

Γ
, d

1

Γ
, d .

η

ζ

ζ φ η
φ

η

ζ

ζ φ η
φ φ

0

1
0

1

1
0

1

ψ

ψ

ψ

ψ

1

1

1

1

1

1

(3.11)

Cases I and II demonstrate that the function ( )ϕ . from
�([ ] ( ))∁ Δ0, Ξ ; ℧,2 to �([ ] ( ))∁ Δ0, Ξ ; ℧,2 is well defined.-

furthermore, the Banach fixed point theorem will then
be utilized to demonstrate the E-U of solutions for all

[ )∈ ∞ζ 0, . For �([ ] ( ))∈ ∁ ΔX Y, 0, Ξ ; ℧,ζ ζ
2 having =μ ν ,

0 0

the norm of �([ ] ( ))∁ Δ0, Ξ ; ℧,2 is defined by

� �∣ ( )∣ ∣ ( )∣
[ ]

= < ∞
∈

ζ ζEsup .

ζ

ϱ

0,Ξ

2

(3.12)

Therefore,

�

�

�

� �

∣( )( ) ( )( )∣

( )
( ) [ ( )

( )]

( )
( ) [ ( )

( )]

( )

( )

∫

∫

−

≤ −

−

≤ −

−

−
− −

−
− −

ζ ζ

ψ η
e ζ φ φ

φ φ

ψ η
e ζ φ φ

φ

E X Y

E X

Y

E X

Y

Φ Φ

2
1

Γ
,

, d

2
1

Γ
,

, d

.

η

ζ
ψ

ψ
ζ φ η

φ

φ

η

ζ
ψ

ψ
ζ φ η

φ

φ φ

2

1
0

1

1

2

1
0

1

1

2

1

1

1

1

(3.13)

Choosing = − >η η2 1 0,
2 1

making use of Cauchy–Schwarz
variant, and Itô’s isometry technique, then we have

∣( )( ) ( )( )∣

( )

( ( ))
( ) ∣ ∣∫

−

≤
+

− − −

ζ ζ

κ

ψ η
ζ φ η φ

E X Y

E X Y

Φ Φ

2 1 Ξ

Γ
1 d ,

η

ζ

φ φ

2

2

1

2

0

2

2

1

(3.14)

using the fact that <
−

e 1
ζ

2

ψ

ψ

1

and we assert that
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n

n n

n n

n

∣( )( ) ( )( )∣

( ( ))

( )

( )

( ( ))
∣ ∣⎜ ⎟

−

≤
⎛
⎝

+ ⎞
⎠

−

ζ ζ

η

η η

κ η

ψ η
ζ

E X Y

X Y

Φ Φ

Γ

Γ

2 Γ 1

Γ
.

η

η
ζ ζ

2

2
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1

2

1

2 ϱ
1

2

(3.15)

For n = 1, we obtain

∣( )( ) ( )( )∣
( )

( ( ))
∣ ∣− ≤

+
−ζ ζ

ζ

η

κ η

ψ η
E X Y X YΦ Φ

2 Γ 1

Γ
.

η

η ζ ζ
2

2

1

2

1

2 ϱ

2

1

(3.16)

If we make the assumption that (3.15) is true for n ℓ= , we
can conclude that it is indeed valid for n ℓ= + 1,

∣( )( ) ( )( )∣

( )

( ( ))
( )

∣( )( ) ( )( )∣

( )

( ( ))
( )

( ( ))

(ℓ )
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∣ ∣
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∣ ∣
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ℓ ℓ
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⎜
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≤
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≤
+

−
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⎠

−
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+ ⎞
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−
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Φ Φ
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Γ
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ψ
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(3.17)

Using the fact that <
−

e 1
ζ

2
ψ

ψ

1

and to obtain our assertion

for n ℓ= + 1, we simply have to evaluate the aforemen-

tioned integral ( ) ℓ∫ − −ζ φ φ φd .
ζ

η η

0

1
2 2 Utilizing the supposi-

tion =φ ζν, then

( )

( )

( )

( ) (ℓ )

((ℓ ) )

ℓ

ℓ ℓ

(ℓ ) ℓ
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+
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−
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η
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1
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2

(3.18)

Merging the aforesaid identity with (3.17), then we have
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(3.19)

Then, for all n, we come to the respective approximation:

n

n n

n n n
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∣ ∣⎜ ⎟
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⎛
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−
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ϱ
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2 (3.20)

Now, simply to demonstrate the respective evidence to
apply the Banach fixed point theorem and deduce the E-U
of solutions, for this, we have

n
n

n n n( )

( ( ))

( ( ))

( )
⎜ ⎟
⎛
⎝
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⎠
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Γ
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Then, all that remains is to demonstrate
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Γ
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2

Moreover, employing the D’Alembert discriminant tech-
nique, we simply have to prove the foregoing:

n

n

n

n

n
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After simplification,

n
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η
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2

It is worth noting that when ↦ ∞μ , the correlation
between the Gamma function and the Stirling approxima-
tion generates the following:
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( ) ( )≈ − −μ π μ μΓ 2 exp .μ 0.5

Therefore,
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For sufficiently large n, then
n

n

n n
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κ κ
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η

η η

Γ

Γ

Γ Ξ

Γη

η

1
1

2
2

2 2

this

indicates that ( )Φ . is a contraction mapping on
�([ ] ( ))∁ ∀ < ∞Δ0, Ξ ; ℧, , Ξ2 . The confirmation is now com-

plete. □

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 satis-
fies. Then, for each [ )∈ ∞Ξ 0, , ∃ a constant 	 ( )η ψ; , Ξ

1

such that

	∣ ∣ ( ) ∣ ∣
[ ]

− ≤ −
∈

η ψ μ νE X Y Esup ; , Ξ ,

ζ

ζ ζ

0,Ξ

2

1 0 0
2

(3.21)

where μ
0
and ν0 are the ICs for Xζ and Y ,ζ respectively.

Proof. Considering inequality (3.3) and implementing on
the following expression:
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1 2 3

1
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1

Adopting the same technique of Theorem 3.1 and Lemma
2.1, we can establish the proof. Therefore, we omitted the
details. □

3.2 Continuity via GPF

Here, we contemplate the continuity of the system of (1.1)
on the GPF order for SDEs, i.e., when ↦η η ,

1 2
the correla-

tion exists between the following:

� � �

�

( ) ( )

( )
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⎧

⎨
⎪

⎩
⎪

= + ≥

∈ ∕
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t ζ t ζ
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μ Δ

D X X X

X

, d , d , 0,

1 2, 1 ,

℧, ,
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η ψ

ζ ζ ζ ζ

;

1

0 0

2

1

(3.22)

and

� � �

�
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⎧

⎨
⎪

⎩
⎪

= + ≥

∈ ∕
= ∈

t ζ t ζ

η

μ Δ

D X X X

X

, d , d , 0,

1 2, 1 ,

℧, .

ζ

η ψ

ζ ζ ζ ζ

;

2

0 0

2

2

(3.23)

Specifically, letting =η 1,
2

then we explore a correlation of
findings between the FSDEe and the classical SDE. For this,
we have the following important consequence.

Theorem 3.3. Under the hypothesis ( )A1 and ( )A ,2 then the
solution of (3.22) tends to the solution of (3.23) in the context
of �([ ] ( ))∁ Δ0, Ξ ; ℧, ,2 when ↦η η ,

1 2
for < ≤ ≤η η0.5 1.

1 2

Proof. By means of inequality (3.3), we have

�

�

�

� �

∣ ∣

( )
( ) ( )

( )
( ) ( )

( ( )) ( )
( ) ( )

( )
( ) ( )

( )

( )

( )

( )

∫

∫

−

≤
⎧
⎨
⎩

−

− −
⎫
⎬
⎭

+
⎧
⎨
⎩

−

− −
⎫
⎬
⎭

≔ +

− −

−
− −

− −

−
− −

−

−

ψ η
e ζ φ φ

ψ η
e ζ φ φ φ

ψ η ψ η
e ζ φ φ

ψ η
e ζ φ φ

E X Y

E X

X

E X

X

2
1

Γ
,

1

Γ
, d

2
1

Γ

1

Γ
,

1

Γ
, d

2ϒ 2ϒ .

ζ

η

ζ

η

ζ

η

ζ φ η
φ

η

η

ψ

ψ
ζ φ η

φ

η

η

ζ

η

ζ φ η
φ

η

η

ψ

ψ
ζ φ η

φ

η

φ

2

0
1

1

2

1

1

2

2

1

2

0
1

1

2

1

1

2

1 2

ψ

ψ

ψ

ψ

1 2

1

1

1
1

2

2
2

1 1

1

1
1

2

2
2

Taking the following bound for ϒ ,1 we have
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( )

( )
( ) ∣ ( )∣

( ( ))
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( ( ))
( )

( ) ( )
( )

( ( ))
( )

( ( ))
( )

∣ ∣
( ( )) ( )

( ) ( )( )

( ( )) ( )

( ( ))
( )

∣ ∣ ( )

( )

( )
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( )

( )

( )
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( )

( )
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∫

∫

∫

∫

∫

≤

× − −
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⎧
⎨
⎩

−

− −
⎫
⎬
⎭

≤

× − −

+
⎧
⎨
⎩

−

− −

+ −
⎫
⎬
⎭

= −

× − +
⎧
⎨
⎩ −

−
+ −

+
−

−
⎫
⎬
⎭

≕ −

× − +

−
−

−

− −

−
− −

−
−

−

−
− −

+

−
− + −

−
− −

−
− −

−

+ −

+

−
− −

−

ψ η
e

ζ φ φ φ φ

ψ η
e ζ φ

ψ η
e ζ φ φ φ

κ
ψ η

e

ζ φ φ

ψ η
e ζ φ

ψ η η
e ζ φ

ψ η
e ζ φ φ

κ
ψ η

e ζ φ

φ
ζ

ψ η η

ζ

ψ η η η η

ζ η

ψ η η

κ
ψ η

e ζ φ

φ ε η η

E X X

E X

E X X

E

X X

E X X

ϒ 2Ξ
1

Γ

, , d

2Ξ
1

Γ

1

Γ
, d

2 Ξ
1

Γ

d

2 Ξ
1

Γ

2

Γ Γ

1

Γ
d

2 Ξ
1

Γ

d 2 Ξ
Γ 2 1

2

Γ Γ 1

2 1

Γ 2 1

2 Ξ
1

Γ

d , ,

ζ

η

ψ

ψ
ζ φ

η
φ

η

φ

η

ζ

η

ζ φ η

η

ψ

ψ
ζ φ η

φ

η

ζ

η

ψ

ψ
ζ φ

η
φ

η

φ

η

ζ

η

ψ

ψ
ζ φ η

η η

ψ

ψ
ζ φ η η

η

ψ

ψ
ζ φ η

ζ

η

ψ

ψ
ζ φ η

φ

η

φ

η
η

η

η η

η η

η

ζ

η

ψ

ψ
ζ φ η

φ

η

φ

η

1

0

2

1

2

1
2

2 2
2

0
1

1

2

1

1

2

2

0

2

1

2

1
2

2 2
2

0

2

1

2

1
2

2 2

1 2

1
2

2

2

2

2

1
2

2 2

0

2

1

2

1
2

2 2

2
2 1

2

1

2

1

1

1 2 1 2

2

2

2

2

2

0

2

1

2

1
2

2 2

2

1 1 2

ψ

ψ

1

1
1 2

1

1

1

2

2
2

1

1
1 2

1

1

1 2

1 2

2

2

1

1

1 2

1

1

1 2

1 2

2

1

1

1 2

where we have used the fact that ∣ ∣ <
−

e 1
ζ

2ψ

ψ

1

and ( )ε η η,1 1 2
=

	
( ( )) ( )

⎧
⎨
⎩ −

−
2 Ξ

ζ

ψ η ηΓ 2 1

η

η

2 1 1

2 1
1

2
1

( ) ( )( )
− + −

+ −

+
ζ

ψ η η η η

2

Γ Γ 1

η η

η η

1 2 1

1 2
1 2 1 2

+
( ( )) ( )

⎫
⎬
⎭

−
−

ζ η

ψ η η

2 1

Γ 2 1η

2

2 2
2

2
2

.

In view of the continuity of the gamma function, we
have ( ) ↦↦ ε η ηlim , 0.η η 1 1 21 2

Then, for every > ∃ >ε λ0, 01

such that for < − <η η λ0 ,
2 1 1 we have ( ) ( )∈ ∕ε η η ε, 0, 2 ,1 1 2

which indicates

( ( ))
( )

∣ ∣

( )∫≤ −

× − + < − <

−
− −κ

ψ η
e ζ φ

φ
ε

η η λE X X

ϒ 2 Ξ
1

Γ

d
2
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ζ

η

ψ

ψ
ζ φ η

φ

η

φ

η

1

0

2

1

2

1
2

2 2

2

2 1 1

1

1

1 2

For ϒ2, using Itô’s isometry technique and a analogous
bound as ϒ1, yields
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( ) ( )( )

( ( )) ( )

( ( ))
( )

∣ ∣ ( )

( )

( )

∫

∫

≤

× − −

+
⎧
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−
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−
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⎫
⎬
⎭
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−
−

−

−
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+

−
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κ
ψ η

e

ζ φ φ

ζ

ψ η η

ζ

ψ η η η η

ζ η

ψ η η

κ
ψ η

e ζ φ

φ ε η η

E X X

E X X

ϒ 2
1

Γ

d

2
Γ 2 1

2

Γ Γ 1

2 1

Γ 2 1

2
1

Γ

d , ,

ζ

η

ψ

ψ
ζ φ

η
φ

η

φ

η

η

η

η η

η η

η

ζ

η

ψ

ψ
ζ φ η

φ

η

φ

η

2

0

2

1

2

1
2

2 2
2

2 1

2

1

2

1

1

1 2 1 2

2

2

2

2

2

0

2

1

2

1
2

2 2

2

2 1 2

1

1
1 2

1

1

1 2

1 2

2

1

1

1 2

where ( )ε η η,2 1 2
= 	

( ( )) ( )

⎧
⎨
⎩ −

−
2

ζ

ψ η ηΓ 2 1

η

η

2 1 1

2 1
1

2
1

−
( ) ( )( )+ −

+ −

+
ζ

ψ η η η η

2

Γ Γ 1

η η

η η

1 2 1

1 2
1 2 1 2

+
( ( )) ( )

⎫
⎬
⎭

−
−

ζ η

ψ η η

2 1

Γ 2 1η

2

2 2
2

2
2

. Moreover, for any > ∃ >ε λ0, 02 such

that for < − <η η λ0 ,
2 1 2 we have ( ) ( )∈ ∕ε η η ε, 0, 2 ,2 1 2

which means that

( ( ))

( ) ∣ ∣

( )∫≤

× − − +

< − <

−
−

−

κ
ψ η

e

ζ φ φ
ε

η η λ

E X X

ϒ 2
1

Γ

d
2

,

when 0 .

ζ

η

ψ

ψ
ζ φ

η
φ

η

φ

η

2

0

2

1

2

1
2

2 2
2

2 1 2

1

1
1 2

Mingling the bounds of ϒ1 and ϒ2 and selecting =λ

{ }λ λmin , ,1 2 then for any > ∃ >ε λ0, 0 such that for
< − <η η λ0 ,

2 1
we have

∣ ∣

( )
( ( ))

( ) ∣ ∣

( )

( )

∫

−

≤ +

× − − +

−
−

− −

κ
ψ η

e

ζ φ φ ε

E X X

E X X

2 Ξ 1
1

Γ

d .

φ

η

φ

η

ζ

η

ψ

ψ
ζ φ

η
φ

η

φ

η

2

0

2

1

2

1
2

2 1 1
2

1 2

1

1
1 2

Using the fact that ( ) <−−
e 1

ζ φ
2ψ

ψ

1

and making use of
Lemma 2.1, we have

�∣ ∣
( )

( ( ))
( ) ⎟⎜ ⎜ ⎟− ≤

⎛

⎝
+

⎛
⎝

+
−

⎞
⎠
⎞

⎠

↦

−
−ε

κ

ψ η
ηE X X 1

Ξ 1

Γ
Γ 2 1 Ξ

0,

φ

η

φ

η

η η

η
2

2 1,1 2

1

2 1

2 11 2

1
1

1

as ↦ε 0. This is the desired outcome. □
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3.3 Carathéodory’s approximation

Here, the CA for SDE is discussed in this portion. We
attempt to define Carathéodory’s approximate findings for
SFDEs in the same way that we did for SDEs. For each integer
n ≥ 1, we describe n( ) =μ ζ μ

0
for [ ]∈ −ζ 1, 0 and

n

n

n

n

n

�

�

�

( )
( )

( )

( )
( )

( ]

( )

( )

∫

∫

= +

× − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

+ −

× ⎛⎝
⎛
⎝ − ⎞

⎠
⎞
⎠ ∀ ∈

− −

− −

−

−

μ ζ μ
ψ η

e ζ φ φ μ φ φ

ψ η
e ζ φ

φ μ φ ζ

1

Γ

,
1

d

1

Γ

,
1

d , 0, Ξ .

η

ζ

ζ φ η

η

ζ

ζ φ η

φ

0

1

0

1

1
0

1

ψ

ψ

ψ

ψ

1

1

1

1

1

1

It is worth noting that n( )μ ζ can be calculated for
n[ ]∈ ∕ζ 0, 1 by

n

�

� �

( )
( )

( ) ( )

( )
( ) ( )

( )

( )

∫

∫

= +

× −

+ −

− −

− −

−

−

μ ζ μ
ψ η

e ζ φ φ μ φ

ψ η
e ζ φ φ μ

1

Γ

, d

1

Γ
, d ,

η

ζ

ζ φ η

η

ζ

ζ φ η
φ

0

1

0

1

0

1
0

1

0

ψ

ψ

ψ

ψ

1

1

1

1

1

1

then for n n[ ]∈ ∕ ∕ζ 1 , 2 , we have

n

n

n

n

n

n

n

n

�

�

�

( )
( )

( )

( )
( )

( )

( )

∫

∫

= ⎛
⎝
⎞
⎠ +

× − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

+ −

× ⎛⎝
⎛
⎝ − ⎞

⎠
⎞
⎠

− −

− −

−

−

μ ζ μ
ψ η

e ζ φ φ μ φ φ

ψ η
e ζ φ

φ μ φ

1 1

Γ

,
1

d

1

Γ

,
1

d ,

η

ζ

ζ φ η

η

ζ

ζ φ η

φ

0

1

1

1

1 1

1

ψ

ψ

ψ

ψ

1

1

1

1

1

1

and henceforth. Using this method, we can evaluate n( )μ ζ

one by one on the intervals n n n[ ] ( ]∕ ∕ ∕0, 1 , 1 , 2 ,… .

Lemma 3.1. Under the hypothesis n( ) ∀ ≤A , 1,2 then

n

�

∣ ( )∣

( ( ( ) ))

[ ]

≤

≔ + − < ∞
∈

−
−

μ ζ

r r η

Esup ℧

¯ 1 ¯ Γ 2 1 Ξ ,

ζ

η
η

0,Ξ

2

1 2 1,1 2 1

2 1

1

1

(3.24)

where r̄1 and r̄2 are defined in (3.4) and (3.5), respectively, and
� −η2 1,1

1
denotes the Mittag–Leffler function containing two

parameters.

Proof. By means of the hypothesis described in (3.3),
we have

n

n

n

n

n

�

�

�

∣ ( )∣ ∣ ∣
( )

( )

( )
( )

( )

( )

∫

∫
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η

ζ

ζ φ η

φ

2

0
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0

1

1

2

1
0
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2

1 2 3

ψ

ψ

1

1

1

1

1

In view of Cauchy–Schwarz variant and supposition ( )A2 ,
the component U2 can be estimated as follows:

n

n

n

n
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1
1

d

Ξ
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1

2
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2

2
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2

2

1
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1
2
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1
2

1

1

1

1

1

1
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1

1

Using the fact of ∣ ∣ <
−

e 1.
ζ

2ψ

ψ

1

Accordingly, with the aid of
Itô’s isometry methodology and assumption ( )A ,2 we can
approximate the stochastic integral factor as

nn

n

( ( ))

( )

( ) ( ( )) ( ( ))
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( )
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∫
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1

d

Ξ
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η
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ψ

ψ
ζ φ

η

η

η η
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ψ

ψ
ζ φ η
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1
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1
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2 2

1

2

0

1
2

2 1

0,

1
2

1
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1
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1

1

Taking into account (3.4) and (3.5), then using the terms
U U,1 2, and U ,3 we have
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Observe that, for ≥ζ ζ ,2 we have

n
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Therefore, we have
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Utilizing the fact that ∣ ∣ <
−

e 1,
ζ

ψ

ψ

1

and considering Lemma
2.1, we can achieve straightforwardly

n

n
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n
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n

n
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which is the desired result. □

Lemma 3.2. Under the supposition n( ) ∀ ≥A , 12 and
≤ < ≤ζ ζ0 Ξ0 having − ≤ζ ζ 1,0 then

n n 	∣ ( ) ( )∣ ( )− ≤ − −μ ζ μ ζ ζ ζE .η
0

2
0

2 1
1

Proof. By the given hypothesis, we observe that
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φ

0
2

2

1

2

0

1

0

1

0
1

2

2

1

2

0

1

0

1

0
1

2

1 2

ψ

ψ

ψ

ψ

1

1

1

0

0
1

1

1

1

0

0
1

For 
1, we have

n

n

n

n




�

�


 


( ( ))

( )

( ( ))
[( )

( ) ]

( )

( )

∫

∫

≤

× − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

+ −

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

≕ +

−
− −

− −

−

−

ψ η

e ζ φ φ μ φ φ

ψ η
e ζ φ

ζ φ φ μ φ φ

E

E

2
1

Γ

,
1

d

2
1

Γ

,
1

d

2 2 .

η

ζ
ψ

ψ
ζ φ η

η

ζ

ζ φ η

η

1 2

1

2

0

1

1

2

2

1

2

0

1

0
1

2

11 12

ψ

ψ

1

1

1

0
1

0 1

1

By means of the Cauchy–Schwarz inequality, − ≤ζ ζ 1,0 we
provide the subsequent bounds for 
11 as

n

n

n

n




�

( ( ))
( )

( ( )) ( )
( )

( )

( ( )) ( )
( )

( )

( )

∫

∫

∫

≤ −

× ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

≤
−

−

×
⎧
⎨
⎩
+ ⎛

⎝ − ⎞
⎠
⎫
⎬
⎭

≤
+

−
−

×
⎛

⎝
⎜ <

⎞

⎠
⎟

−
− −

−

−

−
−

ψ η
e ζ φ φ

φ μ φ φ

κ

ψ η η
ζ ζ

μ φ φ

κ

ψ η η
ζ ζ

e

E

E

1

Γ
d

,
1

d

Γ 2 1

1
1

d

℧ 1

Γ 2 1
,

Since 1 ,

η

ζ
ψ

ψ
ζ φ η

ζ

ζ

η

η

ζ

ζ

η

η

ψ

ψ
ζ ζ

11 2

1

2

0

1
2

2 2

2

2

1

2

1

0
2 1

2

2

1

2

1

0
2 1

1
2

1

1

0

1

1

0

1

1

0

where �{ ( ) }( )= + −−
−r r η℧ ¯ 1 ¯ Γ 2 1 Ξη

η
1 2 1,1 2 1

2 1

1

1 has been stated
in Lemma 3.1.

As a consequence, for 
 ,12 we have the aforementioned:

n

n

n

n




�

	

	

	

( ( ))
[( )

( ) ]

( ( ))
[( )

( ) ]

( ( ))
[( )

( ) ]

( ( ))

( )

( ( ))

( )

( )

( )

( )

∫

∫

∫

∫

⎟

= −

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

≤ −

− −
⎧
⎨
⎩
+ ⎛

⎝ − ⎞
⎠
⎫
⎬
⎭

≤ −

− −

≤
⎧
⎨
⎩

−
−

+
−

−
−

⎫
⎬
⎭
⎛

⎝
⎜ <

⎞

⎠
⎟

≤
−

−

− −

−

−
− −

−

−
− −

−

− −

− −

−

−

ψ η
e ζ φ

ζ φ φ μ φ φ

ψ η
e ζ φ

ζ φ φ μ φ φ

κ

ψ η
e ζ φ

ζ φ φ

κ

ψ η

ζ ζ

η

ζ

η

ζ

η
e

κ

ψ η

ζ ζ

η

E

E

E

1

Γ

,
1

d

1

Γ

d 1
1

d

Ξ

Γ

d

Ξ

Γ 2 1 2 1

2 1
since 1 ,

Ξ

Γ 2 1
.

η

ζ

ζ φ η

η

η

ζ
ψ

ψ
ζ φ η

η

ζ

η

ζ
ψ

ψ
ζ φ η

η

η

η η

η ψ

ψ
ζ

η

η

12 2

1

2

0

1

0
1

2

2

1

2

0

1 2

1

0
1

0

2

2

1

2

0

1 2

2 2

0
2 2

2

1

2

0
2 1

1

0

2 1

1

2 1

1

1 2

2

1

2

0
2 1

1

ψ

ψ

1

0
1

0 1

1

1

0

0
1

1

0

1

0

0
1

1

1

1
1

1
0

1

1
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For 
 ,2 employing the Itô isometry strategy and assump-
tion ( )A ,2 and equivalent analytical approaches to 
1, it can
be demonstrated that



	

( ( ))

( )
≤

−
−

−κ

ψ η

ζ ζ

η

Ξ

Γ 2 1
.

η

η

2 2

1

2

0
2 1

1
1

1

Mingling all the concluding mathematical expressions
yields

n n 	∣ ( ) ( )∣ ( )− ≤ − −μ ζ μ ζ ζ ζE .η
0

2
0

2 1
1

This yields the desired outcome. □

Theorem 3.4. Under the hypothesis of ( )A1 and ( )A ,2 assume
that there is a unique solution ( )μ ζ of (2.6). Then, for n ≥ 1,

nn 	∣ ( ) ( )∣
[ ]

− ≤
∈

−μ ζ μ ζEsup .

ζ

η

0,Ξ

2 1 2
1

Proof. Observe that

n

n

n

n

n

�

�

� �

� �

( ) ( )

( )
( ) ( ( ))

( )

( )
( ) ( ( ))

( )

( )

( )

( )

( )

∫

∫

∫

∫

−

=
⎧
⎨
⎩

−

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

⎫
⎬
⎭

+
⎧
⎨
⎩

−

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

⎫
⎬
⎭

− −

− −

− −

− −

−

−

−

−

μ ζ μ ζ

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ φ

ψ η
e ζ φ φ μ φ

e ζ φ φ μ φ

1

Γ
, d

,
1

d

1

Γ
, d

,
1

d .

η

ζ

ζ φ η

ζ

ζ φ η

η

ζ

ζ φ η
φ

ζ

ζ φ η
φ

1
0

1

0

1

1
0

1

0

1

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

1

1

1

1

1

1

1

1

1

1

So, applying the well-known inequality defined in (3.3),
we have

n

n

n

n

n

�

�

� �

� �

� �

∣ ( ) ( )∣

( ( ))
( ) ( ( ))

( )

( )
( ) ( ( ))

( )

( )

( )

( )

( )

( )

∫

∫

∫

∫

−

≤ −

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

+ −

− − ⎛
⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

≕ +

− −

−
− −

− −

−
− −

−

−

μ ζ μ ζ

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ φ

ψ η
e ζ φ φ μ φ

e ζ φ φ μ φ

E

E2
1

Γ
, d

,
1

d

1

Γ
, d

,
1

d

2 .

η

ζ

ζ φ η

ζ
ψ

ψ
ζ φ η

η

ζ

ζ φ η
φ

ζ
ψ

ψ
ζ φ η

φ

2

2

1

2

0

1

0

1

1

2

1
0

1

0

1

1

2

1 2

ψ

ψ

ψ

ψ

1

1

1

1

1

1

1

1

For � ,1 we have

n

n

n

n

� �

�

�

�
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( ( ))
( ) ( ( ))

( ) ( ( ))

( ( ))
( ) ( ( ))
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∫
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⎝

⎛
⎝ − ⎞

⎠
⎞
⎠

≕ +
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− −
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−
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−

−

−

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ φ

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ φ

E

E

2
1

Γ
, d

, d

2
1

Γ
, d

,
1

d

2 .

η

ζ

ζ φ η

ζ

ζ φ η

η

ζ

ζ φ η

ζ
ψ

ψ
ζ φ η

1 2

1

2

0

1

0

1

2

1

2

0

1

0

1

1

2
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ψ

ψ

ψ

ψ

ψ

ψ
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1

1

1

1

1

1

1

1

Taking into consideration the Cauchy–Schwarz variant
and assumption ( )A ,2 we have the aforementioned inter-
pretation for � 11:

n

�
( ( ))

( ) ∣ ( ) ( )∣
( )

∫≤

× − −
−

− −

κ

ψ η

e ζ φ μ φ μ φ φE

Ξ

Γ

d .

η

ζ

ψ

ψ
ζ φ η

11 2

1

2

0

1

2 2

2

2

1

1

Analogously, for � ,12 we obtain

nn n

�
( ) ( ( ))

( )∫

≤
−

× − ⎛
⎝ − ⎞

⎠

−κ

η ψ η

μ φ μ φ φE

Ξ

2 1 Γ

1
d .

η

η

ζ

12

2 1

1

2

1

2

0

2

1

1

Furthermore, we can categorize �2 into two components
as follows:

n

n

n

n

� �

� �

�

� �
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( ( ))
( ) ( ( ))

( ) ( ( ))

( ( ))
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( )
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( )
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∫

∫

∫

∫

≤ −

− −
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⎛
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⎠
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− −
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−
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−

−

−

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ

ψ η
e ζ φ φ μ φ φ

e ζ φ φ μ φ

E

E

2
1

Γ
, d

, d

2
1

Γ
, d

,
1

d
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η

ζ

ζ φ η

ζ

ζ φ η
φ

η

ζ

ζ φ η

ζ
ψ

ψ
ζ φ η

φ
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1

2

0

1

0

1

2

1

2

0

1
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1

1

2
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ψ

ψ
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ψ
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1
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1

1

Utilizing the Itô’s isometry formulation, we have

n�
( ( ))

( ) ∣ ( ) ( )∣
( )∫≤ − −

−
− −κ

ψ η
e ζ φ μ φ μ φ φE

Γ
d

η

ζ
ψ

ψ
ζ φ η

21 2

1

2

0

1
2

2 2 2

1

1
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12  Sobia Sultana



nn n
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( ( ))

( )

( )

( )∫≤ −

− ⎛
⎝ − ⎞

⎠

−
− −κ

ψ η
e ζ φ

μ φ μ φ φ

E
Γ

1
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η

ζ
ψ

ψ
ζ φ η

22 2

1

2

0

1
2

2 2

2

1

1

Incorporating the assumptions for � 1 and �2, it is calculated
that

n

n

n

n

n n

n n

∣ ( ) ( )∣

( )

( ( ))

( ) ∣ ( ) ( )∣

( ( )) ( )

( )

( ( ))

( ) ( )

( )

( )

∫

∫

∫

−

≤
+

× − −

+
−

× − ⎛
⎝ − ⎞

⎠

+

× − − ⎛
⎝ − ⎞

⎠

−
−

−

−

−
−

−

μ ζ μ ζ

κ

ψ η
e

ζ φ μ φ μ φ φ

κ

ψ η η

μ φ μ φ φ

κ

ψ η
e

ζ φ μ φ μ φ φ

E

E

E

E

Ξ 1

Γ

d

Ξ

Γ 2 1

1
d

Γ

1
d .

η

ζ
ψ

ψ
ζ φ

η

η

η

ζ

η

ζ
ψ

ψ
ζ φ

η

2

2

1

2

0

1
2

2 2 2

2 1

2

1

2

1
0

2

2

1

2

0

1
2

2 2

2

1

1

1

1

1

1

(3.25)

Utilizing Lemma 3.2, if n≥ ∕φ 1 , then

n
nn n 	( ) − ⎛

⎝ − ⎞
⎠ ≤ −μ φ μ φE

1
,η

2

1 2
1

On the other hand, if n[ )∈ ∕φ 0, 1 ,

n

n

n n

n n 	

( )

∣ ( ) ( )∣

− ⎛
⎝ − ⎞

⎠
= − ≤ −

μ φ μ φ

μ φ μ

E

E

1

0 .η

2

2 1 2
1

From (3.25), we have
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n

n

n

n

n n

n n

n

n
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( ( ))

( ) ∣ ( ) ( )∣

( ( )) ( )
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( ( ))

( ) ( )

( )

( ( ))
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( ( ))
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∣ ( ) ( )∣
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∫

∫

∫

∫

∫
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≤
+
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+
−
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⎠

+
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⎝ − ⎞

⎠

≤
+
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+
+
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−
−

−

−

−
−

−

−
−

−

−
−

−
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μ ζ μ ζ

κ

ψ η
e

ζ φ μ φ μ φ φ

κ

ψ η η

μ φ μ φ φ

ψ η
e

ζ φ μ φ μ φ φ

κ

ψ η
e
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ψ η
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d
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1
d

Ξ

Γ
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d

1 Ξ

Γ

d

Ξ 1 Ξ
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η

η
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η
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ψ
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ψ
ζ φ

η

η

η

η

ζ
ψ

ψ
ζ φ η
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2

0

1
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2 1

2

1

2

1

0

2

2

1

2

0

1
2

2 2

2

2

1

2

0

1
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2
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1
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2
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1

1

1

1

1
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(3.26)

In view of Lemma 2.1, we find

n

n �

	

∣ ( ) ( )∣ ( ( ( ) ))− ≤ + −
≕

−
−

−

μ ζ μ ζ r r ηE ¯ 1 ¯ Γ 2 1 Ξ

.

η
η

η

2
4 2 1,1 3 1

2 1

1 2

1

1

1

(3.27)

This yields the desired outcome. □

Some remarkable results of the aforesaid findings are
as follows:

Remark 3.1. (i) Letting =ψ 1, then (1.1) reduces to the
Caputo-type FSDE (2.6), the convergent rate of the frame-
work in Theorem 3.4 corresponds to the widely recognized
convergent rate of the fractional Carathéodory’s find-
ings [35].
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(ii) Letting = =ψ η 1,
1

then (2.6) reduces to the SDE
(2.6), the convergent rate of the framework in Theorem 3.4
corresponds to the widely recognized convergent rate of
the Carathéodory’s findings [33].

4 Ulam–Hyers stability

Definition 4.1. Suppose there is�d-value stochastic process
{ ( )} [ ]∈ −ζX ζ ω,Ξ is termed as a solution to (1.2) if it meets the
addresses criteria:
(i) { ( )}ζX is ζ -continuous and Fζ adapted.
(ii) �{ ( ( ( ) ( )))}−ζ ζ ζ ζ ωX X X, , , d d d� � ��([ ] )∈ × ×0, Ξ ;

and �{ ( ( ( ) ( )))}−ζ ζ ζ ζ ωX X X, , ,
d d d� � �� [ ]( )∈ × × ×0, Ξ ; m2 1 .

(iii) For [ ]∀ ∈ −ζ ω, Ξ ,

�

�

� �

( )

( )
( )

( ( ) ( ))

( )
( ) ( ( ) (

)) ( )

( ) [ ]

( )

( )

∫

∫
=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

+ −

−

+ −

− ∈
∈ −

− −

− −

−

−

ζ

ψ η
e ζ φ

φ φ φ ω φ

ψ η
e ζ φ φ φ φ

ω φ ζ

ζ ζ ω

X

X X

X X

Φ
1

Γ

, , d

1

Γ
, ,

d , ,

Φ , , 0 ,

η

ζ

ζ φ η

η

ζ

ζ φ η

0

1
0

1

1
0

1

ψ

ψ

ψ

ψ

1

1

1

1

1

1

(4.1)

where ‖ ( )‖∫( ) < ∞− ζ ζE X d
ω

Ξ
2 .

(iv) For every other solution ( )ζX̃ , we find
{ ( ) ( ) [ ]}= ∈ − =ζ ζ ζ ωP X X̃ , , Ξ 1.

Definition 4.2. Assume that system (1.2) is U-Hs if ∃ a real
number >λ 0 such that∀ >ε 0 and for every differentiable
mapping d�( ) ([ ] )∈ζY 0, Ξ , :

� � �

�
�

( ) ( ( ) ( ))

( ( ) ( ))
( )

[ ]

⎟

⎜
⎛

⎝
− −

− −
⎞

⎠
≤

∈
+ ζ ζ ζ ζ ω

ζ ζ ζ ω
ζ

ζ
ε

Y Y Y

Y Y

sup , ,

, ,
d

d
,

ζ

η ψc

0,Ξ

0

;

2

1

(4.2)

and ∃ a solution d�( ) ([ ] )∈ζX 0, Ξ , of (1.2) satisfying

∥ ( ) ( )∥
[ ]

⎜ ⎟
⎛

⎝
−

⎞

⎠
<

∈
ζ ζ ελE Y Xsup .

ζ 0,Ξ

2 (4.3)

Remark 4.1. Suppose there is a mapping d�( ) ([ ] )∈ζY 0, Ξ ,

is a solution of (4.2) if and only if ∃ a mapping ( ) ∈ζℏ

d�([ ] )0, Ξ , such that

(i) ( ‖ ( )‖ )[ ] ≤∈ζ εE sup ℏ ζ 0,Ξ

2 ,

(ii) � �

�
�

( ) ( ( ) ( ))

( ( ) ( )) ( )
( )

= −

+ − +

+ ζ ζ ζ ζ ω

ζ ζ ζ ω ζ

Y Y Y

Y Y

, ,

, , ℏ

η ψc

ζ

ζ

0

;

d

d

1 .

( )B1 (Lipschitz assumption) For every d�� � ∈, , there is a
fixed 	 > 0 such that d�∀ ∈X X Y Y, , ,1 2 1 2 , [ ]∈ζ 0, Ξ ,

� �

� �

�

∥ ( ) ( )∥

∥ ( ) ( )∥

(∥ ∥ ∥ ∥)

−
∨ −
≤ − + −

ζ ζ

ζ ζ

X Y X Y

X Y X Y

X X Y Y

, , , ,

, , , ,

,

1 1 2 2

1 1 2 2

1 2 1 2

(4.4)

where � and � are uniformly continuous mappings and∨
signifies as { }∨ =X X X Xmax ,1 2 1 2 .

( )B2 (Non-Lipschitz condition) A mapping
� � �� �( ) [ )+∞ × × ↦+ + +ζΛ , , : 0,1 2 such that (a)

d�∀ ∈X X Y Y, , ,1 2 1 2 and [ ]∈ζ 0, Ξ

� �

� �

∥ ( ) ( )∥

∥ ( ) ( )∥

( ∥ ∥ ∥ ∥ )

−
∨ −
≤ − −

ζ ζ

ζ ζ

ζ

X Y X Y

X Y X Y

X X Y Y

, , , ,

, , , ,

Λ , , ,

1 1 2 2
2

1 1 2 2
2

1 2
2

1 2
2

(4.5)

where � and � are continuous and bounded mappings.
Also, � �( )ζΛ , ,1 2 is monotone, increasingly continuous,
and concave mapping having ( ) = ≥ζ ζΛ , 0, 0 0, 0.

(b) For each �∈ +ζ and every positive mapping ( )ζY

such that

( ) ( ( ))∫≤ζ m φ φ φY YΛ , d ,

ζ

1

0

(4.6)

where >m 01 is a constant and ( ( ) ( )) =φ φ φY YΛ , ,

( ( ))φ φYΛ , , we have ( ) =ζY 0.
( )∃B3 three mappings ( ) ( )a ζ b ζ¯ , ¯ , and ( )q ζ¯ such that

� � � � � �( ) ( ) ( ) ( )≤ + + >ζ a ζ b ζ q ζΛ , , ¯ ¯ ¯ , , 0,1 2 1 2 1 2

( ) ( ) ( )∫ ∫ ∫< ∞ < ∞ < ∞a ζ ζ b ζ ζ q ζ ζ¯ d , ¯ d , ¯ d .

0

Ξ

0

Ξ

0

Ξ

(4.7)

In order to find the solution ( ) [ ]∈ζ ζX , 0, Ξ of system
(1.2) is U-Hs and investigate the stability of the findings of
FSDEs (1.2) considering Lipchitz and non-Lipschitz
assumptions.

Theorem 4.1. Under assumption ( )B1 and 	 − ∕12 Ξ η2 2 1 2
1

( ) ( ( ))< − ∕η ψ η4 3 Γ ,η
1

1 2 2

1

2
1 then the GPF-SDE (1.2) is U-Hs

at [ ]0, Ξ .

Proof. By means of Definition 4.1 and Remark 4.1, we write
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�

� �

( )
( )

( ) ( ( ) ( ))

( )
( )

( ( ) ( ))

( )
( ) ( )

( )

( )

( )

∫

∫

∫

= +

× − −

+ −

× −

+ −

−

−

− −

− −

−

−

−

ζ μ
ψ η

e

ζ φ φ φ φ ω φ

ψ η
e ζ φ

φ φ φ ω

ψ η
e ζ φ φ φ

X

X X

X X

1

Γ

, , d

1

Γ

, , d

1

Γ
ℏ d .

η

ζ

ζ φ

η

η

ζ

ζ φ η

φ

η

ζ

ζ φ η

0

1
0

1

1
0

1

1
0

1

ψ

ψ

ψ

ψ

ψ

ψ

1

1

1

1

1

1

1

1

1

(4.8)

In view of Definition 4.1 and utilizing (4.8), we have

�

�

�

� �

( ) ( )
( )

( )

( ( ( ) ( ))

( ( ) ( )))

( )
( )

( ( ( ) ( ))

( ( ) ( )))

( )
( ) ( )

( )

( )

( )

∫

∫

∫

− = −

× −

− −

+ −

× −

− −

+ −

− −

− −

− −

−

−

−

ζ ζ
ψ η

e ζ φ

φ φ φ ω

φ φ φ ω φ

ψ η
e ζ φ

φ φ φ ω

φ φ φ ω

ψ η
e ζ φ φ φ

X Y

X X

Y Y

X X

Y Y

1

Γ

, ,

, , d

1

Γ

, ,

, , d

1

Γ
ℏ d .

η

ζ

ζ φ η

η

ζ

ζ φ η

φ

η

ζ

ζ φ η

1
0

1

1
0

1

1
0

1

ψ

ψ

ψ

ψ

ψ

ψ

1

1

1

1

1

1

1

1

1

Making use of Jensen’s variant, we find

� �

� � �


 
 


∥ ( ) ( )∥

( ( ))
( ) ( ( ( ) ( )) ( ( ) ( )))

( ( ))
( ) ( ( ( ) ( )) ( ( ) ( )))

( ( ))
( ) ( )

[ ]

[ ]

( )

[ ]

( )

[ ]

( )

∫

∫

∫

⎜ ⎟
⎛

⎝
−

⎞

⎠

≤
⎛

⎝
⎜⎜ − − − −

⎞

⎠
⎟⎟

+
⎛

⎝
⎜⎜ − − − −

⎞

⎠
⎟⎟

+
⎛

⎝
⎜⎜ −

⎞

⎠
⎟⎟

≕ + +

∈

∈

−
− −

∈

−
− −

∈

−
− −

ζ ζ

ψ η
e ζ φ φ φ φ ω φ φ φ ω φ

ψ η
e ζ φ φ φ φ ω φ φ φ ω

ψ η
e ζ φ φ φ

E X Y

E X X Y Y

E X X Y Y

E

sup

3

Γ
sup , , , , d

3

Γ
sup , , , , d

3

Γ
sup ℏ d

.

ζ

η
ζ

ζ
ψ

ψ
ζ φ η

η
ζ

ζ
ψ

ψ
ζ φ η

φ

η
ζ

ζ
ψ

ψ
ζ φ η

0,Ξ

2

2

1

2

0,Ξ
0

1

1

2

2

1

2

0,Ξ
0

1

1

2

2

1

2

0,Ξ
0

1

1

2

1 2 3

1

1

1

1

1

1

Employing the Hölder inequality and assumption ( )B ,1

one can find


 � �

	

	

( ( ))
( ) ∥ ( ( ) ( )) ( ( ) ( )∥

( ) ( ( ))
(∥ ( ) ( )∥ ∥ ( ) ( )∥)

( ) ( ( ))
( ∥ ( ) ( )∥ ∥ ( ) ( )∥ )

( ∥ ( ) ( )∥ ) ( ∥ ( ) ( )∥ )

[ ]

( )∫ ∫

∫

∫

∫ ∫

≤
⎛

⎝
⎜ −

⎞

⎠
⎟ × − − −

≤
−

− + − − −

≤
−

− + − − −

= − + − − −

∈

−
− −

−

−

− −

ψ η
e ζ φ φ φ φ φ ω φ φ φ ω φ

η ψ η
φ φ φ ω φ ω φ

η ψ η
φ φ φ ω φ ω φ

r φ φ φ r φ ω φ ω φ

E X X Y Y

E X Y X Y

E X Y E X Y

E X Y E X Y

3

Γ
sup d , , , , d

3 Ξ

2 1 Γ
d

6 Ξ

2 1 Γ
d

¯ Ξ d ¯ Ξ d ,

η
ζ

ζ
ψ

ψ
ζ φ η

η

η

η

η

η η

1 2

1

2

0,Ξ
0

1
2

2 2

0

Ξ

2

2 2 1

1

2

1

2

0

Ξ

2

2 2 1

1

2

1

2

0

Ξ

2 2

5
2 1

0

Ξ

2
5

2 1

0

Ξ

2

1

1

1

1

1

1

1 1

(4.9)

where we have used the fact that <
−

e 1
Ξ

2ψ

ψ

1

and 	

( ) ( ( ))
= −r̄

η ψ η5

6

2 1 Γη

2

1
2 1

1
2 .

Now, utilizing the Itô isometry and the Hölder
inequality, we find
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 � � �

� � �

� � �

� � �

� � �

( ( ))
( ) ( ( ( ) ( )) ( ( ) ( ))

( ( ))
( ) ( ( ( ) ( )) ( ( ) ( ))

( ( ))
( )

∥ ( ( ) ( )) ( ( ) ( )∥ )

( ) ( ( ))
∥ ( ( ) ( )) ( ( ) ( )∥ )

∥ ( ( ) ( )) ( ( ) ( )∥ )

( )

( )

( )

∫

∫

∫

∫

∫

∫

≤ − − − −

=
⎛

⎝
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≤
⎛

⎝
⎜ −

⎞

⎠
⎟

×
⎛

⎝
⎜ − − −

≤
−

⎛

⎝
⎜ − − −

=
⎛

⎝
⎜ − − −

−
− −

−
− −

−
− −

∕

∕

− ∕

∕
∕

− ∕ ∕

ψ η
e φ φ φ φ ω φ φ φ ω

ψ η
e φ φ φ φ ω φ φ φ ω

ψ η
e φ φ

φ φ φ ω φ φ φ ω

η ψ η
φ φ φ ω φ φ φ ω

r φ φ φ ω φ φ φ ω

E X X Y Y

E X X Y Y

E X X Y Y

E X X Y Y

E X X Y Y

3

Γ
Ξ , , , , d

3

Γ
Ξ , , , , d

3

Γ
Ξ d

, , , , d

3Ξ

4 3 Γ
, , , , d

¯ Ξ , , , , d ,

η

ψ

ψ
φ η

φ

η

ψ

ψ
φ η

φ

η

ψ

ψ
φ η

φ

η

η φ

η
φ

2 2

1

2

0

Ξ
1

Ξ 1

2

2

1

2

0

Ξ
1

Ξ 1

2

2

1

2

0

Ξ
1

Ξ

4

4 4

1 2

0

Ξ

4 1 2

2 3 2

1

1 2 2

1

2

0

Ξ

4 1 2

6
2 3 2

0

Ξ

4 1 2

1

1

1

1

1

1

1

1

1

where we have used the fact that <
−

e 1
Ξ

2ψ

ψ

1

and

( ) ( ( ))
= − ∕r̄ .

η ψ η6

3

4 3 Γη
1

1 2 2 1
1

2 Since �∥ ( ( ) ( ))− −φ φ φ ωX X, ,

�( ( ) ( ))∥−φ φ φ ωY Y, , 4 is a continuous mapping on [ ]0, Ξ ,
making use of mean value theorem for integrals

[ ]∃ ∈ỹ 0, Ξ such that

�

�

�

�

∥ ( ( ) ( ))

( ( ) ( ))∥

∥ ( ( ) ( ))

( ( ) ( ))∥

∫ −

− −

= −

− −

φ φ φ ω

φ φ φ ω φ

y y y ω

y y y ω

X X

Y Y

X X

Y Y

, ,

, , d

Ξ ˜ , ˜ , ˜

˜ , ˜ , ˜ .

0

Ξ

4

4

(4.10)

Under assumption ( )B1 and Jensen’s inequality, we find
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�

	

∥ ( ( ) ( ))

( ( ) ( ))∥

( ∥ ( ) ( )∥ ∥ ( )

( )∥ )

≤ −

− −

≤ − + −

− −

− ∕

− ∕

r y y y ω

y y y ω

r y y y ω

y ω

E X X

Y Y

E X Y E X

Y

¯ Ξ ˜ , 2̃ , ˜

˜ , ˜ , ˜

2 ¯ Ξ ˜ ˜ ˜

˜ .

η

η

2 6
2 1 2

2

2
6

2 1 2 2

2

1

1

(4.11)

Thus, applying the Cauchy–Schwarz variant and Remark
4.1 to produce



( ( ))

( ) ‖ ( )‖

( ) ( ( ))
( ‖ ( )‖ )

( ) ( ( ))

[ ]

( )

[ ]

∫

∫

∫

≤
⎧
⎨
⎩

⎛

⎝
⎜

× −
⎞

⎠
⎟

⎫
⎬
⎭

≤
−

⎧
⎨
⎩

⎫
⎬
⎭

≤
−

=

∈

−
−

−

−

∈

−

ψ η
e

ζ φ φ φ φ

η ψ η
φ φ

η ψ η
ε

r ε

E

E

3

Γ
sup

d ℏ d

3Ξ

2 1 Γ
sup ℏ d

3Ξ

2 1 Γ

¯ Ξ ,

η
ζ

ζ
ψ

ψ
ζ φ

η

ζ

η

η
φ

η

η

η

3 2

1

2

0,Ξ
0

1
2

2 2

0

2

2 1

1

2

1

2

0

Ξ

0,Ξ

2

2 1

1

2

1

2

7
2

1

1

1

1

1

1

1

(4.12)

where
( ) ( ( ))

= −r̄ .
η ψ η7

3

2 1 Γη
1

2 1
1

2

It follows that

	

	

	

∥ ( ) ( )∥

(∥ ( ) ( )∥ ) (‖ ( )

( )‖ ) ) { ‖ ( )

( )‖ ∥ ( ) ( )∥ }

∥ ( ) ( )∥

∥ ( ) ( )∥

∥ ( ) ( )∥

∥ ( ) ( )∥

[ ]

[ ]

[ ]

[ ]

[ ]

∫ ∫

∫

∫

⎜ ⎟
⎛

⎝
−

⎞

⎠

≤
⎛

⎝
⎜ − + −

− − +
− + − − − +

≤
⎛

⎝
⎜ −

⎞

⎠
⎟

+
⎛

⎝
⎜ − − −

⎞

⎠
⎟

+
⎛

⎝
⎜ −

⎞

⎠
⎟

+
⎛

⎝
⎜ − − −

⎞

⎠
⎟

+

∈

−

− ∕

−

∈

−

∈

− ∕

∈

− ∕

∈

ζ ζ

r φ φ φ φ ω

φ ω φ r y

y y ω y ω r ε

r υ υ φ

r υ ω υ ω φ

r y y

r y ω y ω

r ε

E X Y

E X Y E X

Y E X

Y E X Y

E X Y

E X Y

E X Y

E X Y

sup

¯ Ξ d

d 2 ¯ Ξ ˜

˜ ˜ ˜ ¯ Ξ

¯ Ξ sup d

¯ Ξ sup d

2 ¯ Ξ sup ˜ ˜

2 ¯ Ξ sup ˜ ˜

¯ Ξ .

ζ

η

η

η

η

υ φ

η

υ φ

η

y y

η

y y

η

0,Ξ

2

5
2 1

0

Ξ

2

0

Ξ

2 2
6

2 1 2

2 2
7

2

5
2 1

0

Ξ

0,

1 1
2

5
2 1

0

Ξ

0,

1 1
2

2
6

2 1 2

˜ 0, ˜

1 1

2

2
6

2 1 2

˜ 0, ˜

1 1

2

7
2

1

1

1

1

1

1

1

1

1

1

1

1

In contrast to the methodology of interacting with the
delay [50,51], we acquire

� ( ) ∥ ( ) ( )∥
[ ]

⎜ ⎟=
⎛

⎝
−

⎞

⎠∈
ζ ζE X YΞ sup ,

ζ

2

0,Ξ

2

also,

∥ ( ) ( )∥
[ ]

⎜ ⎟
⎛

⎝
−

⎞

⎠
=

∈ −
ζ ζE X Ysup 0,

ζ ω,0

2

and then we attain
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So that
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For [ ]∈ϖ 0. Ξ , we find
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Therefore, we find

� �

� �

� 	 �

( ) ( )

( ) ( )

( ) ( )

[ ]

[ ] [ ]

∫

=

≤
⎧
⎨
⎩

⎫
⎬
⎭

≤ + +

∈ −

∈ − ∈

− − ∕

ϖ

ϖ ϖ

r φ φ r r ε

Ξ sup

max sup , sup

2¯ Ξ d 4 ¯ Ξ Ξ ¯ Ξ .

ϖ ω

ϖ ω ϖ

η

ϖ

η η

1

,Ξ

2

,0

2

0,Ξ

2

5
2 1

0

1
2

6
2 1 2

1 7
2

1 1 1

Thus,

�
	

�
	

( ) ( )∫≤
−

+
−

−

− ∕ − ∕
r

r
φ φ

r ε

r
Ξ

2¯ Ξ

1 4 ¯ Ξ
d

¯ Ξ

1 4 ¯ Ξ
.

η

η

η

η1

5
2 1

2
6

2 1 2

0

Ξ

1

7
2

2
6

2 1 2

1

1

1

1

According to Lemma 2.1, we find
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Clearly, we see that
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Finally, for every >ε 0, ∃ λ = �
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As a result, this theorem is established. □

Theorem 4.2. Under the supposition ( )B2 and ( )B3

satisfy, 	 ( ) ( ( ))< −− ∕ ∕η ψ η6 ˜ Ξ 4 3 Γη η2 1 2

1

1 2 2

1

2
1 1 , 	 =

{ ( ) ( )}[ ] [ ]∈ ∈b ζ q ζmax sup ¯ , sup ¯ζ ζ0,Ξ 0,Ξ
, and∃ a constantI fulfilling

( ( )− ∕η3 4 3 Ξ η
1

1 2 2
1 + ( )−η3 2 1

1

− ∕Ξ η2 1 2
1 /( )( )− − ∕η η ψ2 1 4 3 η
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I	( ( )) ( ) )[ ]− − ≤− ∕
∈η η εΓ 6 2 1 Ξ supη
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2 1 2

0,Ξ
1 , ( )∈η 0.75, 1

1
.

The GPF-FSDE is U-Hs at [ ]0, Ξ .

Proof. By means of the variant 4.9, we find
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Attempting to take variant (4.9) and supposition ( )B2

into consideration,
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Utilizing the variant (4.12), we have

≤H r ε¯ Ξ .η
3 7

2
1

Then,

	

	

	 	

∥ ( ) ( )∥

( ) ( )

∥ ( ) ( )∥

∥ ( ) ( )∥

∥ ( ) ( )∥

∥ ( ) ( )∥

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

∫

∫

⎜ ⎟
⎛

⎝
−

⎞

⎠
≤ +

+
⎛

⎝
⎜ −

⎞

⎠
⎟

+
⎛

⎝
⎜ − − −

⎞

⎠
⎟

+
⎛

⎝
⎜ −

⎞

⎠
⎟ +

×
⎛

⎝
⎜ − − −

⎞

⎠
⎟

+

∈

− ∕

∈

−

∈

−

∈

− ∕

∈

− ∕

∈

ζ ζ

r r a φ

r υ υ φ

r υ ω υ ω φ

r υ υ r

υ ω υ ω

r ε

E X Y

E X Y

E X Y

E X Y E

X Y

sup

¯ Ξ ¯ Ξ sup ¯

¯
˜ Ξ sup d

¯
˜ Ξ sup d

¯
˜ Ξ sup ¯

˜ Ξ

sup

¯ Ξ .

ζ

η η

φ

η

υ φ

η

υ φ

η

υ y

η

υ y

η

0,Ξ

2

8
2

6
2 1 2

0,Ξ

8
2 1

0

Ξ

0,

1 1
2

8
2 1

0

Ξ

0,

1 1
2

6
2 1 2

0, ˜

2 2
2

6
2 1 2

0, ˜

2 2
2

7
2

1 1

1

1

1

1

1

2

1

2

1

Define a set � ( ) ( ∥ ( ) ( )∥ )[ ]= −∈ ζ ζE X YΞ sup
ζ2 0,Ξ

2 and

( ∥ ( ) ( )∥[ ] − =∈ − ζ ζE X Ysup 0,
ζ ω,0

2 we can find

�∥ ( ) ( )∥ ( )
[ ]

⎜ ⎟
⎛

⎝
− − −

⎞

⎠
= −

∈
υ ω υ ω φ ωE X Ysup .

ζ 0,Ξ

2 2
2

2

Evidently, we can draw the conclusion that

� 	 � �

	 � �

( ) ( ) ( )

( ( ) ( ))

( ) ( )
[ ]

∫ ∫≤
⎛

⎝
⎜ + −

⎞

⎠
⎟

+ + −
+ + +

−

− ∕

− ∕

∈

r φ φ φ ω φ

r y y ω

r r a φ r ε

Ξ ¯
˜ Ξ d d

¯
˜ Ξ ˜ ˜

¯ Ξ ¯ Ξ sup ¯ ¯ Ξ .

η

η

η η

φ

η

2 8
2 1

0

Ξ

2

0

Ξ

2

8
2 1 2

2 2

8
2

6
2 1 2

0,Ξ

7
2

1

1

1 1 1

Choosing � ( )Ξ1 = � ( )[ ]∈ − ϖsup ,
ϖ ω,Ξ 2 then � �( ) ( )≤φ φ2 1

and � �( ) ( )− ≤φ ω φ2 1 . Therefore,

� 	 � 	 �( ) ( ) ( )

( ) ( )
[ ]

∫≤ +

+ + +

− −

− ∕

∈

r φ φ r y

r r a φ r ε

Ξ 2¯
˜ Ξ d 2¯

˜ Ξ ˜

¯ Ξ ¯ Ξ sup ¯ ¯ Ξ .

η η

η η

φ

η

2 8
2 1

0

Ξ

1 8
2 1

1

8
2

6
2 1 2

0,Ξ

7
2

1 1

1 1 1

For every [ ]∈ϖ 0, Ξ , we attain that

� 	 � 	 �

	 � 	 �

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

[ ]

[ ]

∫

∫

≤ +

+ + +

≤ +

+ + +

− −

− ∕

∈

− −

− ∕

∈

ϖ r ϖ φ φ r ϖ y

r ϖ r ϖ a φ r ϖ ε

r φ φ r y

r r a φ r ε

2¯
˜ d 2¯

˜ ˜

¯ ¯ sup ¯ ¯

2¯
˜ Ξ d 2¯

˜ Ξ ˜

¯ Ξ ¯ Ξ sup ¯ ¯ Ξ .

η

ϖ

η

η η

φ ϖ

η

η η

η η

φ

η

2 8
2 1

0

1 8
2 1

1

8
2

6
2 1 2

0,

7
2

8
2 1

0

Ξ

1 8
2 1

1

8
2

6
2 1 2

0,Ξ

7
2

1 1

1 1 1

1 1

1 1 1

18  Sobia Sultana



Furthermore, we have
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According to Lemma 2.1, we find
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As a result, this theorem is established. □

5 Examples

In this section, we will present illustrative examples for the
previous findings.

Example 5.1. Assume the U-Hs and E-U of the result to the
subsequent equation:
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Theorem 4.1, we discovered that equation (5.1) has only one
solution, i.e., U-H stable.

Finally, we will perform a graphical illustration to
ensure that the finding of (5.2) is U-H stable, as shown in
Figure 1.

Example 5.2. Assume that U-H stability of the subsequent
FSDEs having time delays
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evidently, Λ ( ∥ ( ) ( )∥−ζ ζ ζX Y, 2,∥ ( ) ( )∥− − −ζ ω ζ ωX Y 2) is

increasing, continuous and concave mapping and 	̃ =
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accomplishes all of Theorem 4.2 settings. As a result, we
can say that framework (5.3) is U-Hs on [ ]0, 2 .

Finally, we will perform a graphical illustration to
ensure that the finding of (5.3) is U-Hs, as shown in
Figure 2.

6 Conclusion

Carathéodory’s approximation has helped approximate the
fractional derivatives, ensuring that the resulting FSDEs are
mathematically well posed. It has provided a framework for
analyzing the stability and uniqueness of solutions, which is
crucial for understanding the fluid’s behavior under various
conditions, especially in Lagrangian stochastic models of
fluid particles.

Figuring out the descriptive characteristics of DEs is
one of the most vital aspects of differential equation
theory. Integral equations are valuable techniques for
investigating such features. In this study, we first identified
the well-posedness for generalized proportional FSDEs
using various approximate techniques, and the restrictions
implanted on the global E-U of the findings are coherent
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with the Caputo FSDEs and traditional SDEs. Then, we
glanced at the continuity of findings with reverence for
the fractional-order of such formulae, especially if the pro-
portional index ψ and fractional-order η

1
were noticeable.

When η
1
and ψ tend to 1, the solution of generalized pro-

portional FSDEs reduces to the Caputo-type FSDE and the
conventional SDEs solution. Besides that, we contemplate
Carathéodory’s approximate solution for GPF-SDEs as an
extension task for SDEs. Moreover, various generalizations
are employed to demonstrate the U-H stability of the GPF-
SDEs with time delays. Ultimately, we reveal two examples
to validate the envisaged method. Our forthcoming
research will concentrate on investigating the U-H stability
of multiple kinds of FDEs with weaker assumptions and the
requirements discovered will be applicable to a broader
spectrum of GPF-SDEs including an invariant manifold and
an invariant measure. By ensuring the existence, unique-
ness and stability of solutions, Carathéodory’s approxima-
tion makes it feasible to apply these advanced mathematical
tools to real-world fluid dynamics problems, leading to
deeper insights and more accurate predictions for future
research.
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