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Abstract: Spacecraft models that mimic the Planck satel-
lite’s behaviour have produced information on cosmic
microwave background radiation, assisting physicists in
their understanding of the composition and expansion of
the universe. For achieving the intended formation, a frame-
work for a discrete fractional difference spacecraft model is
constructed by the use of a discrete nabla operator of vari-
able order containing the Mittag–Leffler kernel. The efficacy
of the suggested framework is evaluated employing a
numerical simulation of the concerning dynamic systems
of motion while taking into account multiple considerations
such as exterior disruptions, parameterized variations,
time-varying feedback delays, and actuator defects. The
implementation of the Banach fixed-point approach pro-
vides sufficient requirements for the presence of the solu-
tion as well as a distinctive feature for such mechanisms
Furthermore, the consistent stability is examined. With the
aid of discrete nabla operators, we monitor the qualitative
behavioural patterns of spacecraft systems to provide justi-
fication for structure’s chaos. We acquire the fixed points of
the proposed trajectory. At each fixed point, we calculate the
eigenvalue of the spacecraft system’s Jacobian matrix and
check for zones of instability. The outcomes exhibit a wide
range of multifaceted behaviours resulting from the inter-
action with various fractional orders in the offered system.
To maintain stability and synchronize the system, nonlinear
controllers are additionally provided. The study highlights
the technique’s vulnerability to fractional-order factors,
resulting in exclusive, changing trends and equilibrium fra-
meworks. Because of its diverse and convoluted behaviour,
the spacecraft chaotic model is an intriguing and crucial
subject for research.

Keywords: spacecraft model, fractional difference equation,
chaotic attractors, actuator fault, Fault-tolerant system

1 Introduction

Chaotic systems are extremely responsive to initial condi-
tions (ICs). The phenomenon is frequently referred to as
the butterfly influence [1]. Chaos synchronization has gar-
nered a lot of consideration in scientific circles since
Pecora and Carroll [2] developed the notion of chaotic syn-
chronization under various ICs. The concept behind syn-
chronization is to take advantage of the data generated by
the centralized system to regulate the slave mechanism
and guarantee its results adhere to the production of the
acquire mechanism asymptotically. One of the most crucial
uses of chaos is the synchronization of multiple chaotic
dynamical structures. Over recent decades, chaotic syn-
chronization has emerged as an intriguing topic within
the arena of scientific disciplines owing to its broad range
of conceivable uses in fields including chemical processes,
circuit theory, aeronautical engineering, image processing,
photonics, optics, cyber security, electromagnetic flux, elas-
ticity, and fluid systems [3]. For tackling the synchroniza-
tion of alike or non-similar master-slave chaotic structures,
many techniques are being developed, including active super-
vision techniques, adaptable control approaches, fuzzy over-
sight procedures, back-stepping design techniques, impulsively
regulation approaches, automatic control processes, parametric
feedback controlling techniques, and many more [4,5].

Whenever the settings are unidentified or change over
time, adaptive synchronization is used to synchronize the
same or non-identical mechanisms. Wang et al. [6] inves-
tigated responsive synchronization for a Chen chaotic
structure via entirely unresolved factors. Lin et al. [7] con-
templated the dynamic, powerful observer-based synchro-
nization of unilaterally complemented chaotic networks
with an unidentified transmit time delay. Fan et al. [8]
presented synchronization of a family of chaotic systems
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based on adaptive control design of input-to-state stability.
Chen et al. [9] expounded the hidden extreme multistability
and synchronicity of memristor-coupled non-autonomous
memristive Fitzhugh–Nagumo models.

Spacecraft emergence display was recently recognized
as an enabler electronic device for numerous subsequent
years of missions into outer space [3,4]. This system pro-
vides multiple positive effects over an individual rocket
task, involving the capacity to boost and/or facilitate out-
reach by means of deeper starting point assessments, a
high rate of failure tolerance, real-time reconfigurability,
adaptability to extremely fluctuating requirements, and
lesser lifetime expenses [10]. Nevertheless, from spacecraft
formation setup to transformation, interaction, and pattern
generation, the entire process presents enormous obstacles
[11]. For deeper patterns, spacecraft substance, dominance,
energy, and interactions pose substantial barriers and orien-
tation, transportation, and operational obligations become
exceedingly complex [12–14]. Environmental perturbations
resulting from the force of gravity disruption, ambient drag,
ultraviolet (UV) stress, and electromagnetism may cause the
spacecraft to takeoff [15]. To address these issues, novel
techniques for accomplishing spacecraft creation constella-
tions while minimizing location maintenance necessities are
being requested. The manoeuvring of spacecrafts in their
navigation is critical to security forces, courteousness, and
research endeavours. Spacecraft framework synchroniza-
tion is an active academic field [16,17]. Several methods
and procedures were implemented to synchronize and reg-
ulate non-linear phenomena (spacecraft attitude), specifically
responsive oversight, proactive surveillance, and control using
sliding mode [18,19]. The adaptable synchronization of space-
craft behaviour and momentum-based systems are compli-
cated topics. The spacecraft behaviour framework includes
unpredictability and disruptions (both exterior and interior).
It is a redundant torque structure. The disruptions in the out-
ermost layer may encompass streamlined experiences, ultra-
violet ray-compelled tensions, gravitation gradient forces, and
electromagnetic instances, whereas internal fluctuations can
embrace parameter unpredictability [20–22]. Spacecraft
mechanism synchronization is currently employed in con-
temporary space-purpose theories featuring multiple space-
crafts constellations with details. This is addressed by the
synchronization regulation system, which regulates the var-
iation in oversights within spacecraft constellations. The
objective is to determine the advanced version of adaptive
synchronization that motivates spacecraft constellations
asynchronously regarding identical briefings [23,24].

In the last century, discrete fractional (DF) calculus has
grown up as an appealing study field that has sparked the
fascination of researchers from multiple fields [25–32].

Their uses range from biological science to environmental
science to practical scientific fields, providing useful under-
standing of contemporary issues [27,33]. In contrast to clas-
sical non-fractional networks, fractional platforms have
proven their capacity to specify multifaceted chaotic events
with more precision [34,35]. It highlights their distinctive
features, such as persistent memory, transparency, and
adaptability. There is currently an increase in the number
of articles presented on this fascinating subject [36,37]. Pérez
et al. [38] proposed fractional algorithms that take into
account order as an indicator of space and time or addi-
tional factors. There are also processes for such fractional
V–O formulations in [39–42]. Because variable-order (V–O)
fractional differential equations are unable to be addressed
precisely, establishing computational methods to resolve
them is critical. Pérez et al. proposed a constant-order quan-
titative method combining fractional calculus and Lagrange
polynomials in [38]. They generalized mathematical strate-
gies for modelling V–O fractional differential operators
regarding index, exponential, and Mittag–Leffler functions,
employing the aforementioned technique [43–48].

Stability hypothesis is an extensive discipline in tech-
nology and other allied areas that studies the behaviour of
dynamic structures in both linear and non-linear frame-
works [49]. On the contrary, substantial advancement has
been achieved concerning the stability methodology for
fractional order difference equations in recent years [50].
Nonetheless, the comparable concept of a discrete-time
fractional-order system continues to evolve in an intri-
guing manner. In addition to this, the different kinds of
durability discussed for this sort of equipment are the infi-
nite and finite stability investigated in [49,50] for discrete
fractional-order difference models with non-linearities as
well as time interruptions. Furthermore, You et al. [51]
investigated Mittag–Leffler stability for fractional discrete-
time systems using a fixed-point strategy. Pratap et al. [52]
provided a class of fractional-order discrete-time complex-
valued neural networks with temporal delays while addres-
sing multiple stability specifications. In addition, Huang
et al. [53] discuss the asynchronous stability of discrete frac-
tional-order neural networks and offer a novel algorithm for
V–O neural networks.

Numerous researchers have proposed innovative for-
mulations of discrete-time fractional calculus that have
stability properties and multiple empirical results [54,55].
In particular, Abdeljawad [56] discussed the delta and nabla
Caputo fractional differences and dual identities. Abdel-
jawad [57] offered groundbreaking research that explored
the various kernels for h-fractional differences and their
fractional sums. As a consequence, this research has opened
pathways for the formation of additional chaotic dynamics [57].
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Abdeljawad [58] expounded the fractional difference opera-
tors with discrete generalized Mittag–Leffler kernels. Also, it
investigates multiple influence methods and synchroniza-
tion schemes constructed to synchronize the connections
of various fractional discrete chaotic environments
[59–65]. These research investigations revealed that the
mechanism’s behaviour is greatly reliant on the fractional
order picked out, highlighting its dynamic and convoluted
form, making it an exciting area for research in the disci-
pline of fractional approaches [66–72].

In fact, most former spacecraft model studies have con-
centrated on classical calculus. Unfortunately, the scientific
investigation of discrete fractional spacecraft models is still
insufficient, with little research devoted to investigating
their behaviour and attributes. Tsui and Jones [73] explored
the control of higher-dimensional chaos in spacecraft atti-
tude control problem. Kuang et al. [74] expounded the
chaotic attitude motion of spacecrafts under small perturba-
tion torques. Furthermore, Kuang et al. [75] contemplated
the chaotic dynamics of an asymmetrical gyrostat. Kong
et al. [76] described the control of chaotic attitude motion
of a perturbed spacecraft, while Kumar et al. [77] investi-
gated controlling and synchronization of a fractional-order
chaotic spacecraft model. The research emphasizes the fra-
mework’s challenging and diverse behaviour, emphasizing
the importance of fractional aspects in the sophistication
and adaptability of spacecraft models. A great deal of the
prior study concentrated mainly on commensurate-order
theories in continuous-time fractional-order models. Yet it
seems that there is a substantial dearth of research
regarding the influence of the incommensurate scenario
on the fluidity of these models. Indeed, incommensurate
order is a subset of a fractional-order structure defined by
revealing the order for which the formula differs. As a
result, the simulation’s liberty strengthens. This points to
an unresolved issue in the discipline of discrete models,
especially within the setting of incommensurate fractional
systems. Recognizing the functioning and features of incom-
mensurate fractional spacecrafts may provide significant
discoveries and prospective uses in a wide range of fields,
including neural structures, technology, artificial intelli-
gence, viscosity, control research, cognitive behaviour, and
numerous others [20,78,79]. As a result, additional inquiry
and exploration on this subject are required to identify the
distinctive features and conceivable advantages of incom-
mensurate fractional spacecraft models. It is pertinent to
mention that research on discrete models with V–O has
yielded inadequate findings. Huang et al. [53] investigated
a type of variable-order recurrent neural network under the
Caputo h-discrete fractional operator using fixed-point tech-
niques and Mittag–Leffler stability specifications.

Motivated by the prior argumentation, the goal of this
article is to investigate and evaluate the dynamic practices
of the discrete fractional spacecraft system, which includes
variable exponents. By means of an amalgamation of quan-
titative and qualitative inspections, we execute an exten-
sive review of the key features of this discrete fractional
spacecraft model. Moreover, we have established the exis-
tence and uniqueness of the proposed model to verify its
efficacy. We investigate the chaotic behaviour of spacecraft
constellations using multiple techniques, including dissipa-
tivity, fixed points, Poincaré maps, and actuator faults. The
suggested system’s dissipative nature (strange attractor) is
defended. We acquire the proposed model’s fixed points,
and at every fixed point, we notice that a single of the eigen-
values of the spacecraft system’s Jacobianmatrix is non-nega-
tive, confirming the zone of instability. By using the oversight-
control procedure, we determine the synchronization of two
equivalent spacecraft constellations. These investigations pro-
vide fresh perspectives on the functioning of spacecraft net-
works. GPS systems, telecommunications, planet perception,
and climate prediction, can all benefit from measurements.
This shows the distinctiveness of our work.

The article is organized as follows: in Section 2, we
outline the discrete fractional spacecraft system and pro-
vide key introductory notions concerning discrete frac-
tional calculus. Section 3 presents a qualitative analysis
of the system architecture, focusing on its facts, which is
followed by an explanation of the configuration’s design
specifications in the second section. The dissipativeness of
the system, Lyapunov exponent calculation, and phase
depictions aid in this inquiry. Section 4 explores the exis-
tence and uniqueness of the discrete fractional spacecraft
model. Section 5 entails applying the commensurate and
incommensurate orders to determine variability and verify
the existence of chaotic patterns in the system. In Section 6,
we developed the robust controller model technique and
synchronization has developed in view of the master and
slave systems. Section 7 ends the work by indicating poten-
tial research goals.

2 Preliminaries and model
description

Here, the terminology for discrete fractional calculus is offered
in this part, accompanied by the subsequent notations:
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Definition 2.1. [80] For �( ) ( ]∈ ∈β ϖ t0, 1 , .d Suppose there
is a mapping � �↦Φ : ,d we state the nabla fractional sum
with order β
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where the rising mapping is defined as �
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Definition 2.2. [80] For � �( ) ( )∈ ∕ ∈ ∈β ϖ t t0, 1 2 , ,d d and
there is a mapping � �↦Φ : ,d the left nabla Atangana–
Baleanu–Caputo (ABC) fractional difference is stated as
follows:
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and � ( )xΩ,c d, 3
denoted the nabla discrete Mittag–Leffler
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Definition 2.3. [80] For ( ) ( )∈β ϖ 0, 1 and assume that
there is a left fractional sum of discrete nabla ABC-frac-
tional V–O operator is defined as follows:
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where ωι signified the eigenvalue.

Lemma 2.1. Suppose there is a �∈ +ϖ ,d 1
then the subse-
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Proof. For the first step with, we have
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Setting ( ) ( )= − + − = −κ ϖ κ β ϖ ι β ϖ1, 1, we find
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For all { }∈ + −κ ϖd 1,…, 1 , we find
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Thus, we find
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This completes the proof. □

Next, the rotational motion of the formula for a stead-
fast spacecraft [82] can be written as follows:

= θ,I� (2.14)

where � denotes the aggregate amount of momentum
performing on the the spacecraft and I signifies the inertia
matrix and θ is the rotational velocity.

The differentiation of the entire momentum � can be
expressed as follows:
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context of differential equations as follows:
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The formula for a three-dimensional in the form of chaotic
spacecraft mechanism is:
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The spacecraft structure in all three planes has been
reformulated as follows:
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where the values of = =χ χ0.4, 0.175
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.
Furthermore, we present the ABC-discrete fractional

form of the spacecraft model (2.20) as follows:

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

∇ = −

+ =

∇ = − +

=
∇ = −

− =

ϖ ϖ ϖ χ ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ χ ϖ

ϖ ϖ

ϖ ϖ ϖ ϖ

χ ϖ ϖ ϖ

x x x x

x x

x x x x

x

x x x x

x x

1

3

1

6

, ,

, ,

6

, ,

ϖ
β ϖ

ϖ
β ϖ

ϖ
β ϖ

d

d

d

ABC

1 2 3
1

1

3 1 1

ABC

2 1 3
2

2

2 2

ABC

3 1 2 1

3
3 3 3

�

�

�

( ) ( ) ( ) ( )

( ) ( ( ))

( ) ( ) ( ) ( )

( ( ))

( ) ( ) ( ) ( )

( ) ( ( ))

( )

( )

( )

(2.21)

with the aforesaid parameters and ∇ϖ
β ϖ

d

ABC ( ) denotes the AB-
discrete fractional difference of the Caputo type with V–O

∈β ϖ 0, 1( ) ( ) and = − +β ϖ β ϖ1 .

β ϖ

β ϖΓ

�( ( )) ( )
( )

( ( ))

3 Qualitative analysis of fractional
spacecraft model

This section investigates the requirements for dynamical eva-
luations of the discrete fractional spacecraft model (2.21),
including dissipativity of the system, fixed points, invariancy
of the x

2
-axis, and maximum Lyapunov exponents Ω .

max

3.1 Existence of dissipativeness

Here, the vector representation of (2.21) can be described
as follows:
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( ( ))

( ( ))

( )

( )

( )

( )∇ + −

= + − =
⎛

⎝
⎜⎜

⎞

⎠
⎟
⎟

ϖ β ϖ

ϖ β ϖ

Y

x x x

x x x

x x x

1

Θ
˜

1

Θ , ,

Θ , ,

Θ , ,

,

ϖ
β ϖ

d

ABC

1 1 2 3

2 1 2 3

3 1 2 3

(3.1)

where ( ( )) ( )+ − =ϖ β ϖY x x x1 , ,
1 2 3

and

( )

( ) ( ) (ℓ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

= −

+ −

= − + −
= − −

⎞

⎠

⎟
⎟
⎟
⎟
⎟

τ χ τ

τ τ

τ τ χ τ τ

τ τ τ χ τ

x

x x x x x x

x x

x x x x x x x

x x x x x x x

Θ
˜

Θ , ,

1

3

1

6

Θ , ,

Θ , , 6

,
1

1 1 2 3 2 3
1

1

3 1

2 1 2 3 1 3
2

2 2

2 1 2 3 1 2 1
3

3

(3.2)

where = =χ χ0.40, 0.175
1 2

, and =χ 0.4
3

. We examine a par-
ticular �( ) ∈ϖΛ

3 domain containing a uniform boundary
and ( ) ( )=ϖΛ Θ Λϖ , where Θϖ is the flow velocity of Θ

˜ .
Assume that �( )ϖ indicates the volume of ( )ϖΛ .

Making the use of Liouville’s theorem, we have

�( ) ( )

( )

∫= ∇ϖ x x x˙
. Θ

˜
d d d .

ϖΛ

1 2 3 (3.3)

Thus, the divergence of the spacecraft model (2.21) is
expressed as follows:

∇ = ⎡⎣⎢
∂
∂

+
∂
∂

+
∂
∂

⎤
⎦⎥ = − + −

= −

χ χ χ
x x x

. Θ
˜

Θ Θ Θ

0.625.

1

1

2

2

3

3

1 2 3 (3.4)

In view of (3.3) and (3.4), we attain the fractional difference
equation as follows:

�

�

( ( ))

( ( ))

( )∇ + −

= − + −

ϖ β ϖ

ϖ β ϖ

1

0.625 1 .

ϖ
β ϖ

d

ABC

(3.5)

The solution of (3.5) can be described as follows:

� �( ) ( ) ( )= −ϖ ϖexp 0.625 0 . (3.6)

Thus, the volumes of the beginning points decreased by exp

in relation to time ϖ . �( ) ↦ϖ 0 when ↦ ∞ϖ , ϖ increases
at a pace that is exponential. This system’s constraints are
confined to the particular limit set that includes zero volume.
The strange attractors influence the asynchronous action of a
discrete fractional spacecraft model (3.6). It denotes that the
framework (2.21) exhibits chaotic pattern, see Figure 1. This
supports the existence of dissipative creation in discrete frac-
tional spacecraft systems (2.21).

3.2 Equilibrium points

To investigate the dynamics of (2.21), we initially obtain the
equilibrium points. First, we described the following
lemma, which is mainly due to Matignon [83].

Lemma 3.1. [83] Assume that there is a equilibrium point Y
0

of the fractional-order-system and the eigenvalues of Jaco-
bian matrix at the associated fixed points verifies the sub-
sequent assumptions:

I

R
�∣ ( ( ( )))∣

( )

( )
⎟⎜ ⎜ ⎟< ∕ ⇒ >

⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠

eig ω βπ β
π

ω

ω
arg 2 max

2

arctan .ι
ι

ι

To identify the fixed points, address the subsequent
expressions in (2.21) equating to zero as follows:

(ℓ) (ℓ) (ℓ) (ℓ) (ℓ)

(ℓ) (ℓ) (ℓ) (ℓ)

(ℓ) (ℓ) (ℓ) (ℓ)

⎧

⎨
⎪

⎩
⎪

= − + −

= − + −
= − −

b

x x dx x x

x x x x

x x x cx

0

1

3

1

6

,

0 ,

0 6 .

2 3 1 3 1

1 3 1 2 2

1 2 1 3

(3.7)

The expression has the fixed points:

( ) ( )

( )

( )

( )

= =
= − −
= − −
= − −

E E

E

E

E

˜
0, 0, 0 ,

˜
1.1910, 2.5766, 0.3785 ,

˜
0.1582, 1.3641, 1.5086 ,

˜
0.1582, 1.3641, 1.5086 ,

˜
1.1910, 2.5766, 0.3785 .

T T

T

T

T

0 1

2

3

4

Therefore, the Jacobian matrix of the system (2.21) is
defined as follows:

�( ) =
⎛

⎝

⎜
⎜

− + ∕
− −

− −

⎞

⎠

⎟
⎟

χ

χ

χ

Y

x x

x x

x x

0.33 0.33 1 6

6

.

1
3 2

3
2

1

2 1
3

(3.8)

The expression (3.8) at ( )=E˜ 0, 0, 0
0

can be described as follows:

� =
⎛

⎝
⎜
−

− −

⎞

⎠
⎟

0.4 0 0.4082

0 0.175 0

2.45 0 0.4

.E˜
0

(3.9)

At ( )=E˜ 0, 0, 0 ,
0

the eigenvalues = − ±ω ι0.40 0.99
01,02

and
=ω 0.175

03
demonstrate that E˜

0
is a saddle-focus fixed

point. It signifies a destabilized region.
The expression (3.8) at ( )=E˜ 1.1910, 2.5766, 0.3785

1
can

be described as follows:

� =
⎛

⎝
⎜
−
− −

−

⎞

⎠
⎟

0.40 0.124 1.26

0.379 0.175 1.191

0.127 1.191 0.40

.E˜
1

(3.10)

At ( )=E˜ 1.1910, 2.5766, 0.3785 ,
1

the eigenvalues =ω
11

− = +ω ι0.7999, 0.0875 1.2075
12

, and =ω
13

− ι0.0875 1.2075

demonstrate that E˜
1
is a saddle-focus fixed point. It sig-

nifies an destabilized region.
The expression (3.8) at ( )= − −E˜ 0.1582, 1.3641, 1.5086

2

can be described as

� =
⎛

⎝
⎜
− − −

−
− −

⎞

⎠
⎟

0.40 0.498 0.042

1.509 0.175 0.158

3.814 0.158 0.40

.E˜
2

(3.11)
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At ( )= − −E˜ 0.1582, 1.3641, 1.5086 ,
2

the eigenvalues =ω
21,22

± ι0.0875 0.8766 , and = −ω 0.80
23

demonstrate that E˜
1
is a

saddle-focus fixed point. It signifies again an destabilized
region.

Analogously, at ( )= − −E˜ 0.1582, 1.3641, 1.5086 ,
3

the
eigenvalues = ±ω ι0.0875 0.8766

31,32
and = −ω 0.80,

33
and

( )= − −E˜ 1.1910, 2.5766, 0.3785 ,
4

the eigenvalues =ω
41

−0.7999 and = ±ω ι0.0875 1.2075
42,43

demonstrate that E˜
3

and E˜
4
are saddle-focus fixed points. It identifies destabi-

lized region. It has been illustrated in Figure 2.

3.3 The invariancy of x2-axis

According to discrete fractional spacecraft model (2.21), it is
worth mentioning that when ( ) ( )= =x x0 0 0,

1 3
then x

1
and

x
3
stay zero �∀ ∈ +ϖ .d 1

Therefore, x
2
-axis signifies an

orbit, which can be expressed as

( ( )) ( )( )∇ + − =ϖ β ϖ χ ϖx x1 ,ϖ
β ϖ

d

ABC

2
2

2

which yields

( ) ( ) ( )= = =ϖ χ ϖx x x xexp 0 , for 0.
2

2
2 1 3

(a)

-5 -4 -3 -2 -1 0 1 2 3 4
u

-2

-1

0

1

2

3

4

5

6

7

v

(b)

-4 -2 0 2 4 6 8
v

-6

-4

-2

0

2

4

6

w

(c)

-5 -4 -3 -2 -1 0 1 2 3 4 5
u

-6

-4

-2

0

2

4

6

w

(d)

Figure 1: Phase portraits for 3D and 2D for fractional-order spacecraft model (2.21) with fractional-order =β 0.96.
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As a result, the x
2
-axis is an integral component of the

unsteady manifold at the starting point of fixed points.

3.4 Maximum Lyapunov exponents (Ωmax)

Employing the system parameters for = =χ χ0.40, 0.175
1 2

,
and =χ 0.40

3

, the Ω
max

of discrete fractional spacecraft
model (2.21) at =σ 100 can be determined using MATLAB
2023 as: = =L L0.13959, 0.00804

1 2
, and = −L 0.77267

3
.

When we calculate the Ω
max

for the discrete fractional space-
craft system (2.21), we observe that one is non-negative, other
is negative, and one is generally zero, indicating an essential
prerequisite for system chaos. It proves that the spacecraft
structures are chaotic. Figure 1 depicts it. Here, =L 0.13959

1

is the Ω
max

of spacecraft system (2.21). The total number
of Lypunove exponents is calculated as + + =L L L

1 2 3

− <0.604 0. Finally, spacecraft model (2.21) is dissipative.

4 Existence and uniqueness

Consider the following ABC-discrete fractional variable
order system is presented as follows:

�

�( )( ) ( ( ))

{ } ( )

( )∇ =

∈ = + + =

=

y ϖ ϖ y ϖ

ϖ y

ι

d d d T d d

, ,

, 1, 2, …, , ,

1, 2, 3.

ϖ
β ϖ

ι ι

ι

d

d
T

ABC

1

0

(4.1)

such that ( )≡T d mod 1 , � ( ( )) =d x d, 0
1 2

,
�

�
( )

( ( ))

⎛
⎝
− β ϖ

β ϖ

1

+

�

( )

( ( )) ( ( ))

( ) ⎞
⎠ <

−
1

β ϖ β ϖ

T d

Γ

β ϖ

, and � � �∣ ( ) ( )∣− ≤t x t y, ,
1 2 1

2

∣ ∣−x y ,
2

2

� > 0, where � � �� × ↦: bd1 ,
1

and � �↦x : .bd2 ,
1

Then, the system (2.21) has a unique solution of the form

�( ) ( ( ))= + ∇−x t d t x t, .βd2 0

AB

1 2
(4.2)

�( )
1
For every � +ϖ d 1 and suppose there is a continuous

mapping ( )ϖ μℏ , ,ι which is Lipschitz with respect to μ,
�ℓ∃ ∈ +
∗

ι as follows:
�∣ ( ) ( )∣ ℓ∣ ∣− ≤ − ∀ ∈ϖ μ ϖ ν μ ν μ νℏ , ℏ , , , ,ι ι ι (4.3)

where ℓ {ℓ}= =max .ι ιm1, … ,

�( )
2

For all �∈ +t d
T

1
= { }+ +d d T1, 2,…, , there is

�� ∈ +
∗

ι and � < =ι1, 1, 2, 3ι such that

�

�

�

( )
( )

( )

( )

( )( )

( )
( )

( )

( )

( )( )

( )
( )

( )

( )

( )( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

=
⎛
⎝
− +

− ⎞
⎠ − +

=
⎛
⎝
− +

− ⎞
⎠ − +

=
⎛
⎝
− +

− ⎞
⎠ − +

ω
β

ω ω

ω β ω

ω
β

ω ω

ω β ω

ω
β

ω ω

ω β ω

T d

T d

T d

1

Γ

Γ

Γ 1

,

1

Γ

Γ

Γ 1

,

1

Γ

Γ

Γ 1

,

β

β

β

1

1

2

2

3

3

(4.4)

where ‖ ‖= ∞ω x
1 1

, ω
2

= ‖ ‖∞x
2

, and ω
3

= ‖ ‖∞x
3

with
( ) [ ]∈β ϖ ω β, .

Theorem 4.1. Suppose assumptions �( )
1

and �( )
2

satisfy,
then ABC-discrete fractional V–O spacecraft model (2.21)
has unique solution.

Proof. In view of ABC-discrete fractional VO characteriza-
tion, then a solution of (2.21) is

�

�

�

�

( )
( )

( ( ))
[ ( ( ))]

( )

( ( ))
[ ( ( ))]( )

= +
−

+ ∇−

ϖ
β ϖ

β ϖ
ϖ ϖ

β ϖ

β ϖ
ϖ ϖ

x x x

x

1

,

, .ϖ
β ϖ

d

1 10 1 1

1 1

(4.5)

By implemented the following norm;

�

∥ ∥ ∥ ( )∥

∥ ( )∥ ∣ ( )∣
ℓ

ℓ

=

=
∈

=

+

ϖ

ϖ ϖ

x x

x x

sup and

max .

ϖ

m

1 1

1

1, … ,

1

d
T

1 (4.6)

Therefore, (4.5) can be transformed into a fixed problem.
Take into account the subsequent mapping:

�

�

�

�

( )( ) ( )
( )

( ( ))
[ ( ( ))]

( )

( ( )) ( ( ))

( ( )) [ ( ( ))]( )

∑

= +
−

+

× −
= +

−

ϖ
β ϖ

β ϖ
ϖ ϖ

β ϖ

β ϖ β ϖ

ϖ ρ κ κ κ

x x x

x

Φ 0

1

,

Γ

, ,

κ

ϖ

β ϖ

d

1 1 1 1

1

1

1 1

(4.7)

where xΦ
1
= ( )x x xΦ , Φ ,…, Φm m1 1 2 12 1

and ℓ ℓxΦ
1

is stated as:

j

j j

j

j j

�

�

�

�

( )
( )

( ( ))
( ( ))

( )

( ( )) ( ( ))

( ( )) ( ( ))

ℓ ℓ ℓ

( )

∑

∑

∑

= +
−

+

× −

=

= +

−

=

ϖ
β ϖ

β ϖ
ϖ ϖ

β ϖ

β ϖ β ϖ

ϖ ρ κ κ κ

x x x

x

Φ

1

,

Γ

, .

κ

ϖ

β ϖ

m

d

m

1 1 0

1

1 1

1

1

1

1 1

(4.8)

Figure 2: Stabilized zone for fractional-order system.
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For every pair of distinct mappings �∈ϖx , ,

m
1

we have

j

j j

j j

j

j j j j

j

j j

j j

j

j j j j

�

�

�

�

�

�

� �

�

�

� �

∣ ( ) ( )∣

( )

( ( ))
( ( ( ))

( ( )))

( )

( ( )) ( ( ))
( ( ))

( ( ( )) ( ( )))

( )

( ( ))
∣( ( ( ))

( ( )))∣

( )

( ( )) ( ( ))
( ( ))

∣( ( ( )) ( ( )))∣

ℓ ℓ ℓ ℓ

( )

( )

∑

∑

∑

∑

∑

∑

−

=
−

−

+ −

× −

≤
−

−

+ −

× −

=

= +

−

=

=

= +

−

=

ϖ μ ϖ

β ϖ

β ϖ
ϖ ϖ

ϖ μ ϖ

β ϖ

β ϖ β ϖ
ϖ ρ κ

κ κ κ μ κ

β ϖ

β ϖ
ϖ ϖ

ϖ μ ϖ

β ϖ

β ϖ β ϖ
ϖ ρ κ

κ κ κ μ κ

x

x

x

x

x

Φ Φ

1

,

,

Γ

, ,

1

,

,

Γ

, , ,

κ

ϖ

β ϖ

κ

ϖ

β ϖ

m

d

m

m

d

m

1

1

1 1

1

1

1

1

1 1 1

1

1 1

1

1

1

1

1 1 1

(4.9)

which leads us to

�

�

∣ ( ) ( )∣

( )

( ( ))
[ ∣ ( ) ( )∣]

( )

( ( )) ( ( ))
( ( ))

[ ∣ ( ) ( )∣]

ℓ
ℓ ℓ ℓ ℓ

ℓ
ℓ ℓ

( )

ℓ
ℓ ℓ

∑

−

≤
−

−

+ −

× −

=

=

= +

−

=

ϖ μ ϖ

β ϖ

β ϖ
ω ϖ μ ϖ

β ϖ

β ϖ β ϖ
ϖ ρ κ

ω κ μ κ

x

x

x

max Φ Φ

1

max

Γ

max .

κ

ϖ

β ϖ

m

m

d

m

1, … ,

1

1

1, … ,

1

1

1

1

1, … ,

1

(4.10)

Making the use of Lemma 2.1, we have

�

�

�

�

∥ ∥

[ ∣ ( ) ( )∣]

( ) ( )

( )( )

( )

( )( ( )( ) )

( ( )) ∥ ∥

( )
( )

( )

( )

( )( )
∥ ∥

( )
( )

( )

( )

( )( )
∥ ∥

∥ ∥

ℓ
ℓ ℓ ℓ ℓ

( )

( )

∑

⎜ ⎟

−
= −

≤ ⎡
⎣⎢

−
− +

+
+ − +

× −
⎤
⎦⎥

−

≤ − + −

×
− +

−

≤
⎛
⎝
− +

− ⎞
⎠ − +

−

= −

∈ =

∈

= +

−

∈

+

+

+

ϖ

ϖ μ ϖ

ω ω

ω β ω

β ω

β ω β ω

ϖ ρ κ ω ϖ

ω
β

ϖ

ω ω

ω β ω
ϖ

ω
β

ω ω

ω β ω
ϖ

ϖ

x

x

x

d

x

T d
x

x

Φ Φ

sup max Φ Φ

1 Γ

Γ 1

Γ

Γ Γ 1 1

sup

1

1

Γ

sup

Γ

Γ 1

1

Γ

Γ

Γ 1

.

ϖ

ϖ

κ

ϖ

β ϖ

ϖ

β ϖ

β

m

d

1

1, … ,

1

1

1

1 1

1

1

1

1

1 1

d
T

d
T

d
T

1

1

1

(4.11)

Analogously, we have

�

�

∥ ∥ ( )
( )

( )

( )

( )( )
∥ ∥

∥ ∥

∥ ∥ ( )
( )

( )

( )

( )( )
∥ ∥

∥ ∥

⎜ ⎟

⎜ ⎟

− ≤
⎛
⎝
− +

− ⎞
⎠

×
− +

−

= −

− ≤
⎛
⎝
− +

− ⎞
⎠

×
− +

−

= −

ϖ ω
β

ω ω

ω β ω
ϖ

ϖ

ϖ ω
β

ω ω

ω β ω
ϖ

ϖ

x
T d

x

x

x
T d

x

x

Φ Φ 1

Γ

Γ

Γ 1

,

Φ Φ 1

Γ

Γ

Γ 1

.

β

β

2

2

2

2 2

3

3

3

3 3

(4.12)

In view of supposition �( )
2

that � =ι, 1, 2, 3;ι thus, the
mapping Φ is a contraction on � � �( )+ , .d

T m
1

This demon-
strates that discrete fractional spacecraft model (2.21) has a
unique fixed point in accordance to the Banach fixed-point
principle, indicating the uniqueness of the solution, which
concludes our result. □

Our next result is the stability analysis of the discrete
fractional spacecraft model (2.21).

Definition 4.1. [84] For initial time of the discrete variable
order spacecraft model (2.21) having nabla discrete Mittag–Lef-
fler kernel is adjusted as d. For any >ε 0, there are two fixed
terms βε and T, then (2.21) is said to be uniformly stable
if ( )∈ >β ε T0, , 0ε and ∈ϖ � { }= + ++ d d T1, 2,…,d

T
1

and
for every two solutions ( )ζ ϖ d, , Φ and ( )ϖ ϖ ψd, , supplemented
ICs =ζ Φ

0
and =ϖ ψ

0
such that∥ ∥ ∥ ∥− < ⇒ − <ψ β ζ μ εΦ .ε

Theorem 4.2. Assume that the supposition �( )
1

and �( )
2

are satisfied, if

�−
< =

ε

β
ι

1

1

, 1, 2, 3,

ι

(4.13)

then (2.21) is uniformly stable.

Proof. Assume that �( ) ( ) ∈ζ ϖ μ ϖ,

m be two distinct solu-
tions of (2.21) supplemented with ICs ζ

0
and μ .

0

Taking
= ζΦ

0
and = μΦ ,

0

then spacecraft system (2.21) can be
expressed as follows:
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equivalently,
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Considering assumption �( ),
1

we find that
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Furthermore, applying assumption �( ),
2

we have
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(4.17)

Consequently, we have

�
‖ ‖ ‖ ‖− ≤

−
−ζ μ ψ

1

1

Φ .

1

(4.18)

Analogously, we can find
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(4.19)

Thus, we determine that for any >ε 0,
�( )∃ = − =β ε ι1 , 1, 2, 3,ε ι where if ‖ ‖− <ψ βΦ , then

‖ ‖− <ζ μ ε and according to Definition 4.1, (2.21) is uniformly
stable, and thus, the proof is complete. □

5 Numerical experimentation for
the proposed model

In the following part, the focus is on the novel investigation
of how the discrete fractional spacecraft model (2.21) behaves.
The evaluation will include both commensurate and incom-
mensurate orders. We will use a variety of computational
resources for displaying phase portraits and poincaré maps.

5.1 Commensurate V–O

In this section, we will elaborate on the various properties
of the commensurate order for the discrete fractional
spacecraft system (2.21). It is essential to comprehend
that a commensurate-order fractional system consists of
formulas with similar orders. To achieve this, we shall
subsequently provide the numerical calculation, which ori-
ginates from Theorem 4.1 and will be provided as follows:
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(5.1)

Choosing ( ) =x 0 2.5
1

, ( ) =x 0 1.5
2

, ( ) = −x 0 1.5
3

, and the
values of =χ 0.4

1

, =χ 0.175
2

, and =χ 0.4
3

, we visualize
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various chaotic attractors of (5.1), which connect to the
commensurate-orders ( ) =β ϖ 1, ( ) =β ϖ 0.96, ( )β ϖ = 0.97
+ ( )× ∕t0.03 tanh 10 , ( ) ( )= + × ∕β ϖ ϖ0.97 0.03 sin 10 , and

( ) ( ( ))= + ∕β ϖ ϖ9 cos 10

1

10

as illustrated in Figures 3–7.
The parameter’s structures and the commensurate-order
β clearly influence the configurations of the commensu-
rate-order discrete fractional spacecraft model (5.1). In
fact, as the commensurate-order β and parameters of the
system decline, the commensurate-order discrete fractional
spacecraft model (5.1) exhibits an increasingly large chaotic
domain. As a result, increasingly complicated resonances

develop, and the mechanism’s behaviour grows more unpre-
dictable. The interaction between DFO and framework vari-
ables has an enormous effect on dynamic behaviour, and such
modifications may result in a broader spectrum of chaotic
structure and convoluted pathways that comprise the discrete
fractional spacecraft model (5.1).

Presently, alongside ( )β ϖ Âă as the significant para-
meter, the chaotic illustration can be utilized to show the
changes in the behaviours of the commensurate discrete
fractional spacecraft model (5.1) as the order ( )β ϖ fluctu-
ates from ( ) = − ∕β ϖ ϖ1 cos 2

2 to ( )+ϖtanh 1 . The hyper-
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Figure 3: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with V–O ( ) =β ϖ 1.
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Figure 4: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with V–O ( ) =β ϖ 0.96.
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chaos are depicted in Figures 8 and 9, respectively. We are
able to observe that modifying the commensurate order
investigates an extensive variety of unpredictable features
(chaotic and periodic) of the fractional model in relation to
the commensurate-order ( )β ϖ . In particular, there are two
types of domains in which the structure fluctuates chaoti-
cally and domains in which the framework rotates fre-
quently. When ( ) = − ∕β ϖ ϖ1 cos 2

2 recurring views alongside
various period orbits show up accompanied by an insignificant
chaotic movement in the time range ( )0.03, 0.20 . We can see
variations within chaotic and consistent pathways in the config-
urations of the commensurate-order discrete fractional

spacecraft when ( )
( )

( ( ))
= + − ∕

+ − ∕β ϖ .

ϖ

ϖ

100 99 exp 4

100 1 exp 4

The chaos varies
within negative and non-negative readings throughout the pro-
cess, demonstrating adjustments within chaos and non-chaotic
behaviours in the framework (Figure 10). The pathways of the
commensurate-order discrete fractional spacecraft model (5.1)
indicate chaotic behaviour when the commensurate-order is

( ) ( ( ))= + ∕β ϖ ϖ97 3 cos 10

1

100

, and various periods show an
orbital revolution, demonstrating the framework’s equilibrium
(Figure 11). Following that, for the aforementioned V–O ( )β ϖ ,
chaotic gestures comeback, with an upsurge in the curve
(Figures 7 and 8), demonstrating irregularities throughout the
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Figure 5: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with V–O ( ) ( )= + ∕β ϖ ϖ0.97 0.03tanh 10 .
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Figure 6: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with V–O ( ) ( )= + ∕β ϖ ϖ0.97 0.03 sin 10 .
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pathways of the commensurate-order discrete fractional space-
craft model (5.1). This confirms the outlined behavioural char-
acteristics, delivering supplementary proof for the framework’s
multifaceted and intricate behaviour and affirming the system’s
responsiveness to adjustments in the commensurate-order value
β. Moreover, it is possible to determine that in situations where
the ( )β ϖ is declining from 1, the corresponding discrete frac-
tional spacecraft model (5.1) displays periodic fluctuations.
Whenever the order is non-negative, the existence of chaotic
fluctuations is deduced. Figures 3–11(e)–(g) depict the isolated

time progression of the configurations x x,
1 2

, and x
3
in the

proposed commensurate map to provide an extensive overview
of these features. The pathways noticed within the identified
commensurate system transform into chaotic fluctuations and
recurring behaviours as the commensurate-order ( )β ϖ fluctu-
ates, as shown in the diagrams. The findings highlight the
mechanism’s responsiveness to alterations in ( )β ϖ and indicate
the extensive and intricate nature of the constantly changing
features in the discrete fractional spacecraft commensurate-
order model (5.1).
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Figure 7: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with fractional-order ( ) ( ( ))= + ∕β ϖ ϖ9 cos 10
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Figure 8: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with fractional-order ( ) = ∕β ϖ ϖ1 ‒ cos 2

2 .
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5.2 Incommensurate V–O

The interactions of the incommensurate-order discrete
fractional spacecraft model are investigated in this part.
Incommensurate V–O requires employing distinctive
orders to feed every formula in the structure. The incom-
mensurate-order form of discrete fractional spacecraft
model is represented in the following manner:
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(5.2)

In view of Theorem 4.1, we are able to convey a mathema-
tical representation of the incommensurate-order discrete
fractional spacecraft model (5.2) in the following manner:

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x

-4

-3

-2

-1

0

1

2

y

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x

-0.5

0

0.5

1

1.5

2

y

(b)

-0.5 0 0.5 1 1.5 2 2.5 3
x

0.5

1

1.5

2

2.5

3

3.5

4

y

(c) (d)

0 100 200 300 400 500 600 700 800 900 1000
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

(e)

0 100 200 300 400 500 600 700 800 900 1000
x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

(f)

0 100 200 300 400 500 600 700 800 900 1000
x

-0.5

0

0.5

1

1.5

2

2.5

3

y

(g)

Figure 9: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with fractional-order ( ) ( )= +β ϖ ϖtanh 1 .
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Figure 10: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with fractional-order ( )
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(5.3)

We investigate the processes and distinctive features of
this visualization for the purpose of comprehending their
peculiar behaviour and investigating the consequences of
using distinguished orders in the system’s dynamics equa-
tions. Figures 12–16 show various chaotic diagrams that
show the behaviour of the incommensurate-order discrete
fractional spacecraft model (5.3) as the value of ( )β ϖι fluc-
tuates between ( ]0, 1 . The modelling exercises were per-
formed with the system settings and the ICs
( ( ) ( ) ( ))x x x0 , 0 , 0

1 2 3
set to ( )−1.5, 0.5, 0.5 . These schematics

clearly show distinguished trends, pointing out that modifica-
tions in V–Os ( ( ) ( ) ( ))β ϖ β ϖ β ϖ, ,

1 2 3

have an enormous effect
on the configurations of the incommensurate-order discrete
fractional spacecraft model (5.3). For example, whenever
( ( ) ( ) ( )) ( ( ))= + ∕β ϖ β ϖ β ϖ ϖ, , 1, 0.9, 0.97 0.03 tanh 10 ,

1 2 3

the
structure’s contends develop via repeated to chaotic, using recur-
ring expanding bifurcation when χ

1

improves. However, when
( ( ) ( ) ( )) =β ϖ β ϖ β ϖ, ,

1 2 3

( ( ) )+ ∕ϖ0.2, 0.97 0.03 sin 10 , 0.8 , an
oscillatory trajectory is noticed, using pathways that stay reli-
able to earn minimal measurements of χ

1

and transforming
into chaos as ( )β ϖ

1

gets closer to 1. In the scenario of
( ( ) ( ) ( )) ( )=β ϖ β ϖ β ϖ, , 0.2, 0.2, 0.85 ,

1 2 3

a chaotic region is
visible all along the range, with the exception of a few
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Figure 11: Phase portraits for 2D and 3D discrete fractional spacecraft model (5.1) with V–O ( ) ( ( ))= + ∕β ϖ ϖ97 3 cos 10
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Figure 12: Phase portraits for 2D and 3D for discrete fractional spacecraft model (5.3) with V–O ( ( ) ( ) ( )) =β ϖ β ϖ β ϖ, ,
1 2 3

( ( ))+ ∕ϖ1, 0.9, 0.97 0.03 tanh 10 .
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confined areas where the framework demonstrates frequent
fluctuations, particularly as χ

1

decreases towards 0, (Figures
12 and 13). Additional research was additionally performed in
three particular situations to offer a more comprehensive
example of the impacts of incommensurate orders on the
behaviour of the discrete fractional spacecraft model (5.3).
Such inquiries provide an improved comprehension of how
V–Os affect the functioning of systems and emphasize the
significance of taking incommensurate orders into account
when analyzing simulation behaviour.

Case I: Figure 14 shows the change with respect to
( )β ϖ

1

via 0 to 1 using an incremental dimension of
=βΔ 0.005

1

. The chaos and associated Poincaré maps of
the incommensurate-order discrete fractional spacecraft

model (5.3) for ( ) ( )= = − ∕β ϖ β ϖ ϖ1 cos 2
2 3

2 and the
system settings with the ICs ( ( ) ( ) ( ))x x x0 , 0 , 0

1 2 3
set to

( )−1.5, 0.5, 0.5 are shown in these illustrations. Figure
17(a)–(d) shows that the configuration of the incommensu-
rate-order discrete fractional spacecraft model (5.3)
demonstrates chaotic behaviour for less extensive varia-
tions in ( )β ϖ

1

, as indicated in Figure 17(e)–(h). When ( )β ϖ
1

falls within ( )0.26, 0.40 , the Poincaré shown in Figure
17(a)–(d) swings within non-negative and negative regions.
Through the appearance of regular apertures, this result
suggests the existence of chaotic behaviour. As the incom-
mensurate-order ( )β ϖ

1

expands, paths are transformed
from chaotic to consistent movement, which is character-
ized by orbits that revolve, in which the configurations of
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Figure 13: Phase portraits for 2D and 3D for discrete fractional spacecraft model (5.3) with V–O ( ( ) ( ) ( )) =β ϖ β ϖ β ϖ, ,
1 2 3

( ( ) )+ ∕ϖ0.2, 0.97 0.03 sinh 10 , 0.8 .
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Figure 14: Phase portraits for 2D and 3D for discrete fractional spacecraft model (5.3) with V–O ( ( ) ( ) ( )) =β ϖ β ϖ β ϖ, ,
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Figure 15: Phase portraits for 2D and 3D for discrete fractional spacecraft model (5.3) with V–O ( ( ) ( ) ( )) =β ϖ β ϖ β ϖ, ,
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the incommensurate-order discrete fractional spacecraft
model (5.3) get steady.

Case II: The Poincaré illustrations are displayed for
studying the fluctuating behaviours of the incommensu-
rate-order discrete fractional spacecraft model (5.3) via

( )β ϖ
2

becoming a configurable factor, as shown in
Figures 15(a)–(d) and 17(e)–(h). The modelling steps are
carried out by differing ( )β ϖ

2

in the interval ( )0, 1 ,
whereas maintaining the incommensurate-orders

( ) ( ) ( )= = +β ϖ β ϖ ϖtanh 1
1 3

, ICs ( ( ) ( )x x0 , 0 ,
1 2
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Figure 16: Phase portraits for 2D and 3D for discrete fractional spacecraft model (5.3) with V–O ( ( ) ( ) ( )) ( )
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Figure 17: Poincaré maps for discrete fractional spacecraft model (5.3) for various V–Os as mentioned earlier.
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( )) ( )= −x 0 1.5, 0.5, 0.5
3

, and system settings remains consis-
tent. The illustration shows that while the order ( )β ϖ

2

improves to higher figures, the patterns of motion get
less unstable. As ( )β ϖ

2

declines, chaotic practices that
have elevated Ω

max
values show up, in addition to the

emergence of relatively small regular zones via adverse
system parameters. Furthermore, as ( )β ϖ

2

falls more thor-
oughly closer to zero, the chaos pattern fall, after which
they come to zero. This is consistent with the appearance of
recurring pathways and the evolution of the incommensurate
discrete fractional spacecraft model (5.3), regarding chaos to
stable decisions. The identified modifications in the poincaré
and the accompanying shifting trends demonstrate the
mechanism’s response to FO ( )β ϖ

2

alternatives, pointing
out the intricate nature and adaptability of the incommensu-
rate-order discrete fractional spacecraft model (5.3).

Case III: Figure 16 depicts the chaotic diagram and
the accompanying Poincaré map of the identified novel
incommensurate-order discrete fractional spacecraft model
(5.3) using the parameter ( )β ϖ

3

fluctuated between 0 and 1.
We preserve the incommensurate orders as = =β β

1 2

( )

( ( ))

+ − ∕
+ − ∕

ϖ

ϖ

100 90 exp 4

100 1 exp 4

in the present calculation. Figure 16 shows

that, in contrast to the earlier instances, the pathways of
the incommensurate system reveal chaotic behaviour as the
position of ( )β ϖ

3

increases, which is illustrated by greater
system parameters. We also observe that as β

3

arrives at 1,
the Poincaré map indicates that evolution stipulates and the
paths deviate towards infinity, as shown in Figure 17(m)–(p).
As an instance, if =β 0.923

3

and following a certain quantity
of repetitions, particularly χ

3

, the pathways deviate towards
infinity. As ( )β s

3

decreases, the chaotic decreases likewise,
ultimately achieving the lowest possible significance,
resulting in less chaotic and, as a result, more predictable
interactions of the model’s indicates. These findings high-
light the incommensurate discrete fractional spacecraft (5.3)
responsiveness to fluctuations in order ( )β ϖ

3

, which leads
to an extensive spectrum of flexible actions involving
chaotic and cyclical movements. This emphasizes the impor-
tance of incommensurate-orders in determining the beha-
viour of the framework. Furthermore, as shown in
Figure 16, the phase depictions of the configuration factors
of the incommensurate discrete fractional spacecraft model
(5.3), promote the idea that incommensurate-orders more
precisely symbolize the structure’s behavioural patterns.
To sum up, the research highlights the complex and varied
characteristics of the incommensurate-order discrete frac-
tional spacecraft model (5.3), and it also highlights the
importance of FO selection in modelling and characterizing
its fluctuations.

6 Robust controller model
technique

The powerful intolerant fault control system approach to
development is explained in the next part. This layout
depicts the monitoring plan. The suggested mechanism
rules consists of two components:

(A) an insignificant device 	 ( ( ))+ −τ β ϖΩ 1
1

=

�	[ ( ( ))]+ − ∈ +τ β ϖΩ 1 ;ι d 1

(B) an effective compensation 
 ( ( ))+ −τ β ϖΩ 1
1

=

�
[ ( ( ))]+ − ∈ +τ β ϖΩ 1 .ι d 1

The insignificant control device is intended in fact for
the altered insignificant mechanism; the reliable compen-
sating device is built from second-level filtering to limit the
impact of the corresponding interruption. The powerful
control device ( ( ))+ −τ β ϖΩ 1 is then laid out as

�	 	




( ( )) [ ( ( ))

( ( ))]

+ − = + −

+ + −

τ β ϖ τ β ϖ

τ β ϖ

Ω 1 Ω 1

Ω 1 .
1

1 1 (6.1)

Let ( ( ))+ −ω τ β ϖ1
Ω

= �[ ( ( ))]+ − ∈ +θ τ β ϖ1 d 1
represent

the time-dependent feedback interruptions. When the space-
craft behaviour monitoring mechanism that experiences
parametric fluctuations, outside influences, time-dependent,
participation interruptions, motor imperfections, and exhaus-
tion is given as follows:

I� �

�

�
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1 1 ,

1

1 1

˙
1 Ω 1
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θ

p
ABC

ABC

1

1

1
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1

(6.2)

where ( ( ))+ −τ β ϖp 1
1

signifies the real attitude quater-
nion and �( ( ))+ −τ β ϖ1 = ��[ ( ( ))]+ − ∈ +τ β ϖ1 1ι d

represents the structure’s analogous disruption provided
as follows:
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I
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Considering (6.1) and (6.2), then the spacecraft dynamic
framework is subsequently expressed as follows:
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(6.3)

Then, in (6.3), the perturbation-free insignificant
mechanism can be retrieved mechanically by overlooking
the reliable a compensator 
 ( ( ))+ −τ β ϖΩ 1

1
and corre-

sponding disruption �( ( ))+ −τ β ϖ1 . The insignificant
device can be constructed with precise simulation data
as follows:

I�
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(6.4)

where the matrices ( )= Ξ Ξ ΞΨ diag , ,θ θ θ θx x x
1 2 3

are control
device acquires and ( )= Ξ Ξ ΞΨ diag , ,p p p p

1 1 2 3

are non-nega-
tive constants to be identified.

In addition, the effective compensated ( ( ))+ −τ β ϖΩ 1

is anticipated to entirely limit the corresponding disrup-
tion �( ( ))+ −τ β ϖ1 . A reliable compensating device in
the intricate frequency spectrum is able to be constructed
with a second-order filtrate �( )ϖ as follows:

� �
 ( ) ( ) ( )= −ϖ ϖ ϖΩ ,
1

(6.5)

where ϖ indicates the Laplace operator and �( ) =s
1

� � �( ( ) ( ) ( ))s s sdiag , , .
1 1 2 1 3 1

Nevertheless, measuring an
analogous disruption �( )s

1
in practise figuring is challen-

ging. As a result, the Laplace inverse transformation
of (6.5) fails to generate the reliable compensating
device 
 ( ( ))+ −τ β ϖΩ 1

1
.

In consideration of this, the researchers determine to
interpret the analogous disruption �( ( ))+ −τ β ϖ1 as a
tampering of the perspective measuring angular momentum.
The analogous interference 
 ( ( ))+ −τ β ϖΩ 1

1
is subse-

quently provided by (6.3) as follows:
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(6.6)

In view of (6.5) and (6.6), the sturdy compensating
device 
 ( ( ))+ −τ β ϖΩ 1

1
, ( ( ))+ −L τ β ϖ˜

1 = �	

−1

1

I �	( ( ( ))) ( ( ))+ − + −θ τ β ϖ θ τ β ϖ1 1
1

+ ( ( ))+ −θ τ β ϖ˙
1

and ( )ϖL represent its Laplace transformation. The corre-
sponding interference �( )s

1
is then able to composed as

follows:

�� 	( ) ( ) ( ) ( )= + − −ε ϖs s L s sΩ .p1 1

2

1

1

1
1 1

(6.7)

Plugging (6.5) into (6.7), then the powerful devise can be
expressed as follows:

r�
 ( ) [ ( ) ( )]= − εs s sΩ ,p1 1

2

2 1 1
1

(6.8)

where r ( )s
2 1

= I �� 	( ) [ ( ) ( )+ −− −
s s L sΩ

1

2 1

1 1
1

+ � �( ) ( )]+ εs s2 p1

2

1
1

.
After simplification, we have
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Multiplying r ( )s
2 1

by I �( )+s ,
1

then we can find
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Analogously, we can find
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where ( ( ))+ −ϕ τ β ϖ1 , r �( ( ))+ − ∈ +τ β ϖ1 d2 1
presents

compensating device states and � ( )= diag ℏ , ℏ , ℏ
1 2 3

is a
diagonal constant matrix containing compensating device
factors. It is clear that the setting � has a major effect on
both compensation generates and the reliability of the
compensation state spaces. The suggested sturdy device
ut can subsequently be calculated using (6.1), (6.4), (6.10),
and (6.11).

In addition, the following is the recommendations for
determining the theoretical controller boosts Ψθ and Ψp

1

and the compensatory value � :
Case I: Take out the disturbance-free insignificant

structure using (6.3), and then choose the default control-
ler’s advantages Ψθ and Ψp

1

to achieve the envisioned
effectiveness.

Case II: Choose an effective compensating device para-
meter specification � is large enough. In broad terms, the
tightly controlled system’s influence preciseness can be
substantially enhanced.
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Case III: In view of control assumption, the regulation
precisioness condition issatisfied, the regulation precise-
ness prerequisite, the sturdy a compensator value � can
be decreased to an adequate figure for preserving power.

Case IV: When the envisioned regulate exactness is
unable to be obtained by simply adjusting the compen-
sating setting � , it is suggested to revert to Case I, choose
wider insignificant controller acquires Ψθ and Ψp

1

and sub-
sequently continue to Cases 2 and 3.

Remark 6.1. It is noted that the mechanism suggested in
(6.1) does not necessitate any details about device error.
Furthermore, the intended improvement of the
mechanism Ψθ and Ψp

1

and the compensator factor � are
correspondingly non-negative constant matrices. As a
result, the suggested controller structure is straightfor-
ward and time independent. These characteristics are
desired in realistic engineering.

Remark 6.2. The insignificant framework can be stream-
lined using the nominative influence rules in (6.4) as

( ( ))( )∇ + −ε τ β ϖ1σ
β ϖ

p
ABC

1

+ ( ( ))+ −ε τ β ϖΨ 1θ p
1

+

( ( ))+ − =ε τ β ϖΨ 1 0p p
1 1

. It eventually becomes a standard
proportional-derivative regulate framework. Evidently, if
insignificant controller improvements Ψp

1

and Ψθ are chosen
with appropriate figures, the poles of the insignificant frame-
work can be assigned to any anticipated amount.

In addition, the genuinemechanism results ( ( ))+ −τ β ϖΩ 1

show several unpredictability issues involving feedback inter-
ruptions, mechanism exhaustion, and supplementary break-
downs. Higher compensating device factors also result in an

increasingly significant saturation level challenge. This makes
sense considering that greater compensating device settings
result in deeper compensation forces. Furthermore, when
viewed alongside � situations, the monitoring system in
[85] hinders saturation by implementing an arc connection
function as � ( )Ω

1
. Following that, at first, the actual

mechanism results decreased due to the influence of matrix
Ψθ. Similarly, the mechanism’s use of energy is examined. As
illustrated in Figure 18(a)–(b), the structure, via wider com-
pensatory factors, devours more power. The electrical sys-
tem’s vitality, on the other hand, is essential but scarce for
spacecraft. As a result, if the intended position regulates pre-
ciseness, there is no requirement to choose compensating
device factors that are excessively large. At this point, regard-
less of the situation, power intake in the secure phases is
concluded. In the meantime, when viewed alongside ( )β ϖ ,
the processor’s results increase in the secure stage consid-
ering the equilibrium oversight in the sinusoidal waveform
monitoring scenario is greater. This behaviour is mirrored in
the equilibrium power use as well as the time reaction
demonstrated in Figure 19.

6.1 Synchronization

Nonlinear regulators for coordinating the fractional-order
spacecraft model are described in the subsequent section.
The synchronization procedure seeks to minimize the dif-
ference between the master and slave visualizations,
which compels it to gravitate towards zero. The master
system is the commensurate fractional-order spacecraft
model, represented by (5.1), while the slave system is char-
acterized in the following manner:

Figure 18: Bar graph containing energy factors and fractional order ( ) =β ϖ 1.
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where � �,
1 2

, and �
3

indicate the synchronization
regulators.

The fractional error scheme is described as follows:
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The suggested regulation govern that creates this synchro-
nization system is described in the following theorem.

Theorem 6.1. Under the supposition of (6.12) and (6.13):
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where ( )∈ − −β 1, 2 1

β
2

and ( )∈β 0, 2 .

β
3

Then, the master
spacecraft model (5.1) and slave spacecraft model (6.12) are
synchronized.

Proof. Plugging the regulate principle (6.16) in the frac-
tional error system (6.13), we find:
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where
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Since ( ) ( )= − + = − +ω χ ω β1 , 1
1

1
2

2

and = −ω β
3

3

are the
eigenvalues of (6.16). Thus, =ω ι, 1, 2, 3ι comply with the
stability the requirement mentioned in Theorem 2.1 for

Figure 19: Bar graph containing energy factors and fractional order ( ) =β ϖ 0.96.
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( )∈ − −β 1, 2 1

β
2

and ( )∈β 0, 2 ,

β
3

illustrating that the zero
outcome of the fractional error model (6.12) is asymptoti-
cally stable, resulting in the synchronization of the master
spacecraft model (5.1) and the slave spacecraft model
(6.12). □

Mathematical computations using MATLAB are used to
verify the truthfulness of this outcome. The parameters
used are = = =χ χ χ0.4, 0.175, 0.4

1 2 3

and the initial settings
are ( ( ) ( ) ( )) ( )= −ε ε ε0 , 0 , 0 1.0, 1.0, 1.0

1 2 3
. Figure 20(a)–(c)

depicts the time formation of the fractional error model’s
contends (6.12). The graph unambiguously shows that erro-
neous values are often zero, affirming the efficacy of the
previously addressed synchronization technique.

7 Conclusion

The spacecraft interacts with the plasma physics such as solar
wind, magnetospheres, and ionospheres. Understanding plasma
physics helps mitigate effects like spacecraft charging and drag
in low-earth orbit. This article proposes a discrete fractional
spacecraft model and investigates its behaviour with commen-
surate and incommensurate V–Os. The Poincaré map’s assess-
ment revealed a variety of unpredictable features, pointing out
its dynamic diversity. The distinguished behaviours of the iden-
tified discrete fractional spacecraft model have been studied
for both commensurate and incommensurate V–Os using
various approaches to inspection, including phase pictures
and time-evolution plots. Furthermore, the system’s chal-
lenges have been determined employing the robust controller
technique with the actuator faults. The results highlight the
significant impact of the network setting and fractional expo-
nents on the configurations of the discrete fractional space-
craft model. The numerical representations of such variables
are crucial for influencing the structure and functioning of

the framework, and fluctuations in their significance result
in various paths as well as effects in the system’s state
domain. Finally, the article suggests efficient oversight rules
for ensuring the reliability and synchronization of the
implemented system by manipulating its status to asynchro-
nously tend to zero. The numerical analyses performed pro-
vide an extensive overview of the mechanism’s interactions
and illustrate its fascinating and distinct behaviours, which
have been crucial in investigating the consequences of frac-
tional spacecraft models.

In the future, the emergency network will evolve in
the patterns of intelligence, integration, popularization,
inexpensiveness, and space–air–ground–sea integration.
Thanks to the continual growth of finances and societies
as a whole, the emergency communication network has
been additionally enhanced, and novel technologies for
networks have come into existence. This will help expedite
the commencement of emergency rescue operations.
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