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Abstract: This article develops and investigates the behavior
of soliton solutions for the spatiotemporal conformable
Klein—-Gordon equation (CKGE), a well-known mathema-
tical physics model that accounts for spinless pion and
de-Broglie waves. To accomplish this task, we deploy an
effective analytical method, namely, the modified extended
direct algebraic method (mEDAM). This method first develops
a nonlinear ordinary differential equation (NODE) through
the use of a wave transformation. With the help of general-
ized Riccati NODE and balancing nonlinearity with the
highest derivative term, it then assumes a finite series-
form solution for the resulting NODE, from which four
clusters of soliton solutions — generalized rational, trigono-
metric, exponential, and hyperbolic functions — are derived.
Using contour and three-dimensional visuals, the behaviors
of the soliton solutions — which are prominently described
as dark kink, bright kink, breather, and other N-soliton
waves — are examined and analyzed. These results have
applications in solid-state physics, nonlinear optics, quantum
field theory, and a more thorough knowledge of the
dynamics of the CKGE.
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1 Introduction

The prevalence of nonlinearity across the world empha-
sizes the necessity of creating nonlinear models, especially
those that include fractional partial differential equations
(FPDEs) and partial differential equations (PDEs) [1-4]. The
wide range of applications in fluid dynamics, acoustics,
image processing, vibration, biology, chemistry, physics,
and control has attracted a lot of researchers to study non-
linear FPDEs [5-7]. Because of the great potential applica-
tions of these nonlinear FPDEs in various fields, researchers
have invested a great deal of time and energy in finding
analytical and numerical solutions [8-12]. Researchers
have created a number of reliable and effective approaches
to find and analyze exact solutions [13-17]. These methodol-
ogies encompass the first integral method [18], Laplace Ado-
mian decomposition method [19,20], homotopy analysis
method [21], natural transform decomposition method
[22], modified simple equation method [23], (G’/G)-expan-
sion method [24-26], extended direct algebraic method
(mEDAM), [27,28] and numerous others.

Expanding on current methods to address nonlinear
FPDEs (NFPDEs) is still a compelling and important area of
research. Many NFPDEs, such as the impulsive fractional
differential equations [29], the space-time fractional advec-
tion-dispersion equation [30-32], the fractional generalized
Burgers’ equation [33], the fractional heat and mass-trans-
port equation [34], and others, have been studied and
solved as a result of the efforts of numerous researchers.
Motivated by the ongoing research on addressing NFPDEs,
this study aims to address conformable Klein—Gordon
equation (CKGE) with mEDAM. The fractional generaliza-
tion of the Klein-Gordon equation (KGE) is known as the
CKGE. It substitutes fractional order conformable deriva-
tives for the integer ordered derivatives in KGE, a relati-
vistic wave equation related to Schrodinger equation. In
mathematical physics, particularly in relativistic quantum
mechanics, the spinless pion and de-Broglie waves are well
explained by the KGE, a well-known model that was first
developed in 1926 by Klein and Gordon as a relativistic
equation for the function of a wave of an individual par-
ticle with zero spins. Numerous scientific domains,
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including quantum field theory, solid-state physics, and
nonlinear optics, are found in this model. The equation
has shown tremendous interest in the fields of condensed
matter physics, solitons in a collisionless plasma, nonlinear
wave equations, and recurrence of initial states. In a math-
ematical model, this equation is used in many scientific
fields, including quantum field theory, nonlinear optics,
and solid-state physics. This model is stated as follows [31]:

DX(Dfw(x, 1)) = DYDfw(x, 1)) + ow(x, t) — pw(x, t)
=0,

M

where 0 < § <1, w(x, t) represents the quantum state of
the particle and is a harmonic function, ¢ = (mc)?, where
m is the mass, c is the speed of the spinless particle, and p is
the nonzero coefficient of nonlinear term. The last two
terms describe an appropriate nonlinear function that
shows the change in potential energy [35]. A series of math-
ematical equations, including the Landau-Ginzburg-Higgs,
PHI-4 equations, Duffing, and sine-Gordon, can be obtained
by choosing various representations of this nonlinear func-
tion. These equations may be employed to simulate a range
of physical events, from wave propagation to quantum
mechanical phenomena [36]. Renowned scientists such as
Klein, Schrodinger, and Fock were crucial for discovering
the connection among the general relativity theories with
certain KGE’s earlier renditions, in keeping with Kragh’s
account of the KGE’s roots in the study by Kragh [37]. Some
of the most significant equations is this one, which serves
as the basis for the officially accepted nonlinear Schro-
dinger equation [38]. Galehouse [39] used the proper gauge
changes to derive the KGE spatially. For the more general-
ized form of the KGE, Schechter also provides arguments in
favor of the theory of scattering hypothesis [40]. The tradi-
tional method of generating a comparable equation in a
finitely normed Hilbert space containing the first-order
time is followed to create the analog theory of the KGE
[41]. In this work, Weder also provided justification for
the existence and coherence of the wave operators, the
invariant principle, and the interconnected links. Strong
findings, reminiscent of those given in the Schrédinger
instance, can be obtained by adopting similar eigenfunc-
tion extensions to a specific field condition to broaden the
spectral and dispersion theory of the KGE [42]. Tsukanov
examines the mobility of a KGE in an alternative field [43].

The fractional derivative operators DY and D¢ in (1)
are conformable fractional derivatives (CFDs), which are
defined in the upcoming section. CFDs are a helpful tool for
explaining the physical aspects of events that display non-
integer behaviors, including memory-related events that
also exhibit nonlocal as well as local activity. In mathe-
matics, traditional derivatives stand for limited behavior,
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where a place’s change in magnitude is only dependent on
the environment around it. Nevertheless, a lot of real-
world systems exhibit nonlocal behavior, in which the sys-
tem’s past or remote locations affect its present state at any
particular moment. Fractional derivatives, or CFDs, are an
extension of calculus used to explain these kinds of circum-
stances. Fractional interactions, for example, are proper-
ties of elastic components within the domain of substances
that ascertain stresses or tension at a region by virtue of
the behavior of the material during deformation and its
current environment. This memory effect is accurately
captured by recording sessions, which take into account
the actions of the entire system throughout an uninter-
rupted spectrum of historical data. Furthermore, nonlocal
structures are frequently observed in the diffusion pro-
cesses that molecules go through. This causes problems
with fractional diffusing because the molecules’ dispersion
over a nonlocal region determines the degree of intensity
fluctuations at a certain site. To accurately simulate these
kinds of occurrences, CFDs offer a mathematical tool that
bridges the gap between both local and nonlocal behavior
and takes into consideration memory-linked features that
are essential to the system’s operation.

Before this research, several researchers have already
used various analytical and numerical methods to investi-
gate this equation in integer and fractional orders. For
instance, the homotopy perturbation method was employed
by Golmankhaneh et al. [44] to study fractional (FKGE).
Khan et al. in [25] utilized the (G’/G)-expansion method to
construct families of travelling wave solutions for FKGE.
Gepreel and Mohamed recently established the analytical
approximate solution of the FKGE [45]. By using the homo-
topy analysis method, Jafari et al. [46] investigated the Cahn-
Hilliard and KGE using the fractional sub-equation method.
Moreover, Ran and Zhang used the compact difference
method for the space FKGE in [47]. The modified extended
tanh-method [48], the (w/g)-expansion [49], the Riccati
expansion [50-52], and other techniques [53] are also
used to look for exact and numerical solutions to the FKGE.

Nevertheless, the main goal of this study is to construct
and examine new families of soliton solutions for CKGE
using the enhanced mEDAM. Applications of these findings
include quantum field theory, solid-state physics, non-
linear optics, and a deeper understanding of the dynamics
of the CKGE. The proposed mEDAM is one of the most
straightforward, important, and efficient algebraic proce-
dures. Under the application of wave transformation and
assumption of a series form solution, the strategic mEDAM
transforms the CKGE into a system of nonlinear algebraic
equations. Numerous soliton solutions in the form of gener-
alized rational, trigonometric, exponential, and hyperbolic
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functions are produced when the resulting problem is solved
using the Maple tool. From an academic perspective, soliton
solutions for NFPDEs remain significant because they offer
more depth and granularity than conventional solutions
[54-57]. They are valuable in many technical and scientific
fields due to their inherent stability and longevity. They pro-
vide effective information transfer and extensive concor-
dance retention for nonlinear systems. To put it succinctly,
the new findings of this study demonstrate the inventive
character of our research by offering a unique and metho-
dical discovery of numerous new soliton solutions. Soliton
research is interested in studying nonlinear FPDEs that occur
in quantum field theory, fluid dynamics, and optics. These
soliton solutions offer a more profound understanding of the
fundamental phenomena of CKGE in the associated scientific
domains.

The rest of the article is organized as follows: Section 2
describes the CFD and proposed method’s methodology,
Section 3 presents soliton solutions for the targeted biolo-
gical population models, while Section 4 presents graphs of
some soliton solutions and a discussion of our findings.
Finally, a brief conclusion has been provided.

2 Methodology and materials

2.1 The definition of CFD

Several fractional derivative operators such as the Caputo
operator, Riemann-Liouville operator, Atangana-Baleanu
operator, Caputo-Fabrizio operator, CFD operator, and many
more have been introduced by different mathematicians in
literature [58-68]. Among these fractional derivative opera-
tors, the CFD operator is preferred by academics due to its
predominant applications over other derivative operators.
For instance, employing Khalil’s CFD and a matrix of Hes-
sian, Lavin-Delgado et al. presented an innovative edge
recognition technique that lowers noise and maintains image
outlines regardless of dull contrasting situations [69]. Their
method improved clarity of vision in edge identification and
has potential uses in health care imaging for recognizing
diseases, including cervical cancer along with medial cranial
arterial ruptured arteries, hence enhancing clinical surveil-
lance and the precision of diagnosis. One another advantage
of CFD is that, unlike other derivative operators, it satisfies
all derivative properties, particularly the chain rule, which is
essential for our method for creating soliton solutions. By
taking advantage of these beneficial properties of CFDs
over alternative fractional derivative operators, explicit solu-
tions for FPDESs can be derived. Notably, the soliton solutions
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of Eq. (1) cannot be obtained using alternative fractional
derivative formulations because they violate the chain rule
[70,71]. As a result, CFDs were introduced into Eq. (1). The
study by Sarikaya et al. [72] defines the CFD operator of order
a as follows:
1-a 4 -
DEW) = tim w(yy yl/)) wiy)

a<(0,1].

In this investigation, the following properties of this deri-
vative are utilized:

DGy = ryr e, )
DT W) + () = RDH(@(W)) + POV, @)
DET@)] = X, CWNDT(W), 6)

where @ (), n(y), x(¥), and 7(y) are arbitrary differenti-
able functions, whereas r, r;, and r; signify constants.

2.2 The working procedure of mEDAM

The mEDAM is an efficient technique, which is utilized by
many researchers to construct travelling wave and soliton
solutions for nonlinear FPDEs [73]. The operational proce-
dure of this proposed method is explained in this section
[54]. Examine the FPDE of the structure:

P(w, d'w, 05w, 0 w,wdbw, ..)=0, 0<apBy<l (6

where t, 7z, 2, z3,..., Z-, and w are functions. The steps to

solve Eq. (6) are as follows:

1) The variable transformation of the form w(z, 2, z, ...,z,)
= W(y), where ¢ is defined in a number of ways, is first
applied. This transformation converts (6) into a nonlinear
ODE with the following form:

ow,ww,w’,..)=0, 7

where W in (7) has derivatives concerning . To find the
integration constant(s), (7) may be integrated one or
more times.

2) Next, we assume that (7) has the following solution:

¢
W) = 3 dZ®)), ®)
l==¢
where d,(l = -¢, ...,0, ...,¢) are constants to be deter-
mined, and Z(1) is the general solution of the following
ODE:

Z'($) = In(Q)( + YZ@) + vZ@))), ®

where Q # 0,1 and the constants 1, ¢, and v are used.
3) The positive integer ¢ presented in (8) is obtained by
establishing the homogeneous balance between the
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biggest nonlinear term and the highest order derivative
in (7).

Next, we integrate (7) to obtain the equation that results
from (8), and we put all of the terms of Z(¥) in the
same order. Then, all of the coefficients of the ensu-
ing polynomial are set to zero, yielding an algebraic
system of equations for d;(l = -¢, ...,0, ...,¢) and extra
parameters.

We utilize MAPLE to solve this set of algebraic problems.
After figuring out the unknown values, they are added
to (10) along with the Z(¥) (solution of Eq. (9)) to yield
the analytical soliton solutions to (6). The following
families of solutions can be generated by using the gen-
eral solution of (9).

Family 1: When M < 0 and v # 0:

p J-M tang %\/_Ml,[)]
Z(Y) =+ 7 ,
, W cotg[gmlp]
Zy () = o o ,
. J-M(tang(WV-MY) £ (seco(v-Mp)))
ZY) == * 2 ,
_ . -M(cotg(N-MY) + (csca(N-Mp)))
Z¥) == = o ,
and
N gww] - cotglimlp]]
Z5(y) = -+ ™ :
Family 2: When M > 0 and v # 0:
p VM tanhg %mlﬁl
ZeY) = =5 - 2 ,
NI COthg[%\/Ml/)]
Z:(¥) = =5 = 2 ,
_u JM(tanhg(VMY) * i(secho(VMY)))
ZW) =50 = o ,
_ i NM(cotho(VMY) + (cscho(v'MP)))
Z¥) =~ - 2 ,
and
" VM| tanhg %\/M z/)] - COthg[i\/M lp]]
Zo() = 0 - ™ :
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Family 3: When nv > 0 and g = 0:
Zn() = \/g tano(\/Nv ),
Zp(Y) = —\/g coto((/NVY),
Zi(¥) = \E (tang(2/NvY) * (seca(2NVY))),
2u®) = | L (coa@ 7Y + (cseaz [T

1
Zis(Y) = E\/g

Family 4: When nv > 0 and u = 0, then

and

tang)

L ool )

Zo() = -1 tanho( =Y),

2o == -1 cothal TV,

Zis(W) = - | (tanho(2ZTVY) * (isecho(2,~TV¥),

Z1s($) = =\~ (cotha(2{TVY) * (cscho2,~TVY)),
and

1
Zy(Y) = —Eﬁ[tanhg

Family 5: Whenv =nand u = 0:

Zn(¥) = tang(ny),

Zn(¥) = —cota(ny),

Zy(Y) = tang(2ny) + (seca(2ny)),
Zu(Y) = —coto(2ny) + (csca(2nY)),

L)oo )

and

1
Zys(Y) = Etang

1 1 1
EWJ ~3 COtQ[Em/)];
Family 6: When v = -np and 1 = 0:

Zy(y) = —tanho(ny),

Zy () = —cotho(ny),

Zy3(¥) = —tanhg(nay) + (isecho(2ny)),
Zy(Y) = —cotho(2ny) + (cscho(2ny)),

and

1 1 1 1
Z3(Y) = —Etﬂnhg EW] -3 COthg[g’)'ﬁ]-
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ity 7: . s s
Family 7: When M = 0: wx, t) = W@); ¢ = /3% - a%, (10)
Ny In(@) + 2)

12y In(Q)
Family 8: When u = 7,n =nt(n# 0) and v = 0:

Zn(¥) = -2 where a and f stands for nonzero constants. When this

transformation is applied, Eq. (1) converts to the following
ordinary equation:

= QW -
Zp(¥) = QW - n. (a* - BHW” + oW - pW? = 0.

an
Family 9: When = v = 0:
Zs(¥) = ny In(Q).

Family 10: When ¢ =n = 0:

Establishing the homogenous balance principle between
W” and W?, we obtain ¢ = 2. By substituting ¢ = 2 in (8),
we obtain the following series form solution for (11):

1

(12)
v In(Q)"

2
Zyu() = - W) = Y dZ@)
1=-2

Family 11: Whenn =0,y # 0 and v # 0:
u

With the help of (9), we insert (12) into (11) which
create a polynomial in Z(¥) by collecting the terms with

Zs(P) = - v(cosho(uph) — sinhg(uy) + 1) same power of Z(¥). By equating the coefficients of the
polynomial to zero, we obtain a system of nonlinear alge-
and braic equations. We use Maple to solve the system and
u(cosho(uy) + sinho(uy)) reach at the following four distinct cases of solutions:
Zy(P) = - Case 1:

v(coshg(up) + sinhg(uyh) + 1)

Family 12: When ¢ = 7,v = nt(n # 0), and n = 0: n’a

o Fwm@yM
@m0 PRde=t )

ag anv
Lk d0=—6Mip, 4 =0, dy=0.

Z il
37(¢) - 1- ngnp) d_l __

where M = y? - 4nv, while the generalized hyperbolic and

trigonometric functions are described as follows: Case 2:
Qv+ QW Qi - o Jo + BAn(Q)* M
coso(Y) = — sing(y) = o a= OV B =8
cosa(¥) sing(y) 2 vy + p?) a4
cotg(P)=——-=,  tang(yh)) = —— =, g% 4. =gMH0 G I )
Slni(l/)) COSf(l/)) d—2 6Mp B d—l 6 Mp , do Mp y
=— = : d=0, d=0.
csco(¥) =5 (@)’ seco(¥) coso(®) 1 )
Similarly, Case 3:
QY+ QY Q- Qv - 2 2
cosha() = +7’ sinhg(p) = 2% ) \/ o + BA(In(Q)) M’ _g
2 2 In(Q)vVM
_ cosho(y) _ sinhg(¥) anv uvo
cotho(¥) = sinho(¥)’ tanhg(y) = cosho()’ d,=0, d,=0, do= —va, di = —GFp, (15
1 1 2
cscho(y) = ———, sechg(y)) = ———. - _gl@
a¥) sinho(¥) o(¥) cosho(¥) dy = -6 7
Case 4.
. \Jo + B(In(Q))* M
3 Execution of the mEDAM o= aom PP
2
In the present section, we use the suggested method mEDAM d,=0, di =0, dy= W} (16)
for constructing soliton solutions for CKGE stated in (1). We ) P
offer the subsequent transformation so that this approach a =622 4 -6"2
may be expanded to solve (1): Mp M
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Assuming case 1, we obtain the following families of soliton

solutions for (1):
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Family 1.2: When M > 0, and v # 0:

—6n2
Family 1.1: When M < 0 and v # 0: wye(x, t) = 9 >
, v 1 VW tanho(5 V)
~6n’c Mpl=y ~ v
wia(x, t) = ; 3 )
Mp u Wtang(gmw) 610 onv
2v 2v - -6——,
an 1y 1 VManho(3vuary) | Mp
6nuo _ oV Mpl=3y ~ 37—~
u \/Wtang(imw) Mp’
Mp T 2v —6;120'
wi7(x, t) = ; 3
1u 1 chthg(Emlp)
~6n’c Mpl=3y — v
W 0= V3t cota ) | 23)
1u 1 —MCOIQE—M¢ 6 g anv
MP[‘ZV B E— - e ~ ¢V
(18) 1p 1M eotho(3vay) | Mp
B 6nuc _ g Mp=3v ~ 2 )
v 1M ooto 3y Mp’
Mpl-3y ~ 7 o ~610
wig(x, t) =
v Mol-1~ + 1 VM tanhg(v-M ) + (secho(~-M 1)) :
—6!]20 P 2v 2 v
W3 )= M tang( S Ay 6o
Mp[_ 11, 1 tano(V=MY) £ (secal —Mw»] B
v 2 v Mol —1# 4 1¥Z tanha(THMY) x (secha(V=M ) (24)
_ 6,7!10- P 2v 2 v
Mol-18 4 LY ana M) = ecovHyy | (19)
P2y T2 v onv
- 6_’
Mp
anv
NG 0 s
wig(x, t) =
v M| =1 4 19 coma D) & (secha/ i) |
—6I120' p 2v 2 v
Wi (X, t) = 7 6
Mp[_lﬁ L 1Y cotg(mw)i(csm(mw))] ~ nuo ©5)
2v 2 v M 1 + 1 /=M tanhg(v/-M ) + (cscho(~/-M 1))
6’7[10' p 2v 2 v
1u | 1M cote(MY) £ (esea-My)) | (20) _ o
MP[‘E; *3 ) ] 57
and
_ gl
Mp’ -6n%c
Wl,lO(Xa t) = | | 2
and i 13 tanho(}VTy) - cotho(VATY)
Mp=3v ~ % v
-6n’a
wys(x, t) = - ZF T 2 _ 6nua (26)
1 1 V=M tang| ;v-My) - cotg| ;v-M Y
Mp[—ig + o 4 - 1 " [_;” _ imtanhg(imw)—cothg(imw)
v v
o] "5
V=M tang|,+-M ) - cote| ;V-Myp Mo ®
e 1 4 1 [0]
Mp‘ 2v + 4 v
ov.
e

Mp’
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Family 1.3: When nv > 0 and ¢ = 0:

Wra(x, £} = =6 onv _ g2
Lkt (tang(\VY))*Mp ~ Mp
Wi ) = 6 anv _ g2V
11244 (coto(JNVY))*Mp  Mp’
anv
wis(x, t) = -6
3000 7 Gang(a v + (seca(z ) Mp
_gdmv
Mp’
anv?
wia(x, t) = -6
1,140, ) (cote(2\NV ) + (csca(2\MVY)))* Mp
anv
- 6—’
Mp
and
anv
wys(X, t) = 24 ! 2
tang %Jn—vw] - cotg[%\/’)_‘/ l/)]] Mp
_ g2V
Mp
Family 1.4: When v < 0 and 4 = 0;
onv anv
wyg(X, t) =6 Y7
16X, 0) (tanho(=NVv¥))’Mp ~ Mp
anv anv
w X, t) = 6 - 6_1
11706 ) (cotho(\ [~V ¥))*> Mp Mp
wis(X, t)
. anv
(tanho(2,/7TV ) * (isecha(2y=V )} Mp
_ g
Mp’
wy19(X, t)
. anv
(tanhg(2,/=7vY) + (isecho(2/=NV¥)))* Mp
_ g2V
Mp’
and
Wi20(X, ©)
. anv
(cotha(2=NVY) * (icscho(2/=TV $)))* Mp
anv
— 6—_
Mp
Family 1.5: When v = n and u = 0;
n’c ‘o
Wi, 0) = ~6 oy — 6
1,21(X, ©) Mp(tang(n))> Mp

@7

(28)

(29)

(30)

(31

(32)

(33)

34

(35)

(36)

@37
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o n‘o
o g Mo 0o 38
Wi22(X, £) 6Mp(cotg(r)¢))2 GMP’ oo
wias(X, t) = -6 Mp(tang(2ny) + (seca(2nyh)))* 39)
e
Mp’
(x,t)=-6 (i
W26 B = Ty o (“cota(2n) + (csca(2np)))? 40)
T
Mp’
and
g
wys(x, t) = -6 ! 2
1 1 1 1
Mp|; tang gnl/)] 3 COtQ[E”‘/’]] (41)
2
g9
Mp
Family 1.6: When v = -p and u = 0:
n’a ‘o
P Y o) 42
wi,6(X, ) 6Mp(tamhg(m#))2 ' 6MP 2
n‘o n’c
P - 43
wizn(X, 0) 61\/1p(cothg(nl/)))2 6MP’ w
o
Wiag(X, t) = -6 i
1,28(X; ©) Mp(-tanhg(2ny) + (isecho(2n1))))? (a4)
2
+ Gﬂ,
Mp
Wi9(X, £) = =6 Mp(-cothg(2ny) + (icech(2ny)))>? 45)
o
+ 6_1
Mp
and
g
Wizo(X, t) = =6 ! 2
1 1 1 1
Mp —Etanhg EI’H[) ~ COthQ[znw]] (46)
2
+ 612
Family 1.7: When y = 7,7 = nt(n # 0) and v = 0:
noQw
wis(x, t) = ‘GW’ “
x5 Jo- PAn@YM 8
where y = B - (wm(w %
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Assuming case 2, we obtain the following families of and
soliton solutions for (1):
Family 2.1: When M <0 v #0: W25(X, £) ,
1 1
-2 2 ~—M tang|;v-M z/;] - cotglf\/—M l/)]
" tang| LT _6ro| 1u 1 : :
woax, 0= 9|11 ~Mranala sz] T Mp| 2v 3 v
20 Mp| 2v 2 v )
1 1
! B  bnuo| 1u 1Y ) - oA
J=M tang|2v=M 8 Tl vt
6w 1p 1 M tang|, Mlp] (48) Mp| 2v 4 v
Mp| 2v 2 % 5
N a(u* + 2vn)
-
, oG+ 2vp) P
Mp Family 2.2: When M >0 v #0:
-2 1 -2
6]]20' 1u 1 N-M CO'[Q[%\/ —MFP] 6!]20' 1u 1 \/Mtanhg IV —MwJ
= —_ — — ’t = - J—
Wz,z(X, t) Mp 2y 2 v W2,6(X ) M,D 2V 2 v
-1 1 -1
N Ly M tanhg|->~v-M ]
+6I’][10’ _lﬂ_l MCOtg[2 Ml/)] (49) +6I’][10' _1£_1\/— Q5 l/) (53)
Mp| 2v 2 Y Mp| 2v 2 %
.\ a(u® + 2vn) . a(u? + 2vn)
Mp Mp
-2
w56, ) ) oo 14 197 cothg[gmw]
_6n%c| 1p  1-M tang(v-M) * (seco(N-My)) wya(x, t) = _—E_ -
w2y T3 Mp| 2v 2 %
p| 2v 2 %
L 6nuo( 1p 1M tang(V-MY) * (seco(y M) ]‘1 G0 1 4
Mp| 2v 2 v oqua| 14 1 VM COthg[E\/—Ml/)] G4)
Uiy YMp | 2v 2 v
Mp
Wa(X, t) ,
_6bn’o|_1p L 1N=M cotg(V-MY) + (csco(v=M )| + W,
Mp| 2v 2 % P
, 6nuo( 1y 1 VM coto(=MY) £ (cscas=Mp)) ]‘1 GD wya06,0)
Mp\zv 2 v _6n’o(_1p 1M tanho(\=MY) + (secho(V-MY)) E
. o(u? + 2vn) Mp| 2v 2 v
" , 6nuo(_1p 17 tanho(J=MY) + (secho( VM) ]1 =
Mp| 2v 2

v
. o(u? + 2v)
Mp
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W o(X, t)
_6pfa| 1u L1 JM cotho(v-M ) * (secho(N-M 1)) |
T Mp| 2v 2 v
,Snpo| 1p 1V-M tanho(v=-M 1) + (cscho(v-M¥) | (56)
Mp 2v 2 Vv
, oW+ 2vm)
Mp ’
and
Wa10(X, )
-2
T Mp| 2v 4 v
1 . 4 (57)
. 6nuo| 1y lmtanhg ;Wl/)] - COthﬂ[Z\/Mw]
Mp| 2v 4 v

, o’ +2vn)
Mp

Family 2.3: When nv > 0 and ¢ = 0:

wyn(x, t) = bnvo + 2avn (58)
25V Gtang( )P Mp ~ Mp
Wyn(x, ) = idd £ 2V (o)
PSR (cotg(VT)EMp - Mp
wy13(X, t) = biva
2,30 Mp(tang(2,/vn ) £ (seco(2,/Vn1h)))? 0)
N 20vn
Mp’
W (X, 1) = énvo
e Mp(-cota(2, /v ) * (csco(2,/V P)))* -
20vn
Mp’
and
6
Wais(X, t) = e -
1 1 1
Mp Etang[gﬂ lﬁ] - COtQ[E\/W ¢J] 62
N 20'w1.
Mp

Family 2.4: When v < 0 and u = 0:

Wars(x, £) = 6nvo N 20vn

PO (tanhg(J=VAY)?Mp  Mp
6nvo 20V

Wa17(X, t) = 4 L

(cotho( V) Mp ~ Mp "’

(63)

(64)

and
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Wo,18(X, t)
_ bnvo
~ Mp(tanhg(2./~v ) + (isecho(2/~vy)))* (65)
20vn
+ _}
Mp
Wy 19(X, t)
_ 6nvo
" (cothe(2/~v ) + (cscho(2 =V Y)))2Mp (66)
2ovn
+ _}
Mp
W, 20(X, t)
_ 24nvo
1 1 :
tanhg|; \/=VN) 1,[1] + lcothg[z./—vn w]]] Mp (67)
+ m.
Mp

Family 2.5: Whenv =n and u = 0:

‘o 201
_ 68
wau(X, £) 6Mp(tv'smg(mﬁ))2 ' Mp~ o
n%c 20n°
_ 69
WZ,ZZ(Xx t) 6Mp(COtg(’]lp))2 * Mp ’ ( )
n’o 2an?
Wy (X, t) =6 * > 0
2,23(X, 1) Mp(tang(2ny) + (seco(2ny)))?>  Mp
(x,t)=6 ro
W22l 0 = B cota@n) + (csca2n)))? 7
201>
+ Y]
Mp
and
g
Was(X, t) = 6 : 2
1 1 1 1
Mp]|, tang 5!7#)] "2 COtﬂ[z”‘/’]] (72)
2
+ 200° .
Mp
Family 2.6: When v = -5 and u = 0:
2o n’c
. Mo 0o 73
Wa,26(X, t) GMp(tanhg(an))z sz’ 7
2o n‘c
. no . no 74
w6 0 = b otmgme? i Y
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o
Wy gs(X, t) = 6 i
228X 1) Mp(—tanhg(2n¥) + (isechg(2nyh))) 75)
o
- 2_)
Mp
Waz9(X, t) = 6 1o
229(X; Mp(-cotho(2y) £ (icech@n)))*
o
Mp’
and
o
Wy 30(X, t) = 6 2
1 1 1 L
Mp[—ztanhsz Y| - 2C°th9[z’7¢]] )
c
Mp

Family 2.7 When u = 7,n =nt(n# 0) and v = 0:

o(n? + 4Q%Wn + Q¥)
pRY -n*
§ o+ Q)M ¢
where ¢ = %5 - Chomir s
Assuming case 3, we obtain the following families of
soliton solutions for (1):

Family 3.1: When M <0 v #0:

(78)

Wy (X, t) =

__.onv  6uvo
wsi(x, t)=-6 Mp | Mp
1u 1 =M tang %\/—Ml/)]
X —E— + E
v v (79)
1 2
6vio| 11 1 v —M tang Ry -M !/)]
C Mp| 2v 2 v ’
Wl t)__Gonv _ buva
320X, 1) = Mp Mp
1u 1 N-M cotg[%\/—M 1/)]
x |-=—&£ _ =
2v 2 % 80)
1 2
6via| 14 1 NEU COtQ[E\/ -M lp]
Mp| 2v 2 v ’

DE GRUYTER

- _gdmv _buva) 1u
wis(X, t) = GMP Mp | Zv

. lm tang(~/-M 1) + (seco(v-M 1))
2

1%

] 81)
_ & 1p 1

Mpl 2v 2
. Y7M tang(J=My) + (seco(x-My)) ]2

v

_ g0 _Suwvo| 1u
W3,4(Xa t)_ 6Mp Mp 2V

, 1M cotg(v=-MY) + (csca(v-M¥))
2 v

_ 6o 1p 1
Mpl 2v 2

. M cotg(\-MY) # (csco(x-MY)) ]2

1%

(82)

and

o _bwol 1p 1

wis(X, t) = _GMP Mp | 2v 4

M l,b] - cotg[i«/m w]

1%

Vv—M tang
X

(83)

_ Vo 1y+l
Mp| 2v 4

2

V—M tang

1Y) - cote[ ATy

v

X

Family 3.2z When M >0 v = 0:

v 6uvo

wsg(X, t) = _GFP Mp

1 VM tanhg
2 v

iy

1
x |-=
2

< =

(84)

_evio|_1u 1M tenhs
Mp| 2v 2 %

2
Ly



DE GRUYTER
warx, 6 = 6TV _ Bvo
3,7 ) - Mp Mp
1
ETH l\/McothQ[Z\/ Mz/)]
2v 2 v
1 2
Cevo| 1p 1 \/MCOthQ[E\/—MlP]
Mp| 2v 2 v ’
__gonmv _bwo f 1p 1
W30 1) 6Mp Mp * 2v " 2
y VM tanhg(v/-MY) + (secho(~/-My))
\%
_Svlof 1p 1
Mp\ 2v 2
VM tanho(J=M) + (secho(-M)) :
v )
onpv  6uvo( 1u 1
’t =0 - ——\|~57 .
Wss(X, ) 6Mp Mp\ 2v ¥ 2
5 VM cotho(~/-M 1) + (secho(~/-M 1))
1%
_ 6o 1p 1
Mpl 2v 2
M cotho(x-MY) + (secho(v-My)) ’
v 3
and
__omv _bwo| 1p 1
w3 10(X, t) = -6 Mp  Mp| zv 4
JM tanhg ;mw] - cothg[gmw]
. v
G I
Mp| 2v 4
1 2
JO7 tanhg L VAT Y| - cothg[imw]
X .
\%

Establishing breather and N-soliton solutions = 11

Family 3.3: Whennv > 0 and u = 0:

__gomv _ bvan 2
win(x, t) = -6 Mp Mp (tang(\ /v ) (89)
anv  6vo
) wanln, 0 = -6 = Lot VR (00
anv  6von
wiis(x, t) = —6—— - ——
5 Mp  Mp 1)
x (tang(2\ MV ) £ (seco(2 NV )))?,
onv  6van
W3(X, t) = 6—— - ——
i Mp Mp 92)
x (coto(2MVY) + (csca(2 V),
and
(86) 5
- _gdv _ ovon
w3 15(x, 1) = =6 Mp  2Mp
1 1 , (93)
x |tang E\/q_w/) - COtg[E‘/n_W’b]]
Family 3.4: When nv <0 and u = 0:
onv  6vo
Wi, 0 = =67 - =~ LGanha(FTVHR, - 94
onv  6vo
(87) w6, 1) = -eMip - Tp”(cothgcﬁ—nvw»z, (95)
onv  6van
w3 g(X, t) = -6—— - ——
00 0 =703 M (96)
x (tanhg(2,/=nv ) * (isechg(2/~NV)))?,
onv  6von
W3i9(X, £) = -6—— - ——
0 0= ™ 97
x (cotho(2,/=nv¥) + (cscho(2/=NV)))?,
and
_ gV _ 3van
W3 0(X, t) = GMP 2Mp
1 1 , (98)
(88) x |tanhg 2 [-nv 1/)] + COthQ[E,/_I']V l/)]] .
Family 3.5: Whenv =n and u = 0:
on® on*(tang(ny))?
=—6—-6—-—"—"7"— 99
w3 (X, t) = =6 Mp 6 Mp , (99
2 2(cot 2
oy, 1) = ~6 2L T COMP” -y

Mp Mp ’
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fol 2
wi3a(X, t) = _GMip o
B Gan(tang(anp) + (seco(2nY)))*
Mp ’
0 = -7
W3 24X, 1) = Mp 02
_ 60'12(—cotg(2'11/)) + (csca(2ny)))
Mp ’
and
0 =62
W3 5(x, t) = Mp
Z (103)
on? %tang %m/)] - %COtg[%l]!ﬁ]]
—_ 6 Mp
Family 3.6: Whenv = -nand u = 0:
an? on?(tanhg(ny))>?
Wi se(x, 1) = 6Mip - 6%, (104)
on* _an*(cothg(ny))?
Wa (X, 1) = 6Mip - G%, (105)
( t) = 60_’12
W3 8(X, t) = Mp 06)
_ 60112(—tanhg(2'7¢) + (isecho(2n¥)))*
Mp ’
an?
w3 (X, t) = 6——
3,29 Mp (107)
~ 6002(-cothg(2f1¢) + (icech(2ny)))*
Mp ’
and
o
Waz(X, ) = 6 Mp
2 (108)
on? _%tanhg %I]lp] - ;cothg;[;nw]]
-6 v .
Family 3.7 When ¢ = 7,¢c = nt(n # 0), and n = 0:
2 T
Wy (x, £) = ~6—— PO (109)

Mp(-1 + nQ™)%’

S I et AL GOSN
where y = B 5 @I 5
Assuming case 4, we obtain the following families of

soliton solutions for (1):
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Family 41: When M <0 v #0:
1
717 IS VIO it i)
ik b= Mp| 2v 2 v
1 2
ovio| 1u 1 V=M tang|;~-M xp] (110)
Tp| 2y T2 v
, o + v
Mp
1
PN I VI D s i
Wa.2(X S Mp| 2v 2 v
1 2
6vio| 14 1 v-M COtg[E\/ -M ¢] (111)
TMp| 2v 2 v
, ow? +2vn)
Mp
_buvo( 1p 1
W4,3(X) t) - Mp 2V + 2
V=M tang(v-M¥) * (seco(N-M¥))
v
Sl 1u,1 112)
Mpl 2v 2
J=M tang(V=M) £ (seco(-Myp) |
v
, o +2v)
Mp
W (X t)_G!‘_V"_lﬁ + 1
ST M [ 2y 2
V=M cotg(\-MY) * (csco(v—MY))
\%
fvof 1,1 (113)
Mpl\ 2v 2
J=M cotg(~-M ) + (csco(N-My)) ]2
Vv

Lo (U + 2vn)
Mp
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and _buvo( 1p 1
W4,9(X1 t) - Mp 2V + 2
6 _ _
wys(x, £) = J!\I/I—m w1 M cotho(v=My) * (secho(V Mz,b))]
p| 2v 4 v
) ! LSV 1p 1 (118)
V=M tang|, v —M!/J] - COtQ[Z\/_Ml/)] Mpl 2v 2
v VM cothg(\-My) + (secho(N-M)) ’
v
2 2
s 6va_1£+1/4 (114) L o +2V'7)’
Mp| 2v Mp
1 1 2 and
V=M tang|;v-M l/}] - COtQ[Z\/_M 1/)]
Y T
Wy, 10(X, t) = Mp | Zv 1
, o +2v)
Y7
g VO tanif§ /A7 - ot A1)
Family 4.2 When M >0 v =0: x .
JM tanho| -v-M ]
Wye(X, t) = Suvo SET v ’ (119)
YT Mp | 2y 2 v LBVl 1p 1
Mp| 2v 4
2
JH tanhg| 1B Mw] a1s) )
L vl 1u 1 : VM tani| /M1y - coth By
Mp| 2v 2 v %
v
, ot? +2vn) )
Mp L owt v
Mp
S 6wvo| 1u 1 VM COthg[%\/‘Ml/)] Family 4.3: When nv > 0 and y = 0:
4,7\ Y Y
’ M 2v 2 % -30 lo
g Wi, 0 = = Gana( V9 - 57, 020)
2
1z -30 lo
ovio| 1u 1M C"“‘Q[zV M ¢] (e Wi, 0 = S (COta(FIYF = 57, 42D
Mp| 2v 2 %
-30
waas(x, £) = —=(tang2 v y) + (seco(2vip ¥)))*
, o+ 2vy) (122)
> lo
Mp Y
— Wi _lﬁ 1 -30
wyg(X, 1) = Mp | 2v 3 wy (X, t) = T(COtg(Z\/Wlﬁ) + (csca(2 /v 1))
M tanho( V=R Y) + (secho( VR 1)) 1o (123)
% 2p’
6vio( 1u 1 and
Mp\ 2v ¥ 2 (n )
=30 1 1
y VM tanho(v-M1) # (secho(v/-M1)) r wy15(X, t) = — | tane E\/WI/)] - COtQ[Ex/W‘/)]]
% (124)
lo

N o(u® + 2v)
Mp
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Family 4.4: When nv < 0 and u = 0:

Wa6(X; ) = —(tanhg( SV - EZ

i, £ = 2 ((tanhg(2, VT Y)

+ (isechg(2,/~V¥))))? - E;

w5, 1) = 2 (tanho(2 V)

+ (isechg(2./~VvQ ¥)))? - %%

Mo, £ = 22 (cotha(2 V)
+ (escho(2./~vn¥))))* - 5;
and

tanhg

Wy 20X, t) = z \/ -vn l/’]

1 2 1g
Rl

Family 4.5: When v =nand u = 0:

+ cothg|

-3o(tang(ny)* 1a

Wy (X, t) = 2 2p’
-30(cot 2 1o
Wyp(X, t) = % - E;’

Wy 3(X, t) =

Family 4.7: Whenn =0, u # 0 and v # 0:

o((cosho(uy))* - cosho(up) sinho(uy) - 2 coshg(up) + Zsmhg(wﬁ))

-30((tang(2nY) + (seconY)))* 1a
2p 2p

(125)

(126)

127

(128)

(129)

(130)

(131)

. (132)
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—30((-coto(2ny) * (csconY))))* 10

Wy 4(X, t) = 2 3 ;,(133)
and
1 1 1 1 ’
-30]|; tang ng] -3 cotg[znw]]] 1o (138)
Wy 5(X, t) = - o

2p 2p
Family 4.6: Whenv =-npand u = 0:

-3a(tanho(ny))* 10

oo, ) = 2 2y
_ -3ocotho()? 10
W% 0 = 2 T
_a(_ . )
Wy 28(X, t) = Sa(( tanhg(zmp)zi (isecho(2¥))))
P 137)
_1o
2p’
-30((-cothg(2n¥) * (cech(2 2
Wy 29(X, t) = o(( a( m/)z) (cech(2ny))))
P (138)
_19
p’
and
2
-30 —%tanhg %f)w] - ;cothg[;qu]”
o 0= 2 (139)
_1o
3

wy 31X, t) = 2

and

Wy (X, t) =

Family 4.8: When = 7,v =nt(n # 0) and n = 0:

> (140)
p(coshg(uy) - sinhg(uy) + 1)
0((coshg(u¢))2 + coshg(uy) sinhg(uy) - 2 coshg(uy) - ZSmhg(W)) (141)
p(cosho(uy) + sinhg(uy) + 1)
TP TY
Wy 5506, £) = o(1 + 4nQ™ + n2Q2W) (142)

Jo+ BFan@) M | ¢8

Xﬁ
where ¢ = [3? - NI 5

p(-1+nQwW)? ~’
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4 Discussion and graphs

In this section, we graphically depict a number of wave
patterns that were seen in the system that is being studied.
By using the mEDAM, we were able to identify and display
wave patterns in contour and 3D graphs. Predominantly,
breather, dark kink, periodic, bright kinks, and other
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N-soliton structures are found in the soliton solutions con-
structed for CKGE. They continue travelling at the same
pace and in the identical direction. They clarify the beha-
vior of scalar fields in relativistic quantum physics when
applied to the CKGE. Similar to vacuum state transitions,
kink solitons, stable borders traversing scalar field zones,
signify abrupt phase or amplitude shifts. Understanding

Figure 1: The three-dimensional and contour graphics of the singular bright kink soliton solution wy stated in (17) are visualized foru =1; v =1;

n=26=1p=10=2;,Q=¢,p=6.

a.

0.8 @@
U
B
t 06 @
9
0.4 @
iy
@@
»

Figure 2: The three-dimensional and contour graphics of the dark soliton solution wy 7 stated in (23) are visualized for u =10; v=8;n=2; 6 =1,

B=10;0=20;Q=¢; p=10.
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the basic characteristics of relativistic quantum mechan-
ical phenomena and how they relate to particles and
vacuum features is possible through studying solitons in
the CKGE. Breather solitons, which are localized distur-
bances going through energy state transitions, exhibit per-
iodic amplitude oscillations. Stable, recurrent structures

DE GRUYTER

with periodic solitons include standing waves. In the field
description, dark kinks show localized depressive issues
that could be indicative of strong soliton-like qualities.
Bright kinks, on the other hand, show peaks or humps in
the field’s persona, which could be signs of temporary or
meta-stable excitations. Kink solitons, stable boundaries

T T T T T
0 20 40 60 80 100

Figure 3: The three-dimensional and contour graphics of the dark soliton solution wy 3 stated in (47) are visualized for u = 2;v=0;n=6;6 = 0.9;

p=10=20,Q=3,p=10;7=2;n=3.

Figure 4: The three-dimensional and contour graphics of the breather dark soliton solution interacts with breather soliton solution w; 5 stated in (52)

arevisualized fory=1;,v=1n=2,6=1,=50=1,Q=¢;p =6.
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across scalar field zones, represent abrupt phase or ampli-
tude changes, much like vacuum state transitions do.
Multi-soliton solutions, or N-solitons, explain the interac-
tion between localized disturbances that result in bounded
states, fusion, and dispersion. Studying solitons in the
CKGE allows us to comprehend the fundamental properties

Establishing breather and N-soliton solutions == 17

of relativistic quantum mechanical systems and their
relationship in particles and vacuum features. In a nut-
shell, the novelty of the current study lies in the provision of
the systematic and unique unearthing of the new plethora of
soliton solutions that showcase the novel and innovative
nature of our investigation. Investigations into nonlinear

104

@)
&
3] ®Q

' ©

0_5 T T T T T
0 2 4 6 8 10
X
b.

Figure 5: The three-dimensional and contour graphics of the breather dark soliton solution wy 17 stated in (64) are visualized for u = 0; v =2;n = §;

6§=09;,=30;0=2;,Q=¢,p=6.

T £ ; T T T v T
0 20 40 60 80 100

Figure 6: The three-dimensional and contour graphics of the breather dark soliton solution ws 3 stated in (109) are visualized for u = 5; v = 25; 7 = 0;

6=05=50,0=1Q=ep=571=5n=>5.
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FPDEs that arise in quantum field theory, fluid dynamics,
and optics are of importance to solitons. These soliton
solutions present a deeper insight into the CKGE underlying
phenomena in the related scientific fields (Figures 1-8).
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5 Conclusion

We have used the upgraded mEDAM to comprehensively
study the transmission of solitons in the CKGE, an

0.3

0.4+

0.2+

0 0z 04 06 08 {
X

Figure 7: The three-dimensional and contour graphics of the dark soliton solution w25 stated in (134) are visualized for u = 0;v=7,n=7,6 = 1;

B=4,0=3,Q=¢;p=5.

0 02 | 04 06 o8 1

Figure 8: The three-dimensional and contour graphics of the bell-shaped or dark kink soliton solution wy 3; stated in (140) are visualized for u = 2;

v=5n=0;6=1=50=1Q=e;p=6.
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established model in the fields of solid-state physics,
quantum field theory, and nonlinear optics. Several dark
kink, bright kink, breather, and other N-soliton solutions,
including generalized hyperbolic, trigonometric, exponen-
tial, and rational functions, have been found by translating
the suggested model into NODEs and assuming closed-form
solutions. Crucial insights into the dynamics of propagating
soliton processes can be gained from contour and three-
dimensional graphs, which graphically represent the propa-
gation behavior of certain soliton solutions. These graphs
directly relate to domains related to the models under con-
sideration. The unusual outcomes of applying the mEDAM to
the model demonstrate its originality, as they have not been
examined in academic literature previously. These findings
improve our knowledge of nonlinear dynamics and temporal
evolution processes, which have important ramifications for
our comprehension of related physical phenomena. The
effectiveness and consistency of the methods used in this
work also show how widely relevant they are to nonlinear
issues in many different scientific fields. Even though the
mEDAM has made a substantial contribution to our knowl-
edge of soliton dynamics and how they impact the targeted
model, it is crucial to recognize the technique’s limits,
especially in cases where the largest derivative and the
nonlinear term are not uniformly balanced. Despite this
drawback, the study makes clear how many concerns about
nonlinear behaviors and soliton dynamics remain unre-
solved and provides fresh avenues for future research in
the area. To put it briefly, what makes our study unusual
is that we have discovered a variety of new soliton solutions
in a methodical and distinctive way, demonstrating the crea-
tive and inventive nature of our research. Solitons are inter-
ested in studying nonlinear FPDEs that occur in fluid dynamics,
optics, and quantum field theory. In the associated scientific
domains, these soliton solutions offer a more profound under-
standing of the CKGE underlying phenomena. The authors also
aim to make the mEDAM efficient in addressing nonlinear
FPDEs with variable coefficients and stochastic behaviors for
the construction and analysis of soliton solutions.
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