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Abstract: Due to the nonlocality of fractional derivatives,
the numerical methods for solving nonlinear fractional
Whitham–Broer–Kaup (WBK) equations are time-consuming
and tedious. Therefore, it is a research hotspot to explore
the numerical solution of fractional-order WBK equation.
The main goal of this study is to provide an efficient method
for the fractional-in-space coupled WBK equations on
unbounded domain and discover some novel anomalous
transmission behaviors. First, the numerical solution is com-
pared with the exact solution to determine the validity of the
proposedmethod on large time-spatial domain. Then, anom-
alous transmission of waves propagation of the fractional
WBK equation is numerically simulated, and the influence
of different fractional-order derivatives on wave propaga-
tion of the WBK equation is researched. Some novel anom-
alous transmission behaviors of wave propagation of the
fractional WBK equation on unbounded domain are shown.

Keywords: space fractional coupledWhitham–Broer–Kaup
equation, fractal anomalous transmission, waves propaga-
tion, numerical simulation

1 Introduction

We consider the following fractional-in-space Whitham–

Broer–Kaup (WBK) equation [1–3]:
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The fractional WBK equation describes the dispersive long
wave in shallow water. The field of horizontal velocity is
represented by x tu ,( ), and x tv ,( ) is the height that devi-
ates from the equilibrium position of the liquid. D ux

α

denote Caputo fractional derivative operator. < ≤α0 1i

represents the order of the fractional derivative. β and γ

are constants that represent different diffusion powers.

Definition 1.1. The Caputo fractional derivative of >α 0

order is defined as
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If =α 1i , the fractional WBK Eq. (1) reduces to the fol-
lowing integer WBK equations:
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If =β 0 and =γ 1, the WBK Eq. (3) reduces to the var-
iant Boussinesq equations [4,5]
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If ≠β 0 and =γ 0, the WBK Eq. (3) reduces to the approx-
imate long water wave equations [4,5] in the form
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For the fractional WBK Eq. (1), the expansion method is
applied by Yaslan [1] to obtain some analytic solutions of
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the fractional-in-space–time WBK equations. A general
ansätz and the improved fractional sub-equation method
are applied by Guo et al. [2] to construct the analytical
solutions of the space–time fractional WBK equations. The
enhanced extended tanh-function technique was used by
Zaman et al. [3] to obtain the analytical behavior of soliton
solutions to the couple-type fractional-orderWBK equations.
Ghehsareh et al. [6] used Lie symmetry analysis and con-
servation laws for time fractional coupled WBK equation.
Saha [7] used a novel method to obtain some travelling wave
solutions [8] of fractional WBK equation. The Laplace trans-
form combined with Adomian decomposition method was
applied by Ali et al. [9] to obtain an analytic approximate
solution of nonlinear fractional WBK equations.

For the integer WBK Eq. (3), some scholars applied
various methods and obtained analytical solutions. For
example, Chen et al. [10] applied the generalized method
and obtained nine families of solutions. Abdou [11] applied
the extended tanh method and obtained nine families of
solutions of the WBK equation. Guo et al. [4] applied the

∕G G-function method and found four families of solutions
of the WBK equation. Song et al. [12] applied the bifurca-
tion method and found 13 families of solutions of the WBK
equation. Xu and Li [13] used the improved auxiliary equa-
tion method and obtained four families of solutions of the
WBK equation. Zheng et al. [5] applied the Exp-function
method and obtained seven families of solutions of the
WBK equation. Lin et al. [14] derived types of solutions of
theWBK equation via the rational transformation. Lei et al.
[15] and Xu [16] used the Gauge transformation and the
Darboux transformation, respectively, and found multi-
soliton solutions of the WBK equation. Fan and Zhang
[17] applied the Backlund transformation to handle the
WBK equations and found three families of solutions of
the WBK equation. Yan and Zhang [18] used the Riccati
transformation and found 12 families of solutions of the
WBK equation. Xie et al. [19] used hyperbolic function
method and obtained some solitary wave solutions of the
WBK equation. Xu et al. [20] applied the extended tanh-
function method and obtained nine families of solutions of
the WBK equation. Several numerical methods have been
applied for the solution of the integer WBK Eq. (3). The Exp-
function method was used for the WBK equation and with
the help of symbolic computation, several kinds of solitary
wave solutions of the WBK equation were obtained by
Zheng and Shan [21]. El-Sayed and Kaya [22] had presented
explicit and numerical traveling wave solutions of the
WBK equations in the form of an easily computable con-
vergent power series. The Homotopy perturbation method
was used for computing the coupledWBK shallow water by
Ganji et al. [23].

Unlike integer WBK equations, fractional WBK equa-
tions have nonlocality and singularity, sometimes even
involve space–time coupling which bring many difficulties
and challenges in analysis, and numerical methods.
Although there are some numerical methods for fractional
differential equations, such as difference method [24–26],
reproducing kernel method [27], barycentric interpolation col-
locationmethod [28], spectral method [29], and so on, Ning and
Wang used the Fourier spectral method to investigate a class of
fractional KdV-modified KdV equation [30], KdV–Burgers equa-
tion [31], FitzHugh–Nagumo model [32], pattern dynamics beha-
vior of a fractional vegetation–water model [33], Gray–Scott
model [34], and Ginzburg–Landau equation [35]. The numerical
solutions of fractional WBK equations are rarely found.

In general, the Fourier spectral method is far more
accurate than the finite difference method and the finite
element method. Due to the continuous development of
fast Fourier transform, the calculation amount of the
Fourier spectral method is less and less. In general, when
using the Fourier spectral method to solve partial differen-
tial equations (PDEs), it has the characteristics of small
calculation amount, especially for more than two-dimen-
sional problems. In order to improve the accuracy, the
finite difference method must set enough grid nodes to
solve the partial differential equation, so as to increase
the calculation amount, while the Fourier spectral method
generally does not need to take too many nodes to get a
more high-precision solution. However, it is important to
note that the Fourier spectral method solves PDEs with
periodic boundary conditions. For some PDEs with aper-
iodic boundary conditions, how to ensure that the value at
the boundary has little effect on the whole solution or that
the value at the boundary is always a specific constant is a
problem worth thinking about.

In this study, we present a numerical solution of non-
linear fractional-in-space WBK equations to study the pro-
pagation and interaction behavior of the fractional WBK
equations on unbounded domain. Comparisons are made
between the numerical and exact solutions, and it is found
that the method is a satisfactory and efficient algorithm for
capturing the propagation of the fractional-in-space WBK
equations on unbounded domain. Experimental findings
indicate that the proposed method is easy to implement, effec-
tive and convenient in the long-time simulation for solving the
fractional-in-space WBK equations on unbounded domain. The
influence of fractional derivative on fractional WBK equations
and someof the anomalous bi-directional propagation behaviors
of long waves over shallow water for fractional WBK equations
is observed. In the experiment, we observe the propagation
behaviors of fractional WBK equations which are unlike any
that have been previously obtained in numerical studies.
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2 Description of numerical method

The Fourier transform x tu ,x� ( ( )) of x tu ,( ) about spatial
variable x is
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and the famous inverse Fourier transform −
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1� ( ( )) of
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Theorem 2.1. When = −∞a , Fourier transform of Caputo
fractional derivative of α order is
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Proof. Note
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The famous Fourier transform x tu ,x� ( ( )) and the
inverse Fourier transform −

κ tû ,κ

1� ( ( )) have the following
conclusion:
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Fourier spectral method is developed for the periodic
initial value problem [29,31]. By using Fourier transform
for Eq. (1) in space domain, Eq. (1) can be written as
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where = −i 12 , x� represents the Fourier transform, and −
κ

1�

denotes the inverse Fourier transform.
Note that for the above formula to hold, it is necessary to

ensure that → → ∞ < ≤x t x t Tu , 0, , 0 ,∣ ( )∣ ∣ ∣ and the speed of
approaching 0 must be greater than the exponential rate to
ensure that the boundary term is 0. In the actual numerical
calculation, we call thefftshift function inMATLAB to calculate,
rather than directly using the definition of the Fourier trans-
form to calculate. The spatial domain is − ∕ ∕L L2, 2[ ] and the
spatial step size = ∕h L N , and N is a natural number. The fast
Fourier transform has been hailed as one of the greatest algo-
rithms of the twentieth century. The arithmetic of the discrete
Fourier transform algorithm is O N 2( ). The fast Fourier trans-
form reduces the computation to O N Nlog( ). However, in
order to obtain a high speed of operation, the number of ele-
ments of the sequence to be transformed must be 2N formal.

For convenience of expression, we denote
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Eq. (12) is reduced to a system of ordinary differential

equations with time differentiation
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Then, the Runge–Kutta method is used to solve Eq. (14), and
the form is as follows:
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where h is the step-size.
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Theorem 2.2. If incremental function t hUΨ , ,( ) =
1

6
(H t U,( )

+ + +H t H tU U4 , ,
h h

2 2
( ( )) + + − +H t h hH t HU U, , 2( ( )

+ +t hH tU U, ,
h h

2 2
( ( )))) is a continuous function on

≤ ≤t T0 , −∞ ≤ ≤ ∞U satisfies the local Lipschitz condition
about U,

− ≤ −t U h t U h L U UΨ , , Ψ , ˜ , ˜ ,Ψ∣ ( ) ( )∣ ∣ ∣ (16)

then the solution of Eq. (14)is well posed, the present method
is stable and convergent, and the solution has the following
error estimation form:
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where LΨ is the Lipschitz coefficient.

Finally, we find the numerical solution using the fast
inverse discrete Fourier Transform. In the actual numer-
ical calculation, we call the ifftshift function in MATLAB to
calculate, rather than directly using the definition of the
fast inverse discrete Fourier Transform to calculate. In
matlab, the functions that call the Fourier transform and
inverse transformation are fft(u) and ifft(u).

The spectral method is essentially an extension of the
method of separating variables. For periodic boundary con-
ditions, it is convenient to use Fourier series and harmonic
series. The accuracy of spectral methods generally depends
on the number of terms of the series expansion. Spectral
methods generally do not need to take more nodes.

3 Numerical simulation

Experiment: In Eq. (1), subject to the initial condition
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where + <γ β 02 , = −ξ x ct.
In order to confirm the validity of Fourier spectral method

for the fractional-in-space coupled WBK equation, we

Figure 1: Comparison of numerical and exact solutions at =c 1, =a 1, =γ 2, =β 0.9, =L 64, =N 512. (a) Numerical solution u, (b) exact solution u,
and (c) absolute error of u.

Figure 2: Comparison of numerical and exact solutions at =c 1, =a 1, =γ 2, =β 0.9, =L 64, =N 512. (a) Numerical solution v , (b) exact solution v ,
and (c) absolute error of v .
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set = = − = − = = =c a γ β L N1, 1, 2, 0.9, 64, =h512, 0.01.

Comparisons of numerical and exact solutions are shown in
Figures 1 and 2. Logarithmic of absolute error and absolute
error at different times t are shown in Figures 3 and 4.

FromFigures 1–4, Fourier spectralmethod for the fractional-
in-space coupled WBK equation is efficient and highly accurate.
Next we observe the influence of fractional-orders on fractal
solitary wave propagation of the fractional WBK equation.

We set = = − = − = = =c a γ β L N1, 1, 2, 0.9, 64, 512,
and different fractional-order derivatives =α 0.951 , 0.9,
0.6, 0.3. Fractal solitary wave propagation of the fractional
WBK equation is shown in Figures 5 and 6. Figure 5 shows
fractal solitary wave propagation about u at different frac-
tional-order derivatives α1. Figure 6 shows fractal solitary
wave propagation about v at different fractional-order
derivatives α1.

Figure 3: Absolute error at different times t .

Figure 4: Logarithmic of absolute error at different times t . (a) =t 1, (b) =t 2, and (c) logarithmic of absolute error of u.

Figure 5: Fractal solitary wave propagation about u at different fractional-order derivatives α1. (a) =α 0.951 , (b) =α 0.91 , (c) =α 0.61 , and (d) =α 0.31 .
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From Figures 5 and 6, we can find the wave crest
changes with the change in fractional-order derivative α1,
and if fractional-order derivative α1 is smaller, the peak
value of the corresponding wave crest is smaller. Next
we observe the influence of fractional-order derivative α2

on fractal solitary wave of the fractional WBK equation.
We set =c 1, = −a 1, = −γ 2, =β 0.9, =L 64, =N 512,

and different fractional-order derivatives =α 0.992 , 0.9905,

0.991. Fractal solitary wave propagation of the fractional
WBK equation about v is shown in Figure 7.

From Figure 7, we can find the fractal solitary wave
propagation turn into singular soliton wave propagation.
Next we observe the influence of fractional-order derivatives
α α,3 4 on fractal solitary wave of the fractionalWBK equation.

We set =c 1, = −a 1, = −γ 2, =β 0.9, =L 64, =N 512,
and different fractional-order derivatives =α 0.99664 , 0.9969.

Figure 6: Fractal solitary wave propagation about v at different fractional-order derivatives α1. (a) =α 0.951 , (b) =α 0.91 , (c) =α 0.61 , and (d) =α 0.31 .

Figure 7: Fractal solitary wave propagation about v at different fractional-order derivatives α2. (a) =α 0.992 , (b) =α 0.99052 , and (c) =α 0.9912 .

Figure 8: Fractal solitary wave propagation about v at different fractional-order derivatives α3. (a) =α 0.9943 and (b) =α 0.99353 .
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Fractal solitary wave propagation of the fractional WBK equa-
tion about v is shown in Figure 9.

We set =c 1, = −a 1, = −γ 2, =β 0.9, =L 64, =N 512,
and different fractional-order derivatives =α 0.9943 , 0.9935.
Fractal solitarywave propagation of the fractionalWBK equa-
tion about v is shown in Figure 8.

In this study, we investigate the influence of fractional
orders on fractal solitary wave propagation of the space
fractional coupled WBK equation.

4 Conclusion

The Fourier spectral method is applied successfully to
solve the fractional WBK equation and the influence of
different fractional-order derivatives on wave propagation
of the fractional WBK equation is investigated. From the
experiment, we find that if ⟶α 1, then the numerical
solution of the space fractional coupled WBK equation
agrees with the exact solution of integer coupled WBK
equation and the solution of the space fractional coupled
WBK equation is sensitive to change in fractional orders.
We observe that the fractal anomalous transmission of wave
propagation of the nonlinear the space fractional coupledWBK
equation changes as different fractional derivatives. Some novel
anomalous transmission of the space fractional coupled WBK
equation is shown by the numerical simulation. The fractional
WBK equations can describe a variety of complex physical phe-
nomena, such as wave propagation in fluid, interaction of soli-
tons, etc. The numerical methods presented in this study can
simulate the behavior of these phenomena under different con-
ditions and help us better understand the physical processes.
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