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Abstract: The complexity of thermal analysis in practical
systems has emerged as a subject of interest in various
fields of science and engineering. Extended surfaces, com-
monly called fins, are crucial cooling and heating mechan-
isms in many applications, such as refrigerators and power
plants. In this study, by using a deterministic approach, we
discuss the thermal analysis of conduction, convection, and
radiation in the presence of a magnetic force within an
extended surface. The present study develops a deep neural
network to analyze the mathematical model and to estimate
the contributions of each dimensionless model parameter to
the thermal dynamics of fins. The deep neural network used
in this study makes use of a feedforward architecture in
which the weights and biases are updated through back-
ward propagation. The accuracy of the neural network
model is validated using results obtained from a spectral-based
linearization method. The efficiency rate of the extended sur-
faces is computed using the neural network and spectral
methods. The results obtained demonstrate the accuracy of
the neural network-based technique. The findings of this
study in relation to the novel mathematical model reveal
that utilizing materials with variable thermal conductivity
enhances the efficiency rate of the extended surface.

Keywords: neural network approximation, spectral methods,
fins, convection, conduction, magnetic

Nomenclature

a cross-section area of the
fin (m2)

B0 magnetic field intensity (T)
cp specific heat capacity (J/kg K)
F temperature (K)

∞F temperature (ambient) (K)
g acceleration due to gravity

(m/s2)
H magnetic parameter
ι internal heat generation

(W/m3)
J
e

conduction intensity
k thermal conductivity

(W/m K)
ka thermal conductivity

(ambient)
K permeability (m2)
L length of the fin (m)
M thermo-geometric parameter
n multi-boiling heat parameter
NF temperature ratio
NP porosity parameter
NR thermal radiation parameter
P perimeter of the fin (m)
Q heat generation parameter
u velocity in the porous fin (m/s)
V velocity vector (m/s)
w width of the fin (m)
x Cartesian coordinate
Zr fin efficiency rate
Greek symbols
α α,0 1 thermal coefficient (1/K)
β thermal expansion coeffi-

cient (1/K)
η heat transfer coefficient

(W/m2 K)
η

b
heat transfer coeffi-
cient (base)

ε emissivity coefficient
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ρ density of the fin (kg/m3)
ν kinematic viscosity (m2/s)
ϕ ϕ,

0 1
temperature ratio

σ electrical conductivity (S/m)
∗σ Stefan-Boltzmann constant

ξ thermal coefficient (1/K)
∗ξ temperature ratio

ζ dimensionless length
Γ dimensionless temperature
Subscripts
∞ ambient condition
w reference (base)

1 Introduction

Understanding the behaviour of a system that is influenced
by convective, magnetic, and radiative heat transfer con-
ditions is a long-standing and crucial aspect in the field of
thermal transport. This subject has considerable signifi-
cance in various industries, including aerospace, construc-
tion, energy, and manufacturing, thus underscoring its
broad and practical utility. One example of such a system
is the fin. The relevance of fins is evident in our daily lives,
influencing cooling processes in refrigerators, the radiator
systems in cars, the heating elements in geysers, the thermal
fins used in heat dissipation in our computers, and numerous
other applications around us. In these applications, fins are
crucial to enhancing heat transfer, improving efficiency, and
preventing overheating. Fins, or extended surfaces, improve
heat transfer efficiency from surfaces that typically undergo
cooling via natural or forced convection by gases or fluids.
Heat is conducted from the heat source to the fin’s surface
through thermal conduction. Heat is usually transferred by
radiation, convection, and conduction. On the other hand,
heat from the surrounding medium, the magnetic element,
and the material porosity can all contribute to thermal dis-
sipation. Fins have three fundamental characteristics: (i) they
are metallic; (ii) they have a variety of structures; and (iii) the
fin’s length is significantly longer than its diameter [1].

The mechanisms of fins have been the subject of
numerous investigations; one noteworthy study is by Gorla
and Bakier [2], which examined heat dissipation due to radia-
tion and conduction in a rectangular porous fin. The study
used the Darcy model to simplify the momentum equation.
The fin system studied by Gorla and Bakier [2] takes into
account conduction and radiation-induced thermal equili-
brium while ignoring internal heat generation and the role
of magnetic fields in heat enhancement. The significance of
porosity in fins in a parallel-surface channel was studied by

Kiwan and Al-Nimr [3]. Numerical analyses of the heat
enhancement resulting from a porous fin were carried out
in the study. A 100% decrease in the finmaterial’s weight was
noted, and it was concluded that the finmaterial has the same
performance as a solid fin. The effect of the thickness of a
porous fin on the thermal system was examined in the study.
Hatami and Ganji [4] investigated the effect of geometrical
and material properties in the design of porous fins using
the least squares approach. The results show that fins
made of aluminum have a high rate of heat transmission,
which makes them appropriate for extended surface design.
Gireesha et al. [5] investigated the effects of stretching and
shrinking on the temperature distribution of a wet longitu-
dinal fin. According to the analysis, the negative impacts of
motion and internal heat generation on the fin’s heat
transfer rate can be lessened by putting in place a shrinking
mechanism on the extended surface. Other studies in this
direction include the work of Atouei et al. [6], Nicholls et al.
[7], Aziz and Lopez [8], Razani and Ahmadi [9], Buonomo
et al. [10], and the references therein.

Research into extended surfaces has made a substan-
tial contribution to understanding the accuracy and effi-
ciency of semi-analytical and numerical discretization
methods. These studies are motivated by the complex dyna-
mical equation (a second-order nonlinear ordinary differen-
tial equation) that governs heat transfer in extended
surfaces. These equations often do not have simple closed-
form solutions, especially when they are nonlinear. For
instance, Aderogba et al. [11] used the generalized fins model
to evaluate the performance of the nonstandard finite differ-
ence numerical discretization technique. It was demonstrated
that the numerical approach maintained the dynamics of
the differential equation with good accuracy. The hybridiza-
tion of the differential transform and Pade approximation
method was used by Sowmya et al. [12] to investigate heat
transfer in rectangular fins under the influence of a mag-
netic field. Kasali et al. [13] used the spectral-based local
linearization method introduced byMotsa [14] to investigate
the effects of the multi-boiling parameter on linear and non-
linear thermal conductivity on thermal flux on an extended
surface. The study also assessed the accuracy of the spectral-
based method. Akindeinde [15] investigated the efficiency
and accuracy of the Parker-Sochacki semi-analytical method
using the dynamical nonlinear fin model as a case study.
Sobamowo [16] studied porous wet fins subjected to mag-
netic body forces and thermal radiation using the conven-
tional finite difference approach. To predict heat dissipation
in an extended surface subjected to conductive, convective,
and radiative conditions, Zhanga and Li [17] presented a
novel Taylor approximate approach. The study evaluated
the accuracy of the method by contrasting their approach
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with explicit solutions in limiting cases, such as those
without a radiation effect. Roy et al. [18] examined themodel
of an accelerating triangular fin and the performance of a
modified decomposition method.

Machine learning has revolutionized various fields,
including computer vision, natural language processing,
and speech recognition, among many others. Recently,
researchers have focused on training computer systems
to process data and information in a manner similar to
the human brain. This technique, known as the neural
networks method, is a part of a broader category of
machine learning processes called deep learning. Lagaris
et al. [19] initially proposed solving an ordinary differential
equation using neural networks. The underlying principle
involves training a neural network framework to meet
the conditions stipulated by a differential equation.
Waseem et al. [20] analyzed the temperature distribution
in a porous fin through artificial neural networks coupled
with the cuckoo algorithm. Tan et al. [21] used the neural
network method to analyze heat efficiency in a compact
exchanger. Goud et al. [22] used a Levenberg-Marquardt
neural network technique to study heat transfer in a tra-
pezoidal-shaped fin. They took into account assumptions
on heat conductivity that depart from traditional Fourier
principles. Kumar et al. [23] investigated the heat efficiency
mechanism in a wavy wall with an artificial neural net-
work. Shafiq et al. [24] used the artificial neural network
method to estimate key parameters related to engineering
physical quantities in a bioconvection nanofluid flow over
a stretching surface containing gyrotactic microorganisms.
In other related studies, Shafiq et al. [25] used artificial
neural networks to forecast the potential number of deaths
from the COVID-19 pandemic in Italy. In addition, Shafiq
et al. [26] investigated the effects of Soret and Dufour con-
vective heat transfer using an accelerating needle as the
focal point, with the simulations conducted through artifi-
cial neural networks.

Notably, none of the many studies published in the
literature have examined the application of deep learning
methods to the analysis of heat dissipation and tempera-
ture distribution in a rectangular porous fin subjected to
radiation, magnetic effects, and quadratic-type thermal
conductivity. To this end, this study examines heat dissi-
pation in a porous extended surface (fin) exposed to
radiation, convection, and conductivity in a magnetic
environment. The dynamical system is analyzed using a
deep neural network (DNN) and the physical implications
of the findings are reported. The spectral-based local
linearization method, introduced by Motsa [14], is used
to validate the accuracy of the result obtained using the
deep learning approach.

2 Analysis of the mathematical
model

This section begins by developing the mathematical model.
In the context of a porous fin, the following dynamical
cumulative heat addition equation describes the equili-
brium of thermal transport [13,27]:

( ) ( )= + + + + +

+

z x z x δx z z z z

porous term .

conv rad mag int (1)

Eq. (1) represents the thermal energy balance within a
closed system. Heat conduction into the base of the fin
element at position x is the sum of heat conduction into
the element at the fin tip ( )+x δx , heat convection from the
element, heat radiation from the element, heat transfer
due to the magnetic field, internal heat generation within
the element, and the contribution from the porous term.
The porous media is homogeneous and saturates with a
single-phase fluid. The study focuses on a convective-con-
ductive-radiative porous fin with length L. The fin is
exposed on both faces to convection with a temperature

∞F and subjected to a uniform magnetic field, as illustrated
in Figure 1. The longitudinal fin is constrained in length
with an insulated tip, creating an adiabatic system where
no heat is transmitted from the tip. The temperature at the
base of the fin is denoted as =F Fw and at the tip takes the
form of a Neumann boundary condition, = 0

F

x

d

d
. The inter-

action between the porous medium and the single-phase
fluid is formulated using the Darcy model. Body force due
to the magnetic field is experienced in the y-direction. It is
assumed that the radiative heat flux behaves similarly to
an optically thick gas within the porous medium. The effect

Figure 1: Geometrical configuration of the fin.
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of the electrical field due to polarization is considered to be
negligible, i.e., =E 0. If this phenomenon takes place in a
steady-state condition, then Eq. (1) becomes [13]:

     

     

  

( ) ( ) ( )( ) ( )

( )

( )( )

− + = − + −

+
×

+

+ −

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

∞ ∗ ∞

∞

z x z x δx η F F F δa εσ F F δa

J J

σ

aδx z F aδx

ρc wu x F F δx

.

e e

p

heat due to convection

4 4

heat due to radiation

heat due to magnetic element

int

internal heat dissipation

heat due to porous effect

(2)

Here, ( )u x represents the movement of the buoyancy-
driven flow at any location x , and J

e
is the intensity of the

conduction responsible for the thermal transport due to
electric current, given, respectively, as [1]

( ) ( ) ( )= − = + ×∞u x

gβK

ν

F F J σ E V B, and .
e

(3)

By substituting Eq. (3) into Eq. (2), we obtain

( ) ( ) ( )( )

( )

( ) ( )

− ⎛
⎝ + ⎞

⎠ = −

+ −

+
×

+ + −

⎫

⎬
⎪⎪

⎭
⎪
⎪

∞

∗ ∞

∞

z x z x

z

x

δx η F F F Pδx

εσ F F Pδx

J J

σ

aδx z F aδx

ρc gβK

ν

w F F δx

d

d

,
e e p

4 4

int
2

(4)

where =δa Pδx .
According to Ohm’s law, the current density or con-

duction intensity is obtained as ( )= + ×J σ E V B
e

, where E

denotes the electric field, V is the charge carrier velocity,

which is accounted for using the model ( )= − ∞u F F
gβK

ν
,

since porosity is considered, σ is the electrical conductivity,
and B is the magnetic force. Thus, if the electric field is
negligible, that is, =E 0; we have

( )= ×J σ V B .
e

(5)

Here, ( )=V u v, , Eq. (5) indicates that ∣ ∣∣ ∣=J σ u B θnsin ˆ
e

, and thus,

∣ ∣∣ ∣ ∣ ∣∣ ∣× = × =J J σ u B θn σ u B θm σ u B θsin ˆ sin ˆ sin .
e e 0 0

2 2
0

2 2 (6)

Note that the velocity of the charged particle is perpendi-
cular to the magnetic field, and thus, =θsin 12 . Hence [1],

×
=

J J

σ

σu B .
e e 2

0

2 (7)

Upon division by δx , Eq. (4) reduces to

( ) ( ) ( )

( ) ( ) ( )

− = − + −

+ + + −

∞ ∗

∞

z

x

η F P F F εσ P F F

aσB u x az F

ρc gβK

ν

w F F

d

d

,

s

p

4 4

0

2 2
int

2

(8)

where ( )=×
σB u x

J J

σ 0

2 2e e . Following Fourier’s law of heat
conduction [28], heat conduction taking place within the
fin can be mathematically described as [4]:

( )= −z ak F

F

x

d

d
. (9)

Substituting Eq. (9) into Eq. (8), we have

( ) ( ) ( ) ( )

( ) ( )

( )

⎛
⎝

⎞
⎠ = − + −

+ − +

+ −

⎫

⎬

⎪
⎪

⎭

⎪
⎪

∞ ∗ ∞

∞

∞

x

ak F

F

x

η F P F F εσ P F F

aσ

B g β K

ν

F F az F

ρc gβK

ν

w F F

d

d

d

d

,
p

4 4

0

2 2 2 2

2

2
int

2

(10)

and using the relation given in Singha et al. [29], Oguntala
and Abd-Alhameed [30], and Sobamowo et al. [31], we have

( ) [ ( ) ( ) ]

( )

( ) [ ( )]

⎜ ⎟

= + − + −

= ⎛
⎝

−
−

⎞
⎠

= + −

⎫

⎬
⎪

⎭
⎪

∞ ∞

∞

∞

∞

k F k α F F α F F

η F η

F F

F F

z F ι ξ F F

1 ,

,

and 1 .

a

b

w

n

0 1

2 2

int

(11)

After some simplifications, Eq. (10) becomes

[ ( ) ( ) ]

( )

( )
( )

[ ( )] ( )

( )

⎡
⎣ + − + − ⎤

⎦

−
−
−

− −

− + − − −

− − =

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪⎪

∞ ∞

∞
+

∞

∗
∞

∞ ∞

∞

x

k α F F α F F

F

x

η P F F

a F F

εσ P

a

F F

ι ξ F F

σB g β K

ν

F F

ρc gβKw

a

F F

d

d
1

d

d

1

0,

a

b

n

w

n

p

0 1

2 2

1

4 4

0

2 2 2 2

2

2

2

(12)

with associated boundary conditions given as [2]:

⎪

⎪

= =

= =

⎫
⎬
⎭

x F F

x L

F

x

at 0, ,

at ,
d

d
0.

w

(13)

We further introduce the following dimensionless
variables and parameters:
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( )
( )

( )
( )

( )

( )

( )

= =
−
−

=

=
−

= −

= − =
−

=
−

=
−

= −

=
−

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

∞

∞

∞
∞

∞
∞

∗ ∞

∞

∞
∗ ∞

∞

ζ

x

L

F F

F F

M

η PL

ak

Q

ιL

k F F

ϕ α F F

ϕ α F F N

ρc gβKwL F F

aνk

N

L σ P F F

ak

N

F

F F

ξ ξ F F

H

σB g β K L F F

ν k

, Γ , ,

, ,

, ,

,

, ,

.

w

b

a

a w

w

w P

p w

a

R

w

a

F

w

w

w

a

2

2

0 0

1 1

2 2

2

2 3

0

2 2 2 2 2

2

(14)

By incorporating the nondimensional variable in Eq.
(14) into Eqs (12) and (13), we obtain the following single
variable differential equation:

( ) [( ) ]

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

− − + −

− + − + =

+

∗

ζ

K

ζ

M εN N N

H N Q ξ

d

d
Γ

dΓ

d
Γ Γ

Γ 1 Γ 0,

n

R F F

P

1
1 4 4

2

(15)

where ( ) = + +K ϕ ϕΓ 1 Γ Γ1 0 1

2 and its associated insulated
boundary conditions [2]

= = = =ζ ζ

ζ

at 0, Γ 1, and at 1,
dΓ

d
0. (16)

2.1 The fin efficiency rate

The fin efficiency is computed by dividing the rate of heat
transfer ( )Zfin by the ideal rate of heat transfer ( )Zideal ,
where the latter represents the thermal energy that would
be conducted if the entire fin temperature were the same
as the temperature of the fin base. This relationship is
expressed as follows [1]:

( )

( )
( )∫∫

= =
−

−
=

∞

∞
Z

Z

Z

P F F x

PL F F

ζ ζ

d

Γ d ,r

L

w

fin

ideal

0

0

1

(17)

where ( )∫= − ∞Z P F F xd
L

fin
0

is the rate of heat transfer.

3 Method of solution

In this section, we introduce the implementation of a DNN
to solve Eq. (15) subject to the associated boundary condi-
tions (16). Subsequently, we derive the algorithm and
describe the implementation of the spectral local lineariza-
tion method (SLLM) to solve the differential equation.

3.1 DNNs approximation of the model
solution

This study uses a deep and fully connected feedforward
artificial neural networks framework to solve the nonlinear
differential Eq. (15) with the associated boundary conditions
(16). Suppose the differential Eq. (15) is defined as follows:

� ( )
( ) ( )

[ ]
⎡
⎣⎢

⎤
⎦⎥

= ∈ζ ζ

ζ

ζ

ζ

ζ

ζ, Γ ,
dΓ

d
,

d Γ

d
0, 0, 1 ,

2

2
(18)

subject to the conditions in Eq. (16), where � is a nonlinear
operator of ( )ζΓ and its derivatives. The collocation tech-
nique is used to discretize the domain and boundary of the
problem into a finite number of discrete points. In this
study, we use the set of Chebyshev-Gauss-Lobatto points,

⎟⎜= −
⎛
⎝

⎞
⎠

=ζ

πj

M

j M˜ cos , 0,…, ,j

ζ

ζ

mappedonto [ ]∈ζ 0, 1 through the linearmapping, ( )= +ζ ζ̃ 1
1

2
.

The nonlinear differential Eq. (18) is then transformed into
its discrete equivalent

� ( )
( ) ( )

( ) [ ]

⎡
⎣⎢

⎤
⎦⎥

=

∈ + ≡

ζ ζ

ζ

ζ

ζ

ζ

ζ ζ

, Γ ,
dΓ

d
,

d Γ

d
0,

1

2

˜ 1 0, 1 ,

j j

j j

j

2

2

(19)

subject to the conditions

( )
( )

= =ζ

ζ

ζ

Γ 1 and

dΓ

d
0.

M

0

ζ (20)

In this study, we consider the ansatz, ( )ζ w bΓ ; ,t , which
satisfies the boundary conditions (20) for the solution of the
differential Eq. (19). Here, w and b are the weights and biases,
respectively, of the DNNs framework. Therefore, the problem
of approximating the solution of the differential equation then
becomes the unconstrained minimization problem,

� ( )
( ) ( )

[ ]

∑ ⎜ ⎟
⎛

⎝
⎡
⎣⎢

⎤
⎦⎥
⎞

⎠∈
ζ ζ w b

ζ w b

ζ

ζ w b

ζ

min , Γ ; , ,
dΓ ; ,

d
,

d Γ ; ,

d
.

w b
ζ

j t j

t j t j

,
0,1

2

2

2

j

(21)

In the proposed technique, the trial solution, ( )ζ w bΓ ; ,t ,
is defined as follows:

( ) ( ) ( )

( )

⎜

⎟

= + ⎛
⎝

−

− ⎞
⎠

ζ w b ζ N ζ w b N w b

N w b

ζ

Γ ; , 1 ; , 1; ,

d 1; ,

d
.

t

(22)

The trial solution, ( )ζ w bΓ ; ,t , depends on the output,
( )N ζ w b; , , of the neural networks framework and is chosen

to satisfy the boundary conditions, (16), of the differential
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model. ( )N ζ w b; , is the single output of a feedforward DNN
architecture fed with a single input vector, ζj, with para-
meters, w and b, which are the weights and biases of the
neural network architecture.

The neural network architecture is a +L 1 fully con-
nected layers, as shown in Figure 2, which consist of the
first layer, which is the input through which the input
vector ζj is fed, the last layer, which is the output layer
and −L 1 hidden layers. Activation functions are intro-
duced in the hidden layers to introduce nonlinearity to
the neural network architecture. In this study, the sigmoid
activation function, ( ) ( )= + − −

q eϱ 1 q 1, is used; however,
other functions such as the hyperbolic tangent, rectified
linear units and exponential functions can be used. Each
neuron in each hidden layer and the output layer has a
bias, and the neurons in layers −l 1 and l are connected by
the weights. The weights which connect neuron k in layer

−l 1 to neuron i in the lth layer are represented by w
ik

l , and
the bias associated with neuron i in layer l is denoted by b

i

l.
The neural network framework is expressed mathe-

matically as follows:

( )
⎪

⎪

=
= + < < −
= +

⎫
⎬
⎭

−

−

q ζ

q w q b l L

q w q b

, the input layer

ϱ , 1 1, the hidden layers

, the output layer ,

l l l l l

L L L L

0

1

1

(23)

where the result of the output layer, ( )=q N ζ w b; ,L , is
used in the trial solution (22). To find the weights and
biases in the layers, we minimize the residual function

�

�

( )

( )
( ) ( )∑ ⎜ ⎟=

⎛

⎝
⎡
⎣⎢

⎤
⎦⎥
⎞

⎠=

w b

ζ ζ w b

ζ w b

ζ

ζ w b

ζ

,

, Γ ; , ,
dΓ ; ,

d
,

d Γ ; ,

d
,

j

M

j t j

t j t j

0

2

2

2
ζ (24)

using gradient descent optimization with adaptive moment
estimation. Lagaris et al. [19] showed how to obtain the
automatic partial derivatives of the residual function with
respect to the weights and biases. However, in this study, we
used the GradientTape sub-module of Python’s TensorFlow

package. The weights and biases are then updated through
backward propagation. The neural network is completely
implemented with Python programming language using the
TensorFlow and NumPy packages. The algorithm for the
neural networks approximation of the solution of Eq. (15) is
given in Algorithm 1. Figure 3 shows the training loss curve of
the neural network architecture. The figure depicts the plot
of the value of the loss function (24) against the number of
training or epochs. The loss function measures how well the
trial function (22), which is dependent on the neural network
framework (23), approximates the solution of the differential
Eq. (15). During the training process, the network adjusts its
parameters, viz. weights and biases, iteratively to minimize
the loss and improve the predictability of the trial solution as
an approximate solution of Eq. (15). We note here that the
weights and biases are initialized using normal distributions
centred at zero with standard deviations of 0.5.

Algorithm 1. Step-by-step algorithm for solving Eq. (15)
using a fully connected deep neural network.

1: procedure DNN APPROXIMATION OF THE SOLUTION OF

Eq. (15)
2: Define the variable =q ζ

0 as input.
3: Define the number of hidden layers and number of

neurons in each layer.
4: Initialize the weights and biases for each layer and

set them as trainable parameters.
5: Define the neural networks architecture:
6: for =l 1 to L do
7: ( )= +−

q w q bϱl l l l l1

8: end for

Figure 2: Schematic diagram of a fully connected DNN.

Figure 3: Training loss curve of the neural networks algorithm with 6
hidden layers and 50 neurons in each hidden layer.
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9: Define the trial solution: ( )ζ w bΓ ; ,t

= ( ( ) ( ) ( ))+ − − ′ζ N ζ w b N w b N w b1 ; , 1; , 1; , .
10: Define the loss function �( )w b, in Eq. (24) in terms

of the trial function.
11: Define the model parameters, ϕ

0
, ϕ

1
, M n, , ε, NR, NF ,

H , NP, Q, ∗ξ as untrainable parameters.
12: Train the neural network model to optimize the

weights and biases by minimizing the residual
function.

13: end procedure

3.2 Spectral local linearization method

In this section, we implement the SLLM to approximate the
solution of Eq. (15) subject to the associated boundary con-
ditions (16). Taking =n 1 and applying a first-order Taylor
series expansion around an initial guess of the solution of
the differential equation, we obtain a linearized form of
the equation expressed concisely as follows:

[ ] [ ] [ ]″ + ′ + =+ + +a a a aΓ Γ Γ ,r r r r r r r1, 1 2, 1 3, 1 4, (25)

where r and +r 1 represent two successive iterations, and
the coefficients are defined as follows:

( )

( )

= + = ′ + ′

= ″ − − −
− − − + −

= ′ + ′ + ″ − −
− − − + +

⎫

⎬

⎪
⎪

⎭

⎪
⎪

∗

a ϕ a ϕ ϕ

a ϕ M εN N εN N

εN N εN N Qξ

a ϕ ϕ ϕ M εN N

εN N εN H N Q

1 Γ , 2 Γ 3 Γ ,

Γ 2 Γ 4 12 Γ

12 Γ 4 Γ 2 1 ,

Γ 2 Γ Γ Γ Γ 6 Γ

8 Γ 3 Γ Γ .

r r r r r

r r r R F R F r

R F r R r P

r r r r r r R F r

R F r R r P r

1, 0 2, 0 1

2

3, 0

3 2

2 3

4, 0

2

1

3

0

2 2 2

3 4 2

(26)

For the sake of brevity, prime ′ denotes differentiation

of Γ with respect to ζ , that is, ′ =Γ
ζ

dΓ

d
, ″ =Γ

ζ

d Γ

d

2

2 . The boundary
conditions are expressed as follows:

( ) ( )= = ′ = =+ +ζ ζΓ 0 1, Γ 1 0.r r1 1 (27)

The linearized Eq. (25) and the boundary condition (27)
are discretized using the Chebyshev pseudospectral method
on the Chebyshev-Gauss-Lobatto nodes. We refer the
readers to Trefethen [32] for a full description and imple-
mentation of this numerical method. Following Trefethen
[32], the implementation of the pseudospectral method on
Eq. (25) results in the following equation

[[ ] [ ] [ ] ]+ + =+D Da a a I Γ a ,r i r i r i r i r i1, ,
2

2, , 3, , 1, 4, , (28)

where I is an identity matrix of dimension
( ) ( )+ × +M M1 1ζ ζ , (Mζ is the number of collocation
points), D is a scaled differentiation matrix [32], and Γ is
the unknown vector solution. Eq. (27) is discretized as
follows:

= =+ +DΓ 1, Γ 0.r r M1,0 1, ζ
(29)

Eq. (28) can then be concisely expressed as follows:

=+AΓ a ,r i r i1, 4, , (30)

where

[ ] [ ] [ ]= + +D DA a a a I,r i r i r i1, ,
2

2, , 3, ,

which together with the imposition of the boundary con-
ditions (29) results in the following consistent matrix-
vector system

⎡

⎣

⎢
⎢

⋯ ⋯

⋯ ⋯

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

−

+

+

+ −

+

−

D D D D

a

a

A

1 0 0 0

Γ

Γ

Γ

Γ

1

0

.

M M M M M M

r

r

r M

r M

r

r M

,0 ,1 , 1 ,

1,0

1,1

1, 1

1,

4, ,1

4, , 1

ζ ζ ζ ζ ζ ζ

ζ

ζ

ζ

(31)

4 Results and discussion

Insights into the thermal dynamics of extended surfaces
are provided through parametric analysis of some key
parameters in Eq. (15) using the DNN method. A compar-
ison of the results obtained by DNN and SLLM is made
to validate the results. If not specified otherwise, the ana-
lysis of the results was carried out using the following
parameter values: =M 1.0, =N 0.10R , =N 0.10F , =n 1.0,

=ε 1.0, =ϕ 0.10
0

, =ϕ 0.30
1

, =N 1.0P , =H 1.0, =Q 0.2, and
=∗ξ 1.0. The figures presented in this section depict the

output obtained from using the DNN to learn the mathe-
matical model in Eq. (15) with its conditions given in
Eq. (16).

Figure 4 depicts the effect of linear and nonlinear
thermal conductivity variations on the dynamics of the
extended surface. Specifically, the figure illustrates how
temperature distribution along the surface is influenced
by the variations in the linearity and nonlinearity of the
thermal conductivity. The distinction between linear and
nonlinear thermal conductivity variations is significant for
temperature distribution along extended surfaces. The
linear relationship suggests that the thermal conductivity
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of the fin changes uniformly with temperature. On the
other hand, the nonlinear thermal conductivity variation
has a much more complex, nonuniform or even nonmono-
tonic relationship with the temperature. It is apparent
from Figure 4 that the linear variation of thermal conduc-
tivity results in a more uniform temperature distribution,
particularly in the vicinity of the fin’s base. This uniform
temperature distribution at the fin’s base can be attributed
to the consistent and predictable changes in thermal con-
ductivity along the surface. In contrast, the nonlinear var-
iation introduces deviations in temperature distribution
along the surface, leading to nonuniform temperature pro-
files. This nonuniformity may arise due to nonlinear effects
such as phase transitions, variations in the material prop-
erty of the fin or localized heat sources, which can disrupt the

thermal equilibrium along the surface and lead to nonuniform
temperature profiles, which may sometimes be necessary for
the design of fins. Regardless of whether thermal conductivity
variations are linear or nonlinear, the overall trend in tem-
perature distribution remains consistent: as both parameters
increase, the absolute temperature along the extended surface
increases. This is because higher thermal conductivity values
enable more efficient heat transfer, leading to higher tempera-
tures along the surface.

The impact of both radiation and internal heat genera-
tion on the temperature of the fin are shown in Figure 5.
Increasing the thermal radiation parameter reduces the
temperature observed on the extended surface. This phe-
nomenon arises because enhanced thermal radiation facil-
itates heat transfer away from the surface. A significant

(a)

(b)

Figure 4: Effect of (a) linear, ϕ
0
, (b) nonlinear, ϕ

1
thermal conductivity on

temperature distribution on the fin.

(a)

(b)

Figure 5: Effect of (a) radiation parameter, NR, and (b) heat generation
parameter, Q on the temperature distribution of the extended surface.
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decrease in the temperature of the fin at its tip is experi-
enced as the fin generates more internal heat. The increased
internal heat generation parameter leads to a higher tem-
perature change at the tip of the extended surface. This
significant temperature gradient on the fin causes heat to
be transferred more rapidly from the base of the fin to the
tip. Consequently, the higher the value of the heat genera-
tion parameter, the lesser the temperature value at the tip of
the extended surface since heat is effectively conducted and
convected away from that region.

Figure 6 shows the effect of the multi-boiling and mag-
netic field strength parameters on the fin. The choice of the
values of the multi-boiling parameters delineates distinct
heat transfer regimes occurring on the extended surface.
By varying this parameter, we can simulate and analyze

the heat transfer behaviour under different boiling condi-
tions, providing insights into the dynamics and thermal

performance of the extended surface. When = −n
1

4
, it indi-

cates laminar film boiling, where a thin film of vapour
forms and envelops the fin surface. The temperature dis-
tribution in this regime is relatively low due to the insu-

lating effect of the vapour film. On the other hand, =n
1

4

corresponds to natural convection, where heat transfer
occurs primarily through fluid motion driven by density
variations caused by temperature gradients. Finally, =n 2

represents nucleate boiling, where discrete vapour bub-
bles form on the extended surface and detach to facilitate
heat transfer. This regime is associated with high heat
transfer coefficients due to the effective heat removal by
vaporization and bubble motion as captured in Figure 6.
Increasing the magnetic field parameter has a notable effect
on the temperature distribution at the tip of the extended
surface. As the parametric value of the magnetic field para-
meter increases, the temperature at the tip decreases. This
dynamic is primarily driven by the amplified influence of
the magnetic field due to a rise in the Hartman number. The
Hartman number characterizes the ratio of magnetic force to
viscous force and measures the strength of the magnetic field
relative to fluid motion. An intensified magnetic field exerts a
damping effect on the convective heat transfer process. Essen-
tially, the magnetic field inhibits the movement of fluid parti-
cles, reducing their ability to carry heat away from the surface
efficiently. Consequently, as the magnetic field becomes
stronger, the convective heat transfer rate decreases, redu-
cing overall heat transfer on the extended surface.

The efficiency rate of the extended surface, as evalu-
ated using both the DNN approach and spectral-based(a)

(b)

Figure 6: Effect of (a) multi-boiling, n, and (b) magnetic field strength, H ,
parameters on the fin’s temperature distribution.

Table 1: The fin efficiency rate as computed using the DNN approach
and the SLLM with the following values: =N 0.10R , =n 1.0, =N 0.10,F

and =∗ξ 0.6

M H NP ϕ
0

ϕ
1

Q DNN SLLM

1.0 0.5 2.0 0 0 0 0.62475 0.62495
2.0 — — — — — 0.58602 0.58633
1.0 0.1 2.0 0 0 0 0.64334 0.64352
— 0.3 — — — — 0.63385 0.63397
1.0 0.5 1.0 0 0 0 0.67598 0.67612
— — 1.5 — — — 0.64839 0.64852
1.0 0.5 1.0 0.1 0.3 0.6 0.62901 0.62930
— — — 0.3 — — 0.65383 0.65391
1.0 0.5 1.0 0.3 0.1 0.6 0.63411 0.63418
— — — — 0.7 — 0.68814 0.68849
1.0 0.5 1.0 0.3 0.3 0.4 0.68096 0.68118
— — — — — 1.0 0.59591 0.59597
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method, is presented in Table 1. Under conditions where
there is no internal heat generation and the thermal heat
conductivity of the extended surface is constant, it is
observed that increasing the thermo-geometric, magnetic
field, and porosity parameters results in a decrease in the
fin efficiency rate. It was also found that variable thermal
conductivity enhances the efficiency of the extended sur-
face. This result suggests that if a fin is designed with the
ability to adjust its thermal conductivity in response to chan-
ging conditions dynamically, it can improve its heat transfer
performance. This underscores the importance of material
selection and highlights the potential benefits of using mate-
rials with adaptable thermal properties in heat transfer
applications. However, the efficiency of the extended sur-
face is suppressed in designs characterized by an apparent
increase in heat. This implies that factors such as elevated
ambient temperature or enhanced heat transfer rates nega-
tively impact the efficiency of the extended surface.

Table 1 also validates the accuracy and reliability of
the methodology used in this study. A comparative analysis
shows that the outputs generated by the neural network
closely align with those derived through the spectral-based
method. The deviation between the two sets of outputs
remains within −10 4, underscoring the relatively high degree
of precision exhibited by the DNN outputs. This result high-
lights the robustness and efficacy of the DNN in producing
solutions consistent with those obtained through established
traditional numerical methods such as spectral methods. By
demonstrating its ability to closely replicate the results of
conventional numerical methods, the neural network tech-
nique establishes itself as a reliable predictive modelling
and analysis tool. This validation not only bolsters confi-
dence in the methodology adopted for this study but also
underscores the potential of neural network-based
approaches in various scientific and engineering applica-
tions. Its ability to accurately capture complex relationships
and patterns makes this approach valuable for scientific
research, particularly in seeking efficient and reliable solu-
tions to a wide range of differential models.

5 Concluding remarks

The primary objective of this study is to develop a deep
learning algorithm for approximating the solution of a
differential equation that describes the intricate dynamics
of heat transfer on extended surfaces. The study also seeks
to elucidate the physical implications of some physical
parameters arising from the differential model. A DNN
architecture was designed to approximate the solution of

the nonlinear differential model to achieve these objec-
tives. In order to measure the accuracy and reliability of
the neural network technique, a spectral-based numerical
method was used to benchmark the result of the neural
network technique. The results obtained were accurate,
validating the efficiency of the proposed method as a reli-
able tool for solving and analyzing nonlinear differential
models, especially those describing heat transfer in extended
surfaces. The finding of this study provides several key insights
regarding the thermal behaviour of extended surfaces.
Notably, it was observed that variations in the thermal
radiation parameter exert a comparable influence on redu-
cing the fin temperature at the tip when compared to
changes in the internal heat generation parameters. The
study further showed that using materials with varying
thermal conductivity can enhance the efficiency of an
extended surface, thus optimizing the heat transfer process.
Overall, these findings are significant in designing, mana-
ging and optimizing extended surfaces.
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