
Research Article

Paolo Rocchi*

A short report on a probability-based
interpretation of quantum mechanics

https://doi.org/10.1515/phys-2024-0047
received February 22, 2024; accepted May 24, 2024

Abstract: This study calls attention to the current state of
the probability (P) domain which presents weak points at
the mathematical level and more significant flaws at the
application level. Popper noticed how fundamental issues
raised in quantum mechanics (QM) directly derive from
unresolved probabilistic questions. Endless philosophical
debates create more problems than solutions, so the author
of this research suggests going directly to the root of the
issues and searching for the probability theory which for-
malizes the multifold nature of P. This study offers a brief
overview of the structural theory of probability, recently
published in a book, and applies it to QM in order to show
its completeness. The whole probability-based interpreta-
tion of QM goes beyond the limits of a paper and these
pages condense a few aspects of this theoretical scheme.
The double slit experiment is used to corroborate the the-
orems presented here.

Keywords: frequency probability, subjectivist probability,
structural theory, wave/particle duality, wave collapse,
quantum measurement

1 Introduction

Most quantum scientists trust in the correctness of the
probability calculus and deem the contrasts amongst the
probability schools are no more than philosophical quar-
rels. In reality, things are not exactly in these terms. Let us
go through some details.
• Kolmogorov grounds his construction on the non-nega-
tivity, normality and additivity axioms. Most mathema-
ticians share this theoretical base which however does
not characterize probability in exhaustive terms [1].

• We read in the study by Kolmogorov [2]: “If P(A) > 0 then
the quotient:

( )
( )

( )
=P B

P AB

P A
,A (1)

is defined to be the conditional probability of the event
B under the condition A.” This formulation lacks a
conceptual justification; as second, it cannot be
applied everywhere; as third, the relationship with
the notion of independence remains inexplicit and
some mathematician concludes that in substance
(1) is a hidden axiom [3].

• Eventually, probability theorists are aware of the single
case problem dealing with the probability of the indivi-
dual case, which diverges from material evidence [4,5].
However, they have confronted that problem from the
philosophical viewpoint rather than through analytical-
mathematical methods.

Issues are even more serious as regard the use of P in
applications. Probability is a parameter employed in count-
less fields which have inspired different formulations and
interpretations. Laplace puts forward the first definition,
sometimes called “classical,” referring to equally likely
events. He states that the probability of the event A is the
fraction f of the total number of possibilities T in which A
occurs.

( ) =P A
f

T
.

(2)

Gamblers, actuaries and scientists have long under-
stood that relative frequencies bear an intimate relation-
ship to probabilities. The frequency interpretation assumes
P as the limiting relative frequency in suitable infinite
sequences of trials [6]. The propensity interpretation, origi-
nated with Popper [7], regards probability as an objective
feature; namely, probability is thought of as a physical
disposition, or tendency of a system to produce given out-
comes [8]. Subjectivist and Bayesians define the probability
of A as the degree of an agent’s credence or expectation,
about A based on prior information [9]. The agent is an ideal
rational individual respecting precise rules. Obviously, the



* Corresponding author: Paolo Rocchi, IBM, via Luigi Stipa 150, Roma,
Italy; LUISS University, via Romania 32, Roma, Italy,
e-mail: procchi@luiss.it

Open Physics 2024; 22: 20240047

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2024-0047
mailto:procchi@luiss.it


degree of belief raises doubts when it refers to objective and
testable phenomena in physics especially when it should
explain quantum properties [10]. Logicians relate prob-
ability to the propositions expressing the premise and the
conclusion of reasoning. The logical interpretation devel-
oped by Carnap [11] takes probability as an extension of
inductive logic, namely P assesses the degree of confirmation
of certain evidence. For Keynes probability expresses the
degree of logical implication between a hypothesis and the
rational conclusion, probability is an evidential relation
between two statements [12].

The irreconcilable models of probability lead to irre-
concilable statistical methods. In fact, frequency interpre-
tation is the position that lies in the background of classical
statistics, and subjectivist interpretation underpins the
Bayesian statistics. The two statistical schools sometimes
suggest similar techniques; however, they provide answers
that have incompatible contents [13].

Concluding, every probability theory is incomplete
since (α) it focuses on a partial aspect of P, (β) constructs
assume insufficient axioms, (γ) some formulas are not
proven or justified and (δ) the single case problem has
not been resolved in mathematical terms. Actually, no
formulation is currently accepted as definitive by the
scientific community.

2 Fallout in quantum
mechanics (QM)

The weak points (α), (β), (γ) and (δ) inevitably affect the
studies of QM intrinsically rooted in probability. Let us
confine ourselves to three points.
• The study of a large sample size of quanta seems to be
more viable, while the individual quantummirroring the
single case problem opposes the greatest difficulties:

“The attempt to conceive the quantum-theoretical description as
the complete description of the individual systems leads to unna-
tural theoretical interpretations, which become immediately
unnecessary if one accepts the interpretation that the description
refers to ensembles of systems and not to individual sys-
tems” [14].

• Max Born referred his theory of collisions to a set of
quanta which has statistical properties [15], but he did
not develop a more detailed description of that set. The
followers of the ensemble interpretation underscore that
the experimental control of probability requires a set of
multiple data, that are a vast multitude of quantum

systems subjected to similar mechanical conditions
[16]. Thus, the wavefunction should not be applied to
an individual system, but to an ensemble of particles.
This approach, which conforms to the frequentist perspec-
tive, follows the diametrically opposite direction of
Quantum Bayesianism (QBism) that draws directly from
the Bayesian school [17]. QBism holds that the main
aspects of the quantum formalism are subjective in
nature; in particular, a quantum state is not an element
of reality, but it represents the degrees of belief an agent
has about the possible outcomes of measurements [18].
The followers of QBism deny the criticism about unre-
alism because the participation of the observer to the
measurement process could be associated with a kind of
realism they call “participatory realism.”

• An isolated quantum system evolves in time in a deter-
ministic way according to the Schrödinger equation and
the rule postulated by Born [15] associates the squared
wavefunction to probability:

( ) ∣ ( )∣=P x y z t ψ x y z t, , , , , , .
0 0

2 (3)

The wavefunction and other open probability argu-
ments give rise to dozens of quantum interpretations.
For example. for the Copenhagen school, the gap between
determinism and indeterminism arises from the “irredu-
cible indeterminacy” of quantum physics; for Einstein, it is
logical to assume that finer and subtler processes, which
are therefore hidden, interfere [19]. Probability theories
are incomplete and do not provide great help especially
for the following issues [20]:
i. The wave/particle nature of quanta,
ii. The collapse of the wave and
iii. The measurement process.

Defects (α), (β), (γ) and (δ) prevent clarifying the alea-
tory phenomena in ordinary environments, they do not
clarify the phenomena in the quantum environment
either. Popper concludes that only a comprehensive con-
struction will provide solid answers. I shared his lesson
and have searched for a unified framework about
probability.

After some preliminary reports [21–23], the recently
published book [24] gives the full account of this inquiry;
it presents all the definitions, proves 15 theorems and dis-
cusses 14 experiments. Such a complex proposal goes
beyond the limit of this paper which instead includes the
ensuing parts:
(A) It summarizes the novel probability framework and

tackles the single case problem (point δ).
(B) It imports the theoretical results in QM and provides

original answers to issues i, ii and iii.
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3 Research strategy

The new proposed theory is not axiomatic (point β), but is
grounded on the accurate analysis of the object measured
by P.
(1) In science, a parameter takes on different meanings in

correspondence of the gauged entities. E.g., the price p
(G) is a cost, if the item G is purchased, it is a gain if G is
sold, namely, p(G) takes on opposed attributes
depending on G. Each probability school assesses a
different object, for instance:

‒ Laplace computes equally likely events.
‒ Von Mises studies phenomena formed by many

repeated events of the same type.
‒ The subjectivists and the Bayesians refer P to indivi-

dual credence.
‒ Keynes means to quantify rational reasoning.
‒ Carnap draws conclusions from evidence and quali-

fies inductive reasoning.

Therefore, probability P(E) takes on a set of meanings in
consequence of the different arguments E, and to untangle
the riddles raised by the multifold nature of probability we
delve into E.
(2) Every probability theoretical framework proves to be

effective within a specific area. This entails that the
comprehensive theory should calculate all the objects
listed in (1).

(3) In consequence of remark (2), the multifold argument
E should be formulated with great precision. This
method does not match with the majority of coeval
authors who share the simplified model of E. They
assume that the event E is a subset of results belonging
to the event space:

{ }=E ω ω, , … .
1 2

(4)

This solution raises the following doubts:
• Definition (4) hints that E and ω should share the same
nature, conversely recent studies [25,26] and universal
experience show how they are very close but distinct.
The event is the process that begins with certain initial
conditions and ends with the emission of the result. The
former is the overall happening, and the result is a part
of it.

• Subjectivists, Bayesians and logicians prefer to describe
the event by means of sentences which badly fit with the
set model (4).

• The initial conditions are essential to identify certain,
uncertain and impossible events; yet (4) gives this notion
for granted.

Concluding, the comprehensive conceptualization of
probability should not give up the faithful description of
the event, and for this purpose, we adopt the following
structure including the elements α, ω and the relation ρ
connecting them [27]. In detail, ρ formalizes the process
which brings about to the outcome ω from the initial con-
ditions α.

( )=E α ρ ω, , , (5)

where the result ω can be expressed by a subset or even a
proposition.

The structure (5) describes anything that happens: a
material phenomenon and also a reasoning, a deduction, a
credence, etc., which are mental events. This theory
embraces the diverse interpretations of P by means of
(5). For example, raining is a material occurrence caused
by various meteorological factors and has this structure:

( )=E meteorological factors, falling, rain .p (6)

Tom examines the sky and concludes it will rain; this
uncertain reasoning can be expressed this way:

(

)

=E meteorological information,

credence, ‘it will rain’ .

m (7)

The term “rain” indicates the material outcome of the
physical event Ep, and the sentence “it will rain” is the
logical conclusion of the mental Em. The book [24] ana-
lyzes Bayesian, logical and other intellectual events in
detail.

The accurate model (5) defines any event which hap-
pens, will happen or potentially happens; and probability
quantifies this capability to occur no matter E is physical or
intellectual.

( )≤ ≤EP0 1. (8)

E.g., the objective probability of (6) qualifies a fact
occurring in the world, and the Bayesian probability of
(7) assesses a subjective belief developed in the mind of
an individual.

Ordinarily, the output ω marks the end of the event, ω
determines whether E occurs or does not occur; hence, the
event and its outcome share the same probability value.

( ) ( )= EP ω P . (9)

From now onward we delve into physical events whose
relative frequency F is the experimental observable corre-
sponding to P calculated in abstract. Model (5) allows us to
locate any material happening in the time scale; E starts at t
= 0 and finishes at tω that is the delivery time of ω. In case of
repeated trials, tω is the delivery time of the last trial. We call
the time intervals T1 with 0 < t < tω, and T2 with t ≥ tω. We
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define the determinate status ω(D) of the result whose prob-
ability or frequency are integers.

( ) ( )

( ) ( )

= =
= =

P ω F ω

P ω F ω

0; 0,

1; 1.

(10)

And the indeterminate status ω(I) when one of the fol-
lowings is true:

( ) ( )< < < <P ω F ω0 1; 0 1. (11)

We distinguish the event E1 that occurs only once,
from the long-term event E∞ that repeats indefinitely E1.

( )( ) ( ) ( ) ( )=∞E E E E, , , … .

I

11

I

12

I

13

I (12)

The unlimited series of single outcomes that are inde-
pendent and identically distributed, make the outcome of
E∞ also called collective.

( )( ) ( ) ( ) ( )=∞ω ω ω ω, , , … .

I

11

I

12

I

13

I (13)

4 Theorems

We briefly recall five theorems proved in the study [24].
4.1 The theorem of a single number (TSN) demonstrates

that the relative frequency does not match with probability.

( ) ( )≠E EF P .
1 1

(14)

The probability of a single event never and ever can
be directly controlled using experiments and (14) begins
to formalize the single case problem which instead thin-
kers have treated through so many philosophical
commentaries.

4.2 The frequentists judge non-sensical P(E1) and focus
on P(E∞). In fact, the theorem of large numbers (TLN)
proves that the relative frequency approaches the prob-
ability when the number of trials tends to infinity,

( ) ( )⟶ → ∞∞E EF P n, as .n

a s. (15)

This result ensures that P(E∞) is a physical and testable
quantity at least in principle. The reader should keep (15),
that is the law of large numbers in the Borel form, apart
from the weak and strong laws of large numbers (LLN) that
give the account of the statistical convergence of empirical
data toward the expected value. TLN and LLN are close but
have different contents and pursue different scopes.

4.3 Even subjectivists and Bayesians are aware that
the probability of a material occurrence is out of experi-
mental control, so they assume that P assesses not a phy-
sical event but an individual’s credence about that event.

Each individual reasons on the basis of prior information,
knowledge or experience α and behaves according to con-
sistent rules to arrive at making the decision, prevision or
conclusion ω. The subjectivist scheme allows for prob-
ability problems of any kind, even hypothetical, while
the exchangeability theorem deals with a series of trials.
Bayesian statistics provide methods for determining and
even updating the degree of personal belief measured by
P(E1).

Result (14) assumes the number of trials n = 1, (15)
hypothesizes n → ∞, the conditions of TSN and TLN do
not overlap and thus the frequentist and subjective model
cohabit without conflict inside this framework. The prob-
ability schools come into opposition since they adopt phi-
losophical criteria to circumvent the single case problem;
instead, the present work applies analytical methods.

4.4 The next three theorems describe the statuses of
physical outcomes during the intervals T1 and T2.

It may be that a scientist discovers that En is an alea-
tory event from the analysis of its physical characteristics;
under this assumption, the theorem of initial conditions
(TIC) proves that ωn is random in T1.

( )= ≤ < =ω ω t t n, 0 , any.n n ω
I (16)

For example, suppose that a rotating urn contains five
red balls and five white balls. The mechanical system is not
governed by minute rules so the result “red ball” (or “white
ball”) occurs randomly during n rotations no matter the
value of n.

4.5 The following theorems detail what happens after
tω. The theorem of continuity (TC) demonstrates that the
outcome of the long-term event keeps the indeterminate
status in T1 and T2.

= ≤∞ ∞
( )

ω ω t, 0 .

I (17)

For example, suppose a ball is drawn 1,000 times from
the urn of the previous case. Both the results turn out to be
uncertain in T1; the statistical distributions of the colors
show how the results “red ball” and “white ball” remain
indetermined in T2.

4.6 The theorem of discontinuity (TD) provides the most
astonishing result; it proves that the outcome of the single
event E1 switches from the indeterminate to the determi-
nate status at the end of T1.

( ) ( )→ =ω ω t t, .ω1 1

I D (18)

E.g., a ball is drawn from the rotating urn cited above.
The result “red ball” comes to be determined both when
the drawn ball is red and when white. In the first case it
becomes certain, in the second impossible.
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E.g., let φ(n) be the angle between 0 and the generic
number n (0 ≤ n ≤ 36). The ball ν can occupy a cell in the
border of the roulette wheel (Figure 1), thus the angular
position of ν verifies:

( ) ( )
⎛
⎝

⎞
⎠ ≤ ≤ + ⎛

⎝
⎞
⎠n φ ν n n

360

37

, 1

360

37

. (19a)

The numbers are equally likely when the wheel is
rotating, thus the spatial probability of the ball is

[ ] [ ( )] ( )

( )

= = ⎡
⎣

⎛
⎝

⎞
⎠ ≤

≤ + ⎛
⎝

⎞
⎠
⎤
⎦ = ≤ <

P ν P φ ν n P n φ ν n

n t t

,

360

37

,

1

360

37

1/37, 0 .n

1 1 1

(19b)

When the ball stops, the spatial probability of the
extracted number is a unit

[ ] [ ( )]= = ≤P ν P φ ν n t t, 1, .n1 1
(19c)

Eqs. (19b) and (19c) verify the discontinuity (18). This
case will become a telling example in quantum physics
which uses spatial probability.

Probabilists take philosophical positions when facing
with the single case problem, instead TSN, TIC and TD
provide analytical answers.

4.7 These theorems show that the probability status
( )

ω
I

1
is real during T1 but cannot be checked, so the single

case problem turns out to be a question of testing and not a
metaphysical issue.

In consequence of this conclusion, we remark that
aside direct testing methods, there are indirect methods
that are very familiar, e.g., in astronomy, vulcanology
and other experimental fields whose objects cannot be
easily accessed. In the probability domain, the impossi-
bility to check P(E1) can be circumvented if the single
event is repeatable. The corollary of indirect testing
proves that if

∈ ∞E E ,
1

(20)

and the long-term event is random and objectively con-
trolled [28,29], then

( )

( )

< <
< <

∞

∞

EP

P ω

1 0,

1 0.

(21)

Then, also each single trial and result are indirectly
controlled due to (12) and (13)

( )

( )

< <
< <

EP

P ω

1 0,

1 0.

.

1

1

(22)

This technique allows the practitioner to overcome the
single case problem on the empirical level. Note how
assumption (20) is not cumbersome because exact sciences
(e.g., physics, chemistry, etc.) normally investigate replic-
able phenomena. In substance, the corollary proves that
what is intractable in the individual case can be handled
reliably in aggregates of results.

4.8 Even though we only addressed the single case
problem (point δ), we can notice that the mathematical
approach offers the ensuing advantages over the current
literature.
(1) The conclusions come from theorems and not from philo-

sophical ruminations or personal decisions.
(2) The theorems show how the single case problem regards

experimental limitations and can be bypassed using
indirect testing methods.

(3) The theorems provide analytical descriptions of the
single random outcome that becomes determinate and
collapses when the event terminates.

(4) They cross classical and quantum physics.

5 Applications in quantum physics

This work seeks to demonstrate the comprehensiveness of
the structural theory of probability. For this reason, we
apply the definitions and theorems of Sections 3 and 4 to
quantum physics, and shall overlook the mathematical
formalisms and theories ordinarily employed in QM,
such as Hilbert spaces, self-adjoint linear operators, spi-
nors etc. We mean to address: the wave/particle dualism
(i), the wave collapse (ii) and the measurement problem (iii)
which fragmentary probability theories underpin with dif-
ficulty. We neglect the entanglement problem, the Bell’s
theorem and other questions.

Perhaps the reader doubts the introduction of P into
quantum physics because quantum probability Pr has
unique properties, e.g., incommutability, negativity etc.
The answer is as follows:

Figure 1: Roulette wheel.
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We will use exclusively the quantities (21) and (22). The
integer values and the decimal values have the same mean-
ings for P and Pr; therefore, P and Pr are consistent in the
present inquiry.

5.1 Definitions

Speaking in general, a computational formula of X obtained
from a mathematical statement, proves to be very useful to
calculate the physical parameter or entity X, but only the
definitional formula of X, which comes from experience,
fixes the intrinsic nature of X. E.g., the particle’s electric
charge q and velocity v give the Faraday force within an
electric and magnetic field.

( )= + ×E BF q q v .F (23)

This equation derived from the Maxwell’s equations
along with Lorentz force law, does not expound the general
qualities of the force F given by

·=F m a. (24)

If one employs (23) in the place of (24), he falls into a
web of irresoluble problems, the same occurs when
quantum scholars mean to use the wave function to explain
the double nature of quanta. In fact, Ψ does not derive from
experience but from the Schrödinger equation, therefore Ψ
is computational and unable to clarify vexed questions. For
instance, the Schrödinger equation yields wave functions
that can be more or less spatially dispersed. The range
includes the extreme cases of the Dirac delta (complete
localization) and the plane wave (complete delocalization).
These results are “computationally” correct but do not
explain what is a wave and a particle from the physical view-
point. The continuous spectrum does not separate the two
material states of the quantum and in a way denies the par-
ticle/wave duality. The present research avoids the
misuse of Ψ and puts forward two distinct definitions
for the particle and the wave based on probability.

The description of a physical entity must descend from
experimental observations, and universal experience shows
that the quantum ξ is a portion of energy and eventually
matter concentrated at one point or otherwise widespread
over a certain volume. We assume these topological proper-
ties, which are preserved under any quantum transforma-
tion, express the essential nature of the particles and waves,
respectively.

We should employ a spatial-density function but cannot
do that since ξ is a discrete quantity. Quanta are indivisible

units and we introduce the spatial probability P(ξ ∈ r) that is
the probability of finding ξ in the point r = (x, y, z) of the
Euclidean space Σ. Using definitions (10) and (11) we posit:

( )ξ ξis a particle if it has the determinate status ,

D (25a)

( )ξ ξis a wave if it has the indeterminate status .

I (25b)

From (25a), we infer that the Dirac function δ = δ(r, t),
with P(ξ ∈ r) = 1 in a point and zero elsewhere, depicts the
particle ξ(D) in detail. At the other side, the squared |Ψ(r,
t)|2 provides the exact shape of the spatial probability dis-
tribution which depends on specific physical constraints.
The nature of quantum wave can be compared to the ball
of the roulette whose spatial probability distribution is
constant along the circumference when the speed of the
ball is constant; in parallel, |Ψ(r, t)|2 shows how the
energy/matter is dynamically and probabilistically distrib-
uted when the wave flies.

The distributions |Ψ|2 and δ give the account of
energy/mass which are either concentrated or diffused,
so they are real for the present theory. Sensors detecting
the intensity of incoming energy/mass corroborate the pre-
sent remark; the possibility of conducting direct or indirect
tests will be examined later.

The statuses ξ(D) and ξ(I) have mutually exclusive prob-
ability values and we get:

( ) ( )=ξ ξ ξor .

D I (26)

5.2 Simplest application

The free flight is the simplest physical phenomenon that is
conceptually symmetrical to the linear and constat motion
of classical mechanics.

Definition (5) allows us to formalize the free motion
this way

( )=E α ρ ξ, , ,ξ ξ ξ (27)

where the initial component is the source αξ that shots
quanta, then the movement ρξ produces the outcome ξ.
Free flight consists of one or more quanta that maintain
their energy/mass nor are they affected by any special
effect, such as entanglement, spinning, relativity and others.
When something interferes with ξ the flight is no longer
“free” and terminates in a way, namely ξ can continue to
move but the free state is no longer there.

A variety of influencing effects can result in the inter-
ruption of Eξ. We confine attention to anelastic collisions
between quanta which explain both microscopic and
macroscopic interactions caused by the measurement
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instruments: sensors, probes, etc. The present framework
interprets quanta and the measure tools as separate enti-
ties in accordance with classical mechanics. Specifically,
assuming that the measurement process is destructive,
the quantum moves during T1 (T1 > 0) while T2 lasts only
an instant.

In order to apply the theorems presented in Section 4,
we take an ergodic source (e.g., a laser, thermionic tung-
sten filament, a furnace etc.) as αξ which triggers the
random flight Eξ. TIC concludes that under this conditions
ξ is indeterminate, namely, ξ is a wave during T1.
Thomson’s and Davisson–Germer’s experiments corrobo-
rate this conclusion. In substance, TIC [24] suggests to link
the status of the moving quantum to the emitter.

5.3 In consequence of TLN and TSN, the present theory
distinguishes the single wave or wavelet ( )

ξ
1

I – e.g., laser
equipment casting one photon at time – from the intense
wave or radiation ( )

∞ξ
I which includes innumerable wave-

lets due to (13).

( )( ) =∞
( ) ( ) ( )

ξ ξ ξ ξ, , , … .

I

11

I

12

I

13

I (28)

The relation between ( )
ξ

1

I and ( )
∞ξ

I , here deduced on the
theoretical plane, is a normal concern in quantum experi-
ments. For example, operators reduce (or increase) the
intensity of the emitter and in doing so the intense beam
becomes weak (or vice versa). They factually create a single
wave at time or a flow of wavelets.

5.4 Theorems show that when the flight finishes, there
are different aftermaths for ( )

∞ξ
I and ( )

ξ
1

I .
• The theorem of continuity proves that the radiation ( )

∞ξ
I

keeps the indeterminate status in T2. This is amply ver-
ified, e.g., in classical optics.

• TSN proves that the wavelet ( )
ξ

1

I cannot be directly

checked in T2 and the TD (18) specifies that ( )
ξ

1

I becomes

determinate; physically ( )
ξ

1

I becomes the particle ( )
ξ

D

1
. TD

prediction is carried out as follows: the collision of the
wavelet against the sensor screen (or another measure-
ment detector) causes the free motion to finish, and fac-
tually the diffused energy ( )

ξ
1

I condenses in a point. The
location of this point over the sensor cannot be forecast
since we have assumed Eξ is a random process.

The statistical behavior of K wavelets (K → ∞) approx-
imates ( )

∞ξ
I and thus conforms with TLN and TC. The double

slits experiment, discussed in Section 6, offers an example
case of these mechanisms.

The structural theory of probability predicts phenomena
at both macroscopic and microscopic levels. It adopts

uniform concepts and establishes a logical bridge between
classical and quantum physics. This is a kind of classiciza-
tion showing how every mechanical event is subject to the
same rules.

Numerous tests should verify the current theoretical
scheme. Section 6 discusses the double slit experiment
while the book [24] analyzes 15 experiments with quanta
moving freely.

6 Double slit experiment

Let us look into two versions of the experiment whose
ergodic source A emits an intense beam and a dim beam,
made by several photons and a single photon at time,
respectively. In both the versions, photons go through the
slits F (Figure 2).
• When A casts a strong beam of photons, the detector-
screen S exhibits a continuous pattern in accordance
with classical optics.

• When A emits a single photon, correspondingly the
screen S shows one dot. The greater the number of
photons sent one by one, the more clearly, they create
a discrete pattern on the screen (Figure 3).

The intensity of photons detected by S is consistent with
the concepts of ξ(D) and ξ(I) that are real states of energy
defined in probabilistic terms. Let us analyze the predictions
of the theorems for the two versions of the experiment.

6.1 Experiment with the intense beam

The interference continuous pattern brings evidence that
the wave stream ( )

∞ξ
I moves in the segment (A, S] during the

time interval T1 in harmony with TIC.

Figure 2: Diagram of the double slit experiment.
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= ≤ <∞ ∞
( )

ξ ξ t t, 0 .ξ
I (29)

The pattern also indicates that the indeterminate status
( )
∞ξ

I remains in tξ – the destructive measurement process
causes T2 to last only one instant – and we obtain

= =∞ ∞
( )ξ ξ t t, .ξ
I (30)

Eq. (30), together with (29), proves that the intense
beam keeps the wave state during T1 and T2 and corrobo-
rates the theorem of continuity.

6.2 Experiment with the weak beam

When A emits a photon, the screen exhibits one spot which
brings evidence of one particle in T2

= =( )
ξ ξ t t, .ξ1 1

D (31)

When the operator repeats the experiment several
times, two effects occur simultaneously.

6.2.1 The photons emitted one by one cannot interact
with one another because of the wide time-space separa-
tion interposed between them, and physicists conclude
that each incoming photon interferes with itself. That is
to say, there is a wavelet in T1.

= ≤ <( )
ξ ξ t t, 0 .ξ1 1

I (32)

This evidence corroborates TIC. Joining (31) with (32),
we obtain the switching of the single wave that supports
the TD.

( ) → =( )
ξ ξ t t, .ξ1

I

1

D (33)

6.2.2 Expression (28) says that several incoming wave-
lets make the radiation ( )

ξK

I in the long run.

( )
( ) ( ) ( ) ( ) ( )= → ∞ξ ξ ξ ξ ξ K, , ,…, , .K K

I

11

I

12

I

13

I

1

I (34)

Empirical data show that the larger the K, the more
clearly the discrete spectrum comes to sight, and substantiates

TLN proving that the greater the number of trials, the
closer the empirical intensity approaches the calculations.
Moreover, the discrete pattern on S brings evidence that
the stream ( )

ξK

I remains in the wave status in T2, and this
detail substantiates the theorem of continuity.

In summary, effect 6.2.1 regards the wavelet that inter-
feres with itself and collapses due to the measurement
process. Effect 6.2.2 regards the stream (34) which remains
indeterminate during T1 and T2, and creates the discrete
spectrum.

No doubt the two versions of the experiment turn out
to be rather complex due to various overlapping effects.
The following list should aid the reader:
– TIC holds that the incoming beam of photons are waves

in 6.1 and 6.2 due to the ergodic source which sets off a
non-deterministic movement.

– TLN ensures that an intense flow of photons can be
tested, it governs 6.1 and 6.2.2.

– TSN denies the possibility of the experimental control of
a wavelet and regulates 6.2.1.

– TD predicts the collapse of the wavelet in 6.2.1.
– TC proves that the waves produced in 6.1 and 6.2.2

remain in T2.

7 Discussion and conclusion

This study includes two parts: Sections 3 and 4 illustrate
some traits of the structural theory of probability (A); Sec-
tions 5 and 6 discuss the probability-based interpretation of
QM (B).

(A) The idea that probability confronts a variety of
problems, and each theory is not complete, guided the
preparation of the new construct which begins with the
accurate description of the event assessed by P(E). The
algebraic structure E has been employed to place the fre-
quentist, subjective, logical etc., viewpoints under a unique

Figure 3: Progressive discrete pattern created by a weak beam of photons through two slits [30].
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roof, thus this framework does not center on a particular
aspect of indeterminism (α), it proves the formulas left to
intuition (γ) and formalizes the single case problem (δ).

Here the structural theory provides details about the
last problem. Specifically, TSN and TD predict the impossi-
bility of direct testing that is an operational obstacle and
not a philosophical question.

(B) The outcomes presented in (A) underpin the fol-
lowing novel answers to the particle/wave duality (i), the
quantum collapse (ii) and measurement problems (iii).
i. Because the wavefunction is not definitional, (25a) and
(25b) determine the nature of particles and waves that
is under discussion for a long time. TLN and TSN imply
the separation of the intense radiation from the single
wave.

ii. TD proves that the wavelet changes status due to the
end of the free motion and factually the diffused por-
tion of energy/mass condenses in a point of the space.

iii. The measurement process is the macroscopic action
that causes the free motion to finish.

Precise physical features characterize the free move-
ment. As first, it starts with the ergodic source αξ that
makes Eξ to be random and TIC proves how this random
movement involves waves. As second, we assume that the
random free flight of ( )

ξ
1

I terminates when it bumps and
loses energy. Anelastic collisions can be caused by a variety
of material entities, so measuring instruments emerge
among the most common factors interrupting the free
motion.

Schrödinger’s equation describes a system which clo-
sely “resembles” the classical, deterministic evolution of a
physical system, so quantum scientists ask: Is there a deter-
ministic pre-measurement reality and a post-measurement
reality randomly generated by the observer?

The present study shows how the contrary is true.
Using an ergodic source, the flight Eξ and ξ are random,
namely, the pre-measurement reality is indeterministic,
while the end of Eξ causes the output to collapse, namely,
Eξ brings forth a determinate output that is the particle. All
this occurs due TD, so the roles of the observer and his
consciousness are nonsensical here.

The discrete interference pattern of the double slit
experiment reveals that several individual quanta make
the flow ( )

∞ξ
I . Every incoming wavelet breaks down and

all together the wavelets approximate the radiation ( )
∞ξ

I

that can be tested in conformity with TLN. Section 6 illus-
trates the experimental results obtained with two slits,
symmetrical outcomes are obtained with one slit [24].
Bach and colleagues [31] show that when a slit is closed,

the weak beam crosses the slit left open and creates a
discrete diffraction pattern.

The solutions to problems (i), (ii) and (iii) have the fol-
lowing advantages over current quantum interpretations:
– They descend from theorems valid in both classical and

quantum physics, namely, the probability-based inter-
pretation of QM falls within the broad framework of
“the logic of the uncertain” so called by de Finetti.

– They are punctually supported by experiments that give
evidence of waves and particles in free motion.

– The explanations conform to intuition and deny the
bizarre models circulating in the quantum literature.

The present scheme is limited to the free motion and
other phenomena will be investigated later.
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