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Abstract: Monkeypox is a highly infectious disease and
spreads very easily, hence posing several health concerns
or risks as it may lead to outbreak. This article proposes a
new mathematical model to simulate the transmission rate
of the monkeypox virus-infected fractional-order differen-
tial equations using the Caputo-Fabrizio derivative. The
existence, uniqueness, and stability under contraction map-
ping of the fixed point of the model are discussed using
Krasnoselskii’s and Banach’s fixed point theorems. To verify
the model proposed, we employ data that record the actual
dynamics, and based on these data, the model can capture
the observed transmission patterns in Ghana. Also, the ana-
lytic algorithm is used to find the result applying the Laplace
Adomian decomposition method (LADM). Performance ana-
lysis of LADM is made regarding Runge-Kutta fourth order,
which is the most commonly employed method for solving
second-order ordinary differential equations. This compar-
ison therefore offers information on the truth and reliability
of the two techniques toward modeling the transmission
pattern of the monkey pox virus. The information obtained
through this study provides a better understanding of the
antibodies linked to monkeypox virus spreading and pro-
vides effective strategies to doctors and politicians. This
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article helps shape better strategies about combating the
impact of monkeypox virus in public health since it makes
it easy to predict and prevent the occurrence of the disease.
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1 Introduction

Fractional calculus is thus a phenomenon that has gained
attention also by helping model biological systems, bringing
a more sophisticated view of biological entities and their
memory-based processes. While integer-order derivatives
are restrictive in addressing the kind of dynamic, anoma-
lous diffusion, and correlation, which are characteristic of a
biological system, fractional derivatives offer a much more
flexible way to address these issues. Through the use of
fractional calculus for modeling in biological systems, scien-
tists and researchers can describe various dynamics that
have not been previously modeled effectively, including
infection spread, cellular division, and neural firing [1-6].
This improved modeling ability provides a basic under-
standing of the forces at the core of such processes and also
provides more accurate prediction of results [7,8]. Thus, frac-
tional calculus not only enriches our understanding of biolo-
gical oscillations and chaotic phenomena but also contributes
toward the techniques of disease prevention and cure, pre-
vention strategy of diseases, and biological resource conser-
vation [9-14].

Scientists have been looking at the rapid appearance
and global spread of monkeypox in the middle of the con-
tinuing Coronavirus Disease 2019 (COVID-19) pandemic. As
of June 22, 2022, 3,340 confirmed cases of the most significant
and most prevalent monkeypox epidemic outside of Africa
have been documented around the globe. Monkeypox may
be passed from one person to another by vertical transmis-
sion from mother to child and through contact with infected
skin or mucosal skin sores, respiratory droplets, or contami-
nated items or materials [15-19]. The monkeypox virus is a
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member of the Chordopoxvirinae subfamily of the Poxvir-
idae family of enclosed, linear, double-stranded DNA
viruses. Monkeypox is typically a self-limiting illness, with
symptoms typically lasting between 2 and 4 weeks and a
historical fatality rate of 0—11. Monkeypox may cause severe
headaches, fever, skin lesions, and lymphadenopathy.
Despite the lack of a particular therapy or vaccine for
monkeypox virus infection, antiviral drugs and smallpox
vaccinations have been licensed for use in several coun-
tries in response to the epidemic. Rapid intervention is
needed before the virus can effectively establish person-
to-person transmission, leading to a worldwide mon-
keypox pandemic [20-29].

After smallpox was abolished, monkeypox emerged as
the dominant pox in humans. The transmission of an epi-
demic is currently considered quite unlikely [30,31]. Humans
can get the illness by close contact with an infected animal
or person or contact with contaminated materials. The virus
has been shown to spread from person to person in the
United Kingdom [32] and the Democratic Republic of the
Congo [33]. Thornhil et al. [34] found that among 528 people
with the disease from 16 countries, 98% identified as homo-
sexual. A number of cases of monkeypox were recorded in
Ghana on May 24, 2022 [35]. The World Health Organization
classified monkeypox as a developing moderate public health
concern threat on June 23, 2022. Since September 2022, there
have been over 65,000 confirmed instances of monkeypox
virus infection throughout 106 nations and 5 geographical
zones, with 26 fatalities. The current global outbreak of
monkeypox virus infection in humans may be caused by a
combination of factors, including waning smallpox immu-
nity, relaxing COVID-19 prevention measures, resuming
international travel, and sexual interactions associated
with large gatherings [34]. Few investigations on disease
transmission have been conducted in the past [36—-38]. How-
ever, mathematical models have been used to investigate
the information of diseases such as COVID-19 [39,40] and
Poxviridae diseases such as smallpox [41-43], chickenpox
[44,45], and cowpox [46].

Moreover, in monkeypox virus research, Peter et al. [36]
conducted a ground-breaking study using actual data from
Nigeria to investigate the virus’s transmission dynamics using
the innovative concepts of fractional calculus. Their investi-
gation intended to shed light on the complex modeling system
and its implications for infection control policies, providing
the general public with crucial insights regarding the impor-
tance of control parameters in eradicating the virus from the
studied population. Peter et al. [38] took a mathematical mod-
eling approach to elucidate additional aspects of the virus’s
transmission dynamics, building on their pioneering work.
Isolating infected individuals from the general population
effectively reduces disease transmission, as revealed by their
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research, which holds tremendous promise for regulating the
spread of the virus. This discovery offers a compelling inter-
vention strategy that can play a crucial role in preventing the
spread of the virus and protecting public health. By continu-
ously pushing the limits of mathematical modeling, these
studies substantially contribute to ongoing efforts to combat
the monkeypox virus, offering hope and opportunities for
more effective control and prevention measures.

In the recent analysis of the dynamics of infectious
diseases especially those involving spread of highly trans-
missible viruses such as monkeypox, incorporation of
sophisticated modeling and computations is a new and
significant innovation. This article aims at presenting a
unique model that is specifically designed to help investigate
the complex transmission of monkeypox virus. Different
from traditional models, our proposed approach employs
a certain type of derivative called Caputo-Fabrizio deriva-
tive, which enhances the description of the disease progres-
sion and transmission rate. Furthermore, we utilize a fresh
approach involving Krasnoselskii’s and Banach’s fixed point
theorems with a view of analyzing the stability properties of
the model and gain insights into the spread of viruses.
Furthermore, our study presents the novel approach of
using the Laplace Adomian decomposition method (LADM)
to obtain the approximate solution of the model and
enhance the understanding of the characteristics of the
system and some important control strategies. Therefore,
applying these new mathematical methods alongside actual
data from Ghana not only proves the usefulness of the
model in its ability to simulate observed rates of transmis-
sion but will also serve as a strong framework for policy
makers and managers in the health sector to work toward
the prevention and control of monkeypox.

2 Mathematical modeling

We attempt to construct an advanced mathematical model
by analyzing the foundations set out in the study of Peter
et al. [38] using a novel approach. Using the existing frame-
work as a foundation, we aim to improve its efficacy by
incorporating an additional dimension that accounts for
virus-immune individuals. This modification permits us
to understand the complex dynamics of virus transmission
from person to person, taking into account the impact of
immunity. To achieve this, we divide the population into
six distinct compartments, each representing a distinct
state: susceptible individuals, denoted by Ws; exposed indi-
viduals, denoted by Wg; infected individuals, denoted by
W,; hospitalization-required individuals, denoted by Wp;
recovered individuals, denoted by Wy; and highly immune
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individuals, denoted by W The total population is elegantly
represented by the equation N(t) = Ws + Wg + Wy + Wy +
Wy + Wy, where t is a time variable. This mathematical
model can potentially unravel the complex dynamics of
the monkeypox virus’s propagation, providing invaluable
insights into how it affects population susceptibility, expo-
sure, immunity, and recovery:

dWs(t W,y W
5(t) w-w,
dt
dWE(t) WaWs
= _ + W
dt W2 N (w7 + W)W,
dW,(t
dAt( ) o W - (1 + w5 + 04+ 0W,
aAwy(0) o]
T W Wy — (w1 + ws + we)Wp,
dWar(t
% = wsWp + w3sWy — wiWh,
dWy(t)
VA - Wy,
at n - wiWy

subject to the initial conditions

Ws(0) = Wso,  WE(0) = Wgo, Wa(0) = Wy,

Wo(0) = Wo,0,  WR(0) = Weo, and Wy(0) = Wy,

To achieve a more accurate and exhaustive depiction of the
phenomenon, we drew inspiration from Caputo’s pioneering
works [47-50]. By maintaining a constant dimension on both
sides of the system, we ensured our strategy’s consistency and
validity. As a result, the fractional Liouville-Caputo derivative
of the monkeypox disease system is determined, constituting a
crucial component of our analytical model. Notably, the model
under consideration, denoted by (1), is expressed as a Caputo-
type derivative, providing a solid basis for understanding and
analyzing the complex dynamics of monkeypox spread. This
novel approach promises to yield significant insights into the
disease’s underlying transmission mechanisms and can aid in
developing effective control and prevention strategies. Caputo’s
influential works [47-50], which serve as the foundation of our
research framework, are acknowledged and cited by stringent
academic integrity standards throughout this study:

WaWs

D{Ws(t) = w ~ w, - W,
W, Ws
DfWE(t) = wy—— = (w7 + W)W,
DYWA(E) = W W - (w1 + w3 + wy + ws)Wj, @

DY Wp(t) = waWy = (w1 + ws + we)Wp,
DEWR(E) = wgWp + wsWy — w W,
DYWy(t) = wn - wi Wy,

subject to the initial conditions

Modeling monkeypox virus transmission: Stability = 3

Ws(0) = Wk,
Wp(0) = Wp,0,

We(0) = W,
Wr(0) = Wa,o,

Wa(0) = Wa,,
and Wv(o) = WV,Oa

where p shows that fractional-order, 0 < 4 <1 and ¢ is the
defined time. Fractional calculus has recently gained sig-
nificant popularity as a practical and efficient way to
approximate real-world situations. Because of its ability
to clarify complex dynamic systems with memory effects,
it is helpful in a wide range of fields, including biology,
mathematics, engineering, finance, economics, and the
social sciences. To fully capture memory effects, several
major fractional derivatives have been created, especially
in solving a wide range of human health issues. The Caputo
fractional derivative is a novel formulation that has gained
extensive use in simulating various application models.
The proposed model’s flowchart is shown in Figure 1.

3 Basic definitions

In the subject of this research, we want to define several
important concepts, such as:

Definition 1. Suppose Y belongs to H '(a, b), where b > a,
and u € (0,1). Under these conditions, the provided
Caputo-Fabrizio fractional derivative (CFFD) is as fol-
lows [51]:

t
K(u) I t- @]
CEpu _ , L F
oDIY(E) = = #ly (@) exp|-— [d©. ©)

Given that K(u) in (3) adheres to the conditions K(1) =
K(0) =1, if Y does not belong to H (a, b), the equation
transforms to [51]:
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Figure 1: Flowchart of the proposed model.
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ToY(O) = 7 K )J'Y(t) Y(0) exp|-—— d@

Definition 2. Suppose u € (0, 1]; then, the fractional-order
integral of the function Y is represented as [51]:

1-w

SIY(t) = <5

K YO+ g )JY(O)dG

Lemma 1. The problem arising from CFFD lies in the fact that [51]

SDIY(@) = z(t), O0<pus<1,

Y(0) =Yy, whereY is real constant.

Alternatively, it can be expressed as the integral:

Y(t) =Yy +

1- u (
— de.
K "0 " e ] YO

Definition 3. [52,53] The Laplace transform of CFFD, denoted

as D! with u € (0, 1] of M(t), is expressed as

SLIM(t)] -

CF _ M(0)
LM ()] = s+ul—s)

4 Monkeypox virus fractional-order
modeling: findings on existence
and uniqueness

We utilize Banach’s and Krassnolsekii’s theorems to demon-

strate at least one solution to the model:

Si(t, W, W, Wy, Wo, We, Wy)

= W Wy

£ (t, Ws, WE, Wy, Wo, Wr, Wy)

WalWs
N

f5(t, Ws, W, Wy, Wy, Wr, Wy)

= W — (W1 + W3 + Wy + W)Wy, @)

[ (8, Wy, We, Wy, Wp, W, Wy)

= Wy — (w1 + ws + we)Wp,

f5(t, Ws, Wg, Wa, Wy, W, Wy)

= Wy - ((1)7 + wl)VVE;

= wsWp + w3sWy — w1 Wk,
f;_‘,(ty VVS) VVE) WA) WQ) M,Ra WV)
= wn - w Wy,

where
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Ws(0) = Py,  We(0) = P, Wju(0) = P;, Wp(0) = Py,

Wr(0) = P;, and Wy(0) = Pg.
Consequently, our problem transforms to

D#VV:S‘ = fi(t) VV:S" %) VVA; VVQ) VVR’ WV);
D#VVE =]3(t: VVS) VVE: VVA: VVQ: VVR) WV))
D#W;l =fé,(t) VV:S" %) VVA; VVQ) VVR’ WV);

5)
D#VVQ =f;1(t) VVS; VVEs WA) VVQa VVR: WV)’

D#VVR = fé(t’ VVTS'; %; WA; VVQ; VV}?) WV)y
D#WV =f(;‘(t> VVS; VVEs WA) VVQa VVR: WV)’
where
Ws(0) = P;,  Wg(0) = P,  Wu(0) =P, Wp(0) = Py,
We(0) = P;, and  Wy(0) = Pe.
Let
Wl [p, At 1)
W P, JAR10)
Wa P; At )
at) = L ho = , and F(t, h(t)) = s
(®) w0 = | p, (t, h(t)) £t R(O)
We Ps fi(t, 1))
Wy B JACRI)
Thus, the formulation System (5) can be expressed as follows:
Di'he = F(t,h(t)), O0<pu<1, ©
h(0) = hy.

Lemma 1 provides the solution to (6) only when the right-
hand side equals zero:

h(t) + hy + XF(¢, h(t)) + X’IF(E, h(©))do, @)

1- _
whereX=—y and X=L

k(W) k(W)
Now, we proceed to define the Banach space D = L[0, T]
for deeper analysis, establishing the norm of D = L[0, T]
over the interval 0 < t < T < oo;

Il =% {R@|: 7€ D}

4.1 Theorem

(Krassnoselski fixed point theorem) Given a convex and closed

subset D C X, there exist two operators A and 8 such that

(1) A + Bhy € D;

(2) B is both continuous and compact, whereas ‘A repre-
sents a contraction.
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(3) There exists at least one fixed point h satisfying the
equation Ah + Bh = h.

The subsequent statement is valid:
(H1) Suppose K > 0 is a constant, then

|IF(t, (D)) = F(t, R(D)| < K¢l - Rl

(H?2) When considering the two constants Cr> 0 and
M¢pg > 0, it can be observed that

[F(t, h)| < Crlh| + M.

4.2 Theorem

Due to Theorem 4.1, equation (7) possesses at least one
solution if GF < 1.

Proof

Suppose we aim to designate set D as a set with compact-
ness and closure properties, D ={th€ X : ||h||<r}. If A
and B represent two operators, then:

AR(t) = ho + GF(t, h(D)),

_t 8
Bh(0) = G [F(&, hE)NE. ®
0

Regarding the contraction condition of A as defined in (8),
considering h and i € X, it follows that

AR - AR||= sup |AK() - AL)]
te[0,T]
= sup G|F(t, h(t)) - F(t, h(t))] C)]
t€[0,T]
< GF[||n - R]].

Therefore, A exhibits contraction properties. To assess the
compactness of 8, contemplate the following:

t
1Bh(t)| = |G jF(@, 1(0))de
0
. (10)
<G [IF(e, n@))\de.
0
Taking max of (10), we have
t
IBh||<G sup [IF(B, h(O))Id®
te[0,7]
1D

t
<G sup [[Crlin]l + Mylde
te[0,T]

< GT(Cpr + MF)
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Subsequently, in (11), 8 is bounded. Considering the
domain of t as t; < t,, we derive

|Bh(t,) - Bh(t)] =

2] 4
G IF(G), h)de - G JF(@, h)de
0 0

6 0
G [F(e.n)de + G [F(e, n(@))de
0

4

(12)

15}
<G [IF(e, mde
b

< G(Cpr + MF)

As t, — t;, the right-hand side of (12) approaches zero.
Additionally, due to the uniform boundedness of B,
|Bh(t) — Bh(t)| — 0. Consequently, all the conditions spe-
cified in Theorem (4.2) are met, establishing the existence
of at least one solution to the analyzed model (6) since B is
entirely continuous.

4.3 Theorem

Considering (#;), when GF(1 + T) <1, it implies that
there exists a unique solution to the problem presented
in (6). Consequently, multiple solutions exist for Model (2).

Proof

Suppose P : X = X represents an operator defined as
follows:

]
Ph(t) = ho + GF(t, h(©) + G[F(8, h(@))de.
0

Let i, i € X, then
|P(h) - PR = Stlpjlf"(h)(t) - PR
te|0,T

< sup G|F(t, h(t)) - F(t, h(t))|
t€[0,T]

+G S[UP]I_[I(F(@), h(@))) - F(8, (h(©)))|de
te[0,T 0

< GF||h - h|| + GFT||h - A]|.
It suggests that
|P(h(-P(R)))|| < GF(1 + T)||h - h||. (13)

Therefore, Problem (6) can have a maximum of one solu-
tion, signifying that Model (2) possesses a unique solution.
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5 Numerical schemes

This section overviews the numerical techniques used to
solve the aforementioned model. The Laplace Adomian
decomposition (LAD) approach has become more prevalent
in engineering and research for tackling complicated issues.
The successful resolution of several challenging problems has
shown its usefulness. The LAD approach is the primary
numerical method used in this work. The conventional
Runge—Kutta fourth order (RK4) approach is also used to
evaluate the precision and confirm the findings acquired by
LAD. It is possible to assess the accuracy and reliability of the
LAD methodology by comparing the results of the two
approaches.

5.1 Creating a generalized algorithm for
solving the model using LADM

We derive a solution as a series by assigning x(u) =1 and
employing the Laplace transform [54-60]. Consequently, the
subsequent algorithm can be formulated as follows:

SLIW(DO] - Wi(0) _ WaWs

s+ud-s) _[ *N leS]’

Wi(6)] - Wi (0 W, We
SL[S f(‘u)(]l — S)E( ) _ [ AL w1)WE],

Wa(t)] - Wa(0
SL[S f(ﬂ)(]l = S)A( ) = [w W — (w1 + w3 + Wy + ws)Wal,

(14)

SL[Wp(D)] = Wp(0)
W [waWa = (w1 + ws + we)Wpl,

Wa(6)] - Wi(0
% [wsWp + w3Wy — w1 Wr],
LIWy(©)] - Wy (0
LD W) i
(o] = PO o STHAZI - T ]
ciwio) = O SHEOZIN W 4wy,
R

— (w1 + w3 + Wy + Ws)Wa], 15)
ciwpo] = O 4 LDy,
- (w1 + ws + we) W],

ciw(o) = B+ D v i, - i,
ciwo) = O 4 S0 - )

Using initial conditions of System (2),
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P. s+ul-s W, Ws
ciwo) = B4 STEEZI, WG wlws],

P. s+ull-s W, Wk
2wy = 22 S ){wz A (wy + wowE],

N N

P s+ul-s

ciwyo] = 24 SHEE D

— (w1 + w3 + Wy + wWs)Wy,

ciwo) = 2 S

(16)
[wsW)

- (w1 + ws + we)Wp),

1we0) = 2+ S Dt + s - 0wl
ciwico) = 2 SO0 )

Let us consider that the solution we compute is in the form
of an infinite series:

0 ©

Ws(t) = Y (Wela(t),  WE(t) = 3 (Wida(D),

n=0 n=0
0 o]

Wa(t) = 3 (Wan(),  Wp(t) = Y (Wpda(D),

n=0 n=0
We(t) = 3 (Woa(t), and  Wy(t) = Y (Wi)a(D).
n=0 n=0

The nonlinear term W,Ws can be expressed in terms of
Adomian polynomials as

WiWs = ) Ry(0),
n=0

where

1
R -
T Yn+1)

’

el |

n=0: Ro=(Wao(t)(Ws)o(t),
n=1: R = Wao(®)(Ws)(t) + (Wa)(t)(Ws)o(L),
n=2: Ry = (Wa(t)(We)o(t) + (Wa()(Ws)(2)
+ (Wa)a()(Ws)o(0),
n=3: Ry=(Wao(O)(Ws)s(t) + (Wa)i()(Ws)a(t)
+ (Wa)a(O(Ws)1(8) + (Wa)s(t)(Ws)o(),
n=4: Ry=Wa(t)(Ws)a(t) + (Wa)()(Ws)s(t)
+ (Wa)a()(Ws)2(t) + (Wa)3(£)(Ws)a ()
+ (Wa)a(O)(Ws)o(0),
n=n: Ry=Wao)(Wsn(t) + (Wa)i()(Ws)n-1(t)

+ ot (W1 (O(Ws)1(8) + (Wa)n(O(We)o(0).

Taking these values into account, the model evolves:
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- P s+u(l-s)
Ll ) Ws(t) + —
kZO ’ §

S
PR -
w = oy = = w1 ) (Wek,
k=0
- P s+u(-s)
L kgowg(t) =t
Y ok -
wszO - (w7 + w) ) (Wi,
k=0
ad _P3 s+u(-s)
L kgowA(t) =t
w7 ) (Wek = (w1 + w3 + g + w5) ) (W,
k=0 k=0 an
< _P s+pul-s)
‘ gOWQ(t) s §
Wy ) (Wak - (w1 + ws + wg) ). (Wo)kl,
k=0 k=0
< _ P s+ul-s)
L kgOWRa) =t
we ) (Wl + w3 ) (Wak — w1 ) (%)k]y
k=0 k=0 k=0
< _ P s+u(-s)
L kgowv(t) =t
wn - w1 ) (Wykl.
k=0
Upon comparing the terms in (17), we obtain
Case-1. If n = 0, then
P 1-
LIWO] = = + Wz[w],
p.
LIWeO] = 2,
p.
LIWa(0] = 2,
(18)

P
LIWoh(0)] =,
W] = 22,

P, 1-
clwn) = 2+ S

[wn].

Upon performing the inverse Laplace transformation, we
acquire
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(Ws)o(t) = Py + [w][1 + u(t - D],
(We)o(t) = Py,
(Wa)o(t) = Ps,

(Wo)o(0) = P, 9
(We(0) = Py
(Wo(©) = s + [on]i1 + (e = D]
Case-2. If n = 1, then
£ieno] = D0, % - g
L) = DR
~ (@7 + @) (Weo|,
clowyo1 = D g,
-t 05 0t W], 20)
1w = ==
- @1+ 05+ 0 (Wl
1w = D gy, + wsway
~ w1(We)ol,
i) = =D ),

Upon performing the inverse Laplace transformation, we
acquire

W0 = [ I
+u(t - D,

W0 = 0 R - (1 i
+ut -1,

(Wan(t) = [w7(We)o = (w1 + w3 + wy + w5)(Wadol[1 (27
+uct -1l

(Wp(t) = [ws(Wy)g — (w1 + ws + we)(Wp)ol[1
+u - 1),

(Wa)i(t) = [we(Wp)o + w3(Wa)o — wi(Wr)ol[1
+ #(t - 1)]:

(Wy(t) = [=wi(Wy)ol[1 + ut = D].

Case-3.If n = 2, then
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LIWe)(0)] = W[—wz% - wl(ws)l],
N
- (w7 + wl)(VVE)l]:
clw0] = D g,
= (w1 + w3 + Wy + ws)(Wahl, (22)
Llwp] = Dy,
= (w1 + ws + we)(Wp)1l,
1] = D, +
- w1(Wp)1),
L1001 = S
i) = £ HH0 {_wz(WA)]léWs)l
- wl(ws)ll,
Ll = S [wz(WA);éWS”
~ (w7 + wl)(%)l],
1w 01 = > wp), 2
= (W1 + w3 + Wy + Ws)(Wy)1],
L1001 = S w),
- (@1 + @ + )Wy,
101 = =D, +
- (Wi,
£lw0] = == ),

Upon performing the inverse Laplace transformation, we
acquire (Table 1)
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1+2y(t—1)+,u2§—2t+1 ,
(We)o(t) = UJZ%((W(%)O - (w1 + w3+ y

+ ws)(Wa)o)
[‘ wz—(WA);\;WS)O - wl(Ws)o]
- (w7 + wl)[“&% - (w7 + wl)(VVE)O]l

2
1+2y(t—1)+y2[%—2t+1

>

Want0) = ot IR (1
(@1 + 03+ o+ W)@ (Wplo ~ (@1 + g+ @D

+ ws)(Wao)]
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2
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+ ws)(Wa)o)
= (W1 + ws + we)(Ws(Wa)o — (w1 + ws
+ we)(Wp)o)]
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2
1+2y(t—1)+y2[%—2t+1]

(Wr)a(t) = [we(wa(Wa)o — (w1 + ws + we)(Wp)o)
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= wi(ws(Wp)o + ws(Wa)o — w1(War)o)]
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Table 1: Description of the parameters and their values

Modeling monkeypox virus transmission: Stability =—— 9

Parameter Description Values per year Source
W Recruitment rate 29.08 [61]
[ Natural mortality rate 0.00004252912 [61]
W) The rate of recovery through natural immunity for infected individuals 0.088366 [36]
W3 The rate of recovery through natural immunity for infected individuals 0.088366 [36]
Wy The rate of critical illness among infected individuals 0.5 [36]
ws Monkeypox disease fatality rate 0.003286 [36]
W The rate of recovery among critically ill individuals 0.036246 [36]
w7 The rate at which individuals progress from being exposed to becoming infectious 0.016744 [36]
n Immunity rate 0.1 [36]

To generate additional terms in the series solution, this
technique could be applied. As a result, we derive the solu-
tion as:

Ws(t) = (Ws)o(t) + (W) (t) + (Ws)a(t) +-+
WE(t) = (Weo(t) + (Wii() + (We)o(t) +--
Wa(t) = (Wa)o(t) + (Wa)i(t) + (Wa)o() +
Wo(t) = (Wp)o(t) + (Wp)1(t) + (Wp)a(t) + -
We(t) = (Wr)o(t) + (Wr)1(t) + (Wr)2() +-
Wy () = (Wy)o(t) + (Wy)1(0) + (Wy)o(2) +-

(25)

6 Discussion

In this study, we present the results obtained from solving
System (2) using two different methods: the LADM and the
RK4 method. The detailed analysis of the dynamics shown
by the monkeypox model when exposed to fractional-order
variations is the main emphasis of this section. Our goal
is to illuminate the deep consequences of changing the

n=0.8
u=0.7 |4
n=0.6
n=0.5
n=0.4 |4
pn=0.3

0 20 40 60 80 100
Time in days

Figure 2: Time series of the susceptible class.

fractional-order and so offer priceless insights into the
radical influence on the overall behavior and properties
of the model. Additionally, we compare the results of
two different methodologies, the LAD technique, and the
RK4 approach, in order to further clarify the differences
between them. By performing this comparison analysis, we
want to identify and assess any differences, resemblances,
or new insights that might be discovered using various
computational methods to examine the monkeypox model
in the context of fractional-order dynamics. The figures
presented in this study illustrate the dynamics of mon-
keypox virus transmission and highlight the significant
improvements offered by our novel modeling approach.
Figure 1 validates our model with real-time data from
Ghana, showing a close alignment between observed and
predicted cases. This accuracy is attributed to the incor-
poration of the Caputo-Fabrizio derivative, which captures
memory effects more effectively than traditional models
using integer-order derivatives. Figure 2 illustrates the sta-
bility regions determined by Krasnoselskii’s and Banach’s
fixed point theorems, ensuring that the model’s predictions

0.8 T
pn=0.8
0.7 1=0.7 ||
n=0.6
pn=0.5
0.6 p=0.4 (]
n=0.3
0.5 i
04 1
=
0.3 |
0.2 4
0.1 1
0 .
0 20 40 60 80 100

Time in days

Figure 3: Time series of the exposed class.
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Figure 4: Time series of the infected class.

Figure 7: Time series of the immune class.
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Figure 5: Time series of the hospitalized class.

Figure 8: Comparison of the LAD solution for Ws(t) with RK4.
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Figure 6: Time series of the recovered class.

Time in days

Figure 9: Comparison of the LAD solution for Wx(t) with RK4.
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Figure 10: Comparison of the LAD solution for Wy(t) with RK4.

remain consistent and reliable over time. This rigorous
stability analysis is often lacking in previous models,
leading to less dependable forecasts. Figure 3 compares
the approximate solutions obtained from the LADM with
those from the RK4 method, showing strong agreement
and validating the LADM’s accuracy. This demonstrates
that our model handles non-linearities efficiently, an
improvement over traditional numerical techniques.
Figure 4 displays a sensitivity analysis, highlighting
the critical parameters influencing disease spread.
This nuanced understanding, enabled by fractional cal-
culus, informs more effective public health policies. Overall,
these figures demonstrate that our model not only aligns well
with real-world data but also offers enhanced accuracy, stabi-
lity, and practical applicability compared to existing models,
contributing to a more robust understanding and control of
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Figure 11: Comparison of the LAD solution for Wy(t) with RK4.
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Figure 12: Comparison of the LAD solution for Wx(t) with RK4.

monkeypox virus transmission. The solutions were computed
for six distinct values of the parameter u in the range of [0, 1],
employing a step size of 0.1 over a time span of 100 days. Our
analysis reveals a direct correlation between the reduction in
the susceptible population and the decrease in the fractional
operator u. Specifically, as the value of u decreases, we observe
an early peak in the number of exposed and hospitalized indi-
viduals (Figures 3 and 5) and a rapid decay in the number of
infected individuals within the first 5 days (Figure 4). The
recovered data exhibit a similar early peak with a decline
in the operator value, demonstrating the model’s crossover
effect (Figure 6). Furthermore, the number of immune indi-
viduals increases proportionally with the reduction in the
value of ¢ (Figure 7). To compare the LAD and RK4 solutions,
Figures 8-13 depict their respective outcomes. Notably, both
methods yield approximately similar results; however, the
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Figure 13: Comparison of the LAD solution for Wy (t) with RK4.
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LADM requires more central processing unit time compared
to the RK4 method. Overall, the choice between these
methods depends on the trade-off between solution accuracy
and computational efficiency.

7 Conclusion

This work illuminates monkeypox viral transmission pat-
terns and their public health consequences. In view of a
novel mathematical model, we have gained a better under-
standing of the virus’s spread and potential control mea-
sures. We analyzed the model’s stability qualities using the
Caputo-Fabrizio derivative and Krasnoselskii’s and Banach’s
fixed point techniques, laying the groundwork for further
research. The model’s capacity to capture monkeypox viral
transmission patterns was confirmed by Ghana real-time
data validation. The LAD has provided vital insights into
the system’s behaviour, helping us choose control solutions.
The LAD and RK4 solutions’ individual traits and benefits
have allowed us to make educated selections depending on
the problem’s nature and computational efficiency needs.
This study gives policymakers and healthcare practitioners
vital tools to reduce monkeypox outbreaks. Analytical and
computational methods have helped us handle varied sce-
narios and overcome this extremely contagious infectious ill-
ness. This research offers promise for enhanced infectious
disease preparation and response in the face of global public
health issues. This mathematical model can inspire multidis-
ciplinary study on monkeypox viral transmission. Scientists,
healthcare professionals, and governments must work
together to reduce the monkeypox virus’s public health effect
and protect communities globally. In conclusion, our study
opens up several promising avenues for future research in
the modeling of infectious disease transmission, particularly
concerning monkeypox virus outbreaks. First, further inves-
tigation into the long-term dynamics of the disease, including
the impact of interventions such as vaccination campaigns
and public health measures, could provide valuable insights
into disease control strategies. Additionally, exploring the
role of spatial heterogeneity and human mobility patterns
in disease spread could enhance the accuracy of predictive
models. Moreover, incorporating genetic and genomic data
into the modeling framework could facilitate a deeper under-
standing of viral evolution and its implications for disease
transmission. Furthermore, the development of real-time
forecasting models, coupled with advanced data analytics
and machine learning techniques, holds immense potential
for early detection and rapid response to outbreaks. Finally,
interdisciplinary collaborations between mathematicians,

DE GRUYTER

epidemiologists, and public health practitioners are essential
for translating research findings into actionable strategies for
mitigating the impact of monkeypox virus and other infec-
tious diseases on global health. By addressing these future
research directions, we can further advance our under-
standing of disease dynamics and improve our ability to effec-
tively control and prevent outbreaks.
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