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Abstract: Nanofluid, a significant branch of fluid mechanics,
plays a pivotal role in thermal management, optics, biome-
dical engineering, energy harvesting, and other fields. The
nanoparticles present in the fluid render the continuum
mechanics ineffective, necessitating the adoption of fractional
calculus to elucidate the effects of nanoparticles on the
motion properties of the nanofluid. This article applies the
modified extended tanh-function technique to solve two clas-
sical Schrodinger equations, the fractional Phi-4 model and
the conformable fractional Boussinesq model, for nanofluids.
Multiple exact solutions are obtained, and the corresponding
graphical representations are provided to elucidate the basic
properties of the nanofluid. This article provides new research
perspectives for the development of nanofluids.

Keywords: nanofluid, the fractional Phi-4 model, the con-
formable fractional Boussinesq model, modified extended
tanh-function technique, exact solution

1 Introduction

Nanofluid is a composite fluid system in which nanoparti-
cles are dispersed in a base fluid [1,2]. The addition of
nanoparticles can alter the properties and behavior of
the base fluid, thereby imparting unique characteristics
to the nanofluid. The effects of nanofluids can be demon-
strated in a variety of ways. First, nanofluids can enhance
the thermal conductivity of the base fluid, resulting in a
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higher thermal conductivity [3,4]. This enables the wide-
spread applications of nanofluids in the field of thermal
management, such as radiator [5], and energy harvesting
[6,7], which is distinct from the traditional spring-pen-
dulum system [8,9]. Second, nanofluids play a significant
role in the field of optics, as they can be used to fabricate
materials with special optical properties, such as trans-
parent conductive films [10] and optical sensors [11]. More-
over, nanofluids are utilized in the biomedical field for the
advancement of nanodrug delivery systems [12], biosen-
sors [13], and blood flow [14], among other applications.

In fact, nanofluid can be considered a branch of fluid
mechanics, which is a discipline within the broader field of
physics that studies the motion and behavior of liquids and
gases. It encompasses aspects such as fluid dynamics, sta-
tics, and heat and mass transfer. In contrast, nanofluid
research is focused on the dispersion effects of nanoparti-
cles in the base fluid at the nanoscale and their influence
on the macroscopic properties of the fluid. The study of
nanofluids necessitates the consideration of factors pertaining
to the nanoscale, including surface forces, charge effects, and
the wetting behavior of nanoparticles. Kou et al. demonstrated
that the remarkable phenomena observed in nanofluids can
be explained by the fractal boundary-layer theory [15]. A
fractal boundary layer can result in minimal friction between
the fractal boundary and the flowing fluid, as observed in
the case of waving dunes [16,17]. It is, however, important to
note that there is a certain connection between nanofluids
and traditional fluid mechanics. The foundation of nanofluid
research remains firmly rooted in the theoretical and experi-
mental frameworks of traditional fluid mechanics. The beha-
vior of nanofluids can typically be explained and predicted
using principles and models of fluid mechanics [18]. Concur-
rently, the investigation of nanofluids offers a novel avenue
for research in fluid mechanics, facilitating enhanced compre-
hension and exploitation of fluid dynamics. Consequently,
there exists a close connection and interdependency between
nanofluids and traditional fluid mechanics.

In recent years, fractal thermodynamics [19,20] has
emerged as a promising approach to address challenges
in fluid mechanics that conventional fluid mechanics has
been unable to resolve. Fractional partial differential
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equations (FPDEs) have also gained significant traction in
various applications. FPDEs represent an extension of tradi-
tional integer-order partial differential equations, wherein
the derivatives assume a fractional-order form. The most
commonly employed fractional-order derivatives include
the Caputo fractional derivative [21,22], the Caputo—Fabrizio
fractional derivative [23,24], and the Jumarie-modified Rie-
mann-Liouville fractional derivative [25]. The application of
FPDEs in fluid mechanics encompasses a multitude of facets.
First, they are employed to describe the transport behavior
of fluids in non-local media. For instance, in the context of
non-local diffusion problems, fractional diffusion equations
are more effective at describing diffusion phenomena [26].
Second, FPDEs can be employed to describe non-local diffu-
sion phenomena with long-tail distributions [27] and other
similar phenomena. In conclusion, FPDEs have made a sub-
stantial impact on the advancement of fluid mechanics.
They provide a mathematical framework for more accu-
rately describing non-local and non-linear phenomena. The
introduction of fractional derivatives enables the character-
ization of the transport behavior and dynamic characteristics
of fluids in complex media. Moreover, the utilization of FPDEs
facilitates a more comprehensive and accurate modeling of
fluid motion. These applications not only facilitate a more
profound comprehension of fluid behavior but also furnish
novel mathematical instruments and methodologies for the
resolution of practical engineering issues and the formulation
of corresponding control strategies.

Consequently, this study aims to identify precise solu-
tions for selected classical fluid particle dynamics equa-
tions in fluid mechanics. The objective is to contribute to
the development of nanofluids. Specifically, this study
selects two Schrodinger equations for investigation: the
fractional Phi-4 model and the conformable fractional
Boussinesq model. The application of Schrodinger equations
in fluid mechanics provides a quantum mechanical frame-
work for the study of wave—particle duality, quantum trans-
port, and the interactions of particles in fluid media [28].
This approach to quantum fluid mechanics enhances our
comprehension of fluid phenomena and illuminates the
pivotal role of quantum effects in fluid dynamics. The solu-
tions of the nonlinear Schrodinger equation can be obtained
through a variety of methods, including the (%)-expansion
method [29], the extended tanh-function method [30], the
extended rational sin—cos and sinh—cosh methods [31], the
new extended direct algebraic method [32], and the exp-
function method [33]. In this article, we will employ the
modified extended tanh-function technique of fractional
complex transformation to identify exact solutions to the
subsequent two models:
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1) the fractional Phi-4 model [34,35]:
Du - D¥u + a*u + bud = 0, 4]

where a and b are the real constants and 0 < a, § < 1. The
Klein-Gordon equation, a fundamental Schrodinger equa-
tion, has found application in a number of fields, including
optics, thermal science, nanofluids, and nonlinear vibra-
tion. The Phi-4 model represents a specific shape within
this equation and has been widely used for modeling
purposes. In recent times, researchers have employed a
variety of methodologies to investigate the fractional Phi-
4 model. For instance, in their work [36], new exact analy-
tical solutions for the time-fractional Phi-4 model were
presented using an extended direct algebraic method. Kor-
pinar employed a variety of mapping techniques utilizing
the conformal fractional derivative operator to address the
aforementioned issue [37]. The construction of new exact
solutions for the time-fractional Phi-4 model was achieved
by applying the (%, é) expansion technique, as detailed in
the study by Hwang et al. [3]. In the study by Akram et al.
[35], the traveling wave solutions for the space—time frac-
tional Phi-4 model were constructed using the extended
(%) evolution method and the modified auxiliary equation
method. In their investigation of computational wave solu-
tions of Eq. (1), Khater employed the novel Kudryashov
schemes, as described in the study by Khater [38].

2) The conformable fractional Boussinesq model [39]:

D¥u + DPu + D¥w?) + Du = 0, @

where 0 < a, 8 < 1. The Schrédinger—-Boussinesq equation,
a classic equation in fluid mechanics, occupies a prominent
position in the field. Subsequently, the equation was extended
by introducing fractional derivatives, leading to extensive
applications in various fields. In particular, the fractional
Boussinesq equation is employed extensively to model the
propagation grid and the nonlinear chain of small-amplitude
nonlinear long waves on the water surface. These models
have a wide range of engineering applications, including dif-
fraction, shallow water predictions, refraction, and harmonic
interactions [40]. A number of methods have been developed
to solve this equation in an effective manner. For instance, in
their study by Hosseini and Ansari [41], the validated mod-
ified Kudryashov method was employed to identify exact
solutions to this equation. In order to identify exact solutions
for the fractional Boussinesq model [42], the simply improved
tan(%‘t)) method was employed. The study of exact solutions
for the new generalized perturbed form of this equation
was carried out by Nisar et al. [43], who employed the
modified Kudryashov method and the improved general-
ized Riccati equation mapping method. Moreover, Chen
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et al. employed the (%)-expansion method and the unified
F-expansion method to identify exact wave solutions to
this equation [39].

The following section outlines the structure of this
article. Section 2 provides a comprehensive introduction
to the solution method. Subsequently, Sections 3 and 4
address the fractional Phi-4 model and the conformal frac-
tional Boussinesq model, respectively. Finally, the conclu-
sions are presented in Section 5.

2 Methodology

Considering the FPDE

P(u, Dfu, DPu, DDfu, DEDPu, DEDEY, ...)
=0, (0<apB<1,

©)

where Dfu, DPu, DDfu,... are the notations of the frac-
tional derivative. The polynomial P is formulated in terms
of the variable u and its corresponding partial derivatives.
In this article, we adopt the fractional derivative in the
modified Riemann-Liouville sense [25]. Some properties
of the proposed derivative are described in the study by
Jumarie [44] listed as follows:

ar_ IA+r)
Df't _—F(1+r—a)t , ©)
Df(cf(x)) = ¢cDff(x), ¢ 1isaconstant, 5)
Df(f(w) + gw)) = Dif(w) + Dig(w). (6)

In this article, as for fractional calculus, we used the
following chain rule [45]:

ou($)
O df
au($)

d¢
*u()

dé?
o*u(§)

Diu = (Gx)zd—EZDfaf ,

Dfu=

Dtaf)

Diu = oy Dy¢,

(M

Du = (o) D¢,

where 0; and oy are the sigma indices. We take g; = gy = L
(L is a constant), without loss of generality.

Based on the aforementioned preliminaries, the gen-
eral steps to solve Egs (1) and (2) using the modified
extended tanh-function technique are as follows:

Step 1: Using the nonlinear fractional complex wave
transformation [45,46]:
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u(x, t) = u(),
_ W ®)
TT(B+1) T+’

3

where [ and k are the constants and [, k # 0. Eq. (8) is the
famous fractional complex transform [47,48].
Substituting Eqgs (7) and (8) into Eq. (3), we have

Q(w, u’,u”, ..) =0, 9
herew = % 7= & .. he polynomial f
whereu’ = Gz, u” = gz -, Q present the polynomial func-

tion that contains u and the derivatives of u with respect
to €.

Step 2: Expressing the solution of ordinary differential
Eq. (9) as a polynomial form of ¥:

u@) = Y ayi'(), (10)

i=0
where ¥ = () conforming to the following Riccati
equation:

Y=g+ Y (11)

where ¢ is an arbitrary constant and ;(i = 0, 1, 2, ...,n) are
the indefinite constants. And by equating the highest order
of the nonlinear term with that of the derivative term, the
value of the positive integer n can be found. For i, the
following three types of solutions are determined
according to different values of the constant &:

Y = -J-¢tanhv=¢€¢, <0,
Y = —J-egcothv=¢€é, €<0,
w=\/Etan\/Ef, 8>0: (12)
Y = JecotJEE, €>0,
w = —%’ e=0.

Step 3: Substituting Eq. (10) into Eq. (9), using Eq. (11) to
iterate and combining the terms of &, which has the same
power, setting the coefficients and constant terms of each
power to zero. Then, we obtain the over-determined alge-
braic equations about L k,L,e and a; (i =0,1,2, ...,n).
Finally, we acquire multiply different types of exact solu-
tions about Eq. (3) by calculating the parameters and sub-
stituting into Eq. (10).

3 Exact solution of the fractional
Phi-4 model

Employing the subsequent traveling wave transformation:
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u(x, t) = u(f),
__ ke ke
" T+l T+’

(13)

¢

the original Eq. (1) is transformed into a nonlinear
ordinary differential equation:

L2k%u” - L*1%u” + a®u + bu® = 0, (14)

balancing term “u3,” which is the highest order derivative

and the nonlinear term “u”,” we obtain n = 1. Thus, Eq. (10)
becomes

u(€) = ag + ap(é). 15)

If we substitute Eqs (11) and (15) into Eq. (14) and then
combine the same power terms of ) and set its coefficient
to zero, we obtain the nonlinear algebraic overdetermined
systems around ag, a;, a, b, , k, L, and €:

ag(a® + agh) = 0,

a® + 3(ap)®h + 2(k? - 1)I% = 0,
3ag(@)*h = 0,

(@)% + 2a,(K? - [)I% = 0.

(16)

Solving the aforementioned set of equations using
Mathematica, the results can be obtained:
Case 1.

\/E [-K2I2 + [2[2 oo a?
N ’ 2k? - B)I2

According to the solution, in order for the original
equation to have an accurate solution of real numbers,
there must be |I| > |k| and [, k # 0. Therefore, in Case 1,
according to the different values of &, we have

(D When a = 0, € = 0, which produce

2 _ 12
w(® = 1, =12 %

kte
[(a+1)’

ap =0, a=-

e=0, 17
where & = %
and || > |k| # 0.
The numerical simulation image of w(¢) is shown in
Figure 1.
(II) When a # 0, € > 0, which produce

l, k are the arbitrary constants

a

a
() = ——F=tan———===¢, €>0,
’ Vb LB - k) 8)
U(8) = ———cot——a &, >0
’ b LA -k) S
where & = ﬁ % I, k are the arbitrary constants
and || > |k| # 0.

The numerical simulation images of u,(¢) and u3(¢) are
shown in Figure 2.

DE GRUYTER

Figure 1: Three-dimensional plot of u;(¢) in Case 1 for a = %, a=0,
b=k=L=1and![=2.

Case 2.

V2 K2 + 1212 oo a
Jb T k- L
Similarly, there must be|l| > |k| and [, k # 0. Therefore,

in Case 2, according to the different values of €, we have
() When a = 0, € = 0, which produce

GO
ug(é) =-L R

ap=0, a=

&= 0’ (20)

where & = % % [, k are the arbitrary constants
and || > |k| # 0.

The numerical simulation image of uy(¢) is shown in
Figure 3.

(I1) When a # 0, € > 0, which produce

Us(E) = —=tan————xf, £>0
N RN TS R @

() = —=cot— e,
Jb T L2(1% - K?)

kte
T(a+1)’

e>0, (22)

where & = T l, k are the arbitrary constants
and |l > |k| # 0.

The numerical simulation images of us(¢) and ug(¢§)
are shown in Figure 4.

4 Exact solution of the conformable
fractional Boussinesq model

Supposing that u(x, t) = u(¢), where ¢ is given by Eq. (8).
Then, Eq. (2) can be turned into the following equation of
ordinary differential equations (ODES):

L2k + LAlPu” + LA2(u2)” + LA%u®™ = 0. (23)
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Figure 2: Three-dimensional plots of uy(&) and us(&) in Case 1 for a = %, a=b=k=L=1andl=2.

u4(§)

Figure 3: Three-dimensional plot of u4(¢) in Case 1 for a = %, a=0,
b=k=L=1andl=2.

Integrating twice and the integral constant is equal to
zero, Eq. (23) turns into

kK + Pu + PPu? + L2 = 0. (24)

This equation with a quadratic nonlinearity has some
amazing properties as discussed in the study by He and Liu
[49]. Balancing the term “u?” and the term “u”,” we obtain
n = 2. Thus, Eq. (10) becomes

u@) = ao + ap(§) + ayp*(©).

Substitute Eqgs (11) and (25) into Eq. (24), and collect all
terms with the same power of . Equating each coefficient
to zero yields the following set of algebraic equations for
Ao, Ay, Ay, l, k, L, and €:

(25)

all? + ag(k® + 12) + 2a,1*1%e* = 0,
ay(k? + 2(1 + 2ay + 21%1%)) = 0,

all? + ay(k? + 1% + 2a0l* + 81%L%) = 0,
ml¥(ay + 1212 = 0,

(26)

a + 61212 = 0.
Solving the aforementioned algebraic equations, we obtain:
Case 1.
K2+ 12 K2+ 12
ap = O =0, a-= —GIZLZ, E= _—4I4L2 <0,
which produces
kK2+12 3k:+1% VK + [
_ _ h2 @27
ul(E) le 212 tan ZIZL E’ E< O;
K2+ 12 3(k*+1%) Vk2 + 2
= - thz <0 (28)
uZ(f) 212 212 co ZIZL E; 3 ’
where & = r(g f1) %, I, k are the arbitrary constants
and [, k # 0.

For more convenience, the graphical representations
of Eq. (27) and Eq. (28) are shown in Figure 5.

Case 2.
(k% + 1%) K2+ 12
ap = —2—12, a =0, a=-62 ¢= W >0,
which produces
3(k%+ 1% VK + 2
(@) = ———g—se ——¢, e>0, (29
3(k2+ 1% VK + 2
us(é) = - e csc? Lo €7 0, GO
where & = r(g( f D r(’::l)’ I, k are the arbitrary constants

and [, k = 0.
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Figure 4: Three-dimensional plots of us(¢) and ug(¢) in Case 1 for a = %, a=b=k=L=1andl=2.
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[T

Figure 5: Three-dimensional plots of u3(§) and u(§) in Case 1 of Eq. (2), witha = f =

100
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Figure 6: Three-dimensional plots of u3($) and u,(¢) in Case 2 of Eq. (2), witha = = %, l=k=L=1.
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Figure 7: Nanofluid in a micro-channel.

The graphical representations of Egs (29) and (30) are
shown in Figure 6, respectively.

5 Discussion and conclusion

As illustrated earlier, the dynamical properties of nanofluids
can be controlled by the fractional order. Nanofluids have
been successfully applied to fractal pattern dynamic [50],
fractal financial system [51], and MEMS systems [52], where
the nanoparticles or nanoparticle-induced boundaries play
an important role in the systems’ efficiency and reliability.
For instance, when a nanofluid flows through a nano/micro-
device as shown in Figure 7, it can significantly enhance the
thermal conduction, thereby enabling the temperature to be
maintained below an unsafe threshold.

As shown earlier, the dynamical properties of a nano-
fluid are a function of ¢t and x#, rather than ¢t and x. The
values of @ and § can be determined by the He-Liu fractal
dimension formulation [53], which allows for the reflection
of the nanoparticles’ size and distribution. This is not
possible in traditional fluid mechanics, and it can save a
significant amount of time during theoretical analysis com-
pared to the multi-scale numerical approach to the two-
phase fluid [54].

This article focuses on nanofluids and applies the mod-
ified extended Tanh function technique to solve two clas-
sical fractional Schrédinger equations in fluid mechanics:
the Phi-4 fractional model and the conformal fractional
Boussinesq model. The exact solutions of these two equations
are presented graphically. These solutions have direct prac-
tical applications in the field of nanofluids. We posit that this
article offers numerous opportunities to advance the devel-
opment of nanofluids and can serve as a good example for
future research.
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