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Abstract: Scientific inquiry into effective numerical methods
for modelling complex physical processes has led to the inves-
tigation of fluid dynamics, mainly when non-Newtonian
properties and complex heat sources are involved. This paper
presents an enhanced exponential time integrator approach
to dynamically simulate non-Newtonian boundary layer flow
with spatially and temporally varying heat sources. We pro-
pose an explicit scheme with second-order accuracy in time,
demonstrated to be stable through Fourier series analysis, for
solving time-dependent partial differential equations (PDEs).
Utilizing this scheme, we construct and solve dimensionless
PDEs representing the flow of Williamson fluid under the
influence of space- and temperature-dependent heat sources.
The scheme discretizes the continuity equation of incompres-
sible fluid and Navier-Stokes, energy, and concentration
equations using the central difference in space. Our analysis
illuminates how factors affect velocity, temperature, and
concentration profiles. Specifically, we observe a rise in tem-
perature profile with enhanced coefficients of space and
temperature terms in the heat source. Non-Newtonian beha-
viours and geographical/temporal variations in heat sources
are critical factors influencing overall dynamics. The novelty
of our work lies in developing an explicit exponential inte-
grator approach, offering stability and second-order accu-
racy, for solving time-dependent PDEs in non-Newtonian
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boundary layer flow with variable heat sources. Our results
provide valuable quantitative insights for understanding and
controlling complex fluid dynamics phenomena. By addres-
sing these challenges, our study advances numerical techni-
ques for modelling real-world systems with implications for
various engineering and scientific applications.
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1 Introduction

A great application of boundary layer flows with non-
Newtonian liquids is important to study as it has valuable
practical and theoretical applications in various natural
and industrial environments. The complications in the
flow dynamics of non-Newtonian fluids distinct from that
of Newtonian fluids are mainly because of their compli-
cated rheological features. Williamson liquid also belongs
to the class of non-Newtonian fluids. To gain an insight into
the complex nature of the Williamson liquid boundary layer
flow process, a modified exponential integrator method was
used for this project. The flow characteristics are also con-
siderably different when a heat source that varies with both
space and temperature is taken into account, adding another
layer of subtlety for a more practical analysis for the study of
the boundary layer flow of such a fluid.

Numerous biological and commercial processes use a
Williamson fluid model, which is an example of a non-
Newtonian fluid. The Williamson fluids have viscoelastic
properties and also have some unique rheological character-
istics, such as shear-thinning or shear-thickening behaviour.
These unusual properties of Williamson fluids require them
to be modelled using a proper mathematical model. However,
traditional numerical methods do not ensure an accurate
simulation of the non-Newtonian flows. In the investigation
of non-Newtonian flows, our research utilizes a new
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technique, that is, a modified exponential integrator approach
to eliminate the disadvantages of the traditional numerical
simulation method. Solving stiff ordinary differential equations
with non-Newtonian fluid models has its separate difficulties.
As a result, this study employs a particular numerical method
to eliminate the problem.

The restricted application of Newtonian fluids has
sparked interest in studying non-Newtonian fluids. Some
non-Newtonian fluids are starch, lubricating sprays, honey,
ketchup, and countless more. The rheological characteristics
of fluids were demonstrated by Williamson in 1929 using a
non-Newtonian model [1]. It is known as the Williamson
fluid model in academic publications. Nadeem and Hussain
[2] studied the effect of heat transfer through a magnetized
Williamson fluid across a continuously stretched sheet.
Using the Cattaneo-Christov (CC) heat flow model, Amjad
et al. [3] investigated the magnetohydrodynamic (MHD) Wil-
liamson nanofluid moving across an exponential stretching
sheet. The peristaltic transport of a Williamson nanofluid in
a tapered asymmetric channel under the effect of a thermal
radiation parameter is theoretically investigated by Kothan-
dapani and Prakash [4]. Taking into account two scenarios
for heat transfer, the prescribed exponential order surface
temperature and the prescribed exponential order heat flux,
Ahmed and Akbar [5] detailed the analysis of an MHD flow
of Williamson nanofluid across an exponentially porous
stretched surface. Using models and analyses, Hayat et al
[6] sought to determine how well magnetic nanoparticles
and melting heat transfer performed in the stretched flow.
Abbas et al. [7] studied the computational assessment of the
impact of MHDs and changing density on Williamson
Sakiadis flow in a porous medium. Shafiq et al. [8] presented
a new approach to solving numerical problems using artifi-
cial neural networks that combines the Levenberg—Mar-
quard algorithm with multi-layer perceptron feed-forward
back-propagation. This approach can understand radiation,
heat generation/absorption, and unsteady electrically con-
ducting Williamson liquid flow along porous stretching
surfaces. Ahmed et al [9] examined the mechanics of
mixed-heterogeneous two-dimensional Williamson fluid flows
across a nonlinear extending curved surface while consid-
ering convective boundary conditions and homogeneous-he-
terogeneous responses. Ahmed et al. [10] focused on analysing
the heat flux mechanism in a MHD mixed convective flow of a
Williamson-type fluid over an exponential stretching porous
curved surface.

The esteemed Nobel laureate Hannes Alfven is believed
to have proposed the theory of MHD. It explores the rela-
tionship between fluid mechanics and electromagnetism,
illustrating the impact of a magnetic field on a conductive
fluid. Some of the applications of MHDs involve magnetic
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endoscopy, tissue temperature analysis, centrifugal pumps,
cell separation, blood flow, and cancer tumour therapy.
An investigation was conducted on nanofluids’ two-dimen-
sional boundary layer flow undergoing a chemical reaction
with thermal radiation. The medium of study was a non-
linear stretched plate [11]. Turkyilmazoglu [12] utilized an
analytical technique to handle the MHD flow. A study by
Mabood et al [13] investigated the flow of magnetic fluid
along a vertical axis while the fluid was spinning. Talihnoee
et al. [14] studied nanofluids to examine their potential for
generating MHD entropy and spontaneous convection. In
the study conducted by Rashidi et al [15], it was proposed
that the stretching of porous sheets could be influenced by
heat radiation and thermodiffusion in the MHD Williamson
fluid. Madhu et al [16] studied the minimization of entropy
generation through the thermodynamic second law, where
we consider heat transfer and non-Newtonian fluid (Wil-
liamson fluid) flow via a micro-channel. Mishra et al. [17]
studied Williamson fluid’s micro-rotational micro-hydrody-
namic flow through a non-Darcy porous material. Almaneea
[18] investigated the impact of hybrid nanoparticles on heat
and mass transport processes in both homogeneous and het-
erogeneous chemical reactions. The finite-element method
(FEM) is utilized to solve models numerically. Reddy et al
[19] investigated the mass and heat transfer properties of
MHD Williamson nanofluids in porous media with CC double
diffusion on a stretching surface. Asjad et al. [20] examined
the impact of Brownian motion and thermophoresis diffusion
in the flow of a non-Newtonian Williamson fluid over an
exponentially stretched sheet, considering the impacts of
thermal radiation and the bioconvection of microorganisms.

A higher stretching ratio reduces the friction factor. It
increases the heat transfer rate, according to research by
Raju et al [21], on the impact of a space and temperature-
dependent heat source on the flow of a nanofluid in a
boundary layer across a uniformly thick surface when a
nonlinearly permeable stretching sheet is used. Mather
initially documented a viscous liquid’s flow across a para-
boloid surface in 1961 [22]. After that, Lee [23] discussed the
flow of an incompressible fluid over a thin needle, precisely
a non-uniformly thick item, and provided the boundary
layer equation that governs this motion. Applying the idea
to boundary layer flow on thin paraboloids, Cebeci et al. [24]
expanded upon it. Upstream solutions for continuous, vis-
cous flow via a paraboloid and the boundary layer on a
paraboloid of revolution were studied by Miller [25,26].
Veldman [27] proposed a numerical method for solving
the Navier-Stokes equations in the context of flow around
a paraboloid of revolution.

In fluid dynamics, fluids can be classified as Newtonian
or non-Newtonian. The viscous strains caused by Newtonian
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fluid flow are clearly proportionate to the local strain rate.
For non-Newtonian fluids, the viscous stresses caused by the
flow do not relate linearly and could even change with time.
Three main types of fluids are not Newtonian: viscoelastic,
time-dependent, and time-independent. Temperature, shear
rate, and time all play a role in determining the viscosity of
non-Newtonian fluid time-dependent. Paint and yogurt are
examples of thixotropic materials that decrease viscosity
with time. At the same time, gypsum paste is a rheotactic
material that increases in viscosity with time. In contrast,
the viscosity of time-independent non-Newtonian fluids is
solely affected by temperature and shear rate.

Shear thickening, in contrast, is a dilatant process
where the viscosity increases in proportion to the shear
rate. Lastly, plasticity is the property that states flow can
only occur under very particular shear stress conditions.
The shear rate at a specific place in a time-independent
non-Newtonian fluid is solely determined by the stress at
that point.

A model equation for describing the flow of pseudo-
plastic fluids was proposed and experimentally validated
by Williamson [1], who also addressed the flow of pseudo-
plastic materials. Williamson fluid is an example of visco-
inelastic fluids from a rheological perspective. According to
Nadeem et al. [28], Williamson fluid is a non-Newtonian
fluid with a shear thinning property, meaning that its visc-
osity decreases as the rate of shear stress increases. Spe-
cialists have documented fluid flows on different surfaces
since appropriate models for Casson and Williamson were
developed.

Heat is the amount of energy transferred between two
bodies with different magnitudes of temperature, whereas
temperature is the degree to which an object or substance
is hot or cold. Thermal expansion is described as the pro-
pensity of matter to change its shape, area, and volume in
response to a substantial alteration in temperature caused
by heat transfer.

Another way to look at heat is as an energy source that
moves freely between an object and its environment.
Three primary pathways exist for heat transfer: conduc-
tion, radiation, and convection. The term “convection”
describes the movement of heat across a fluid medium
when temperature gradients cause density variations in
the fluid. A process known as free or natural convection
takes place rather than the presence of an external heat
source. Fluids near a heat source experience free convec-
tion, which causes them to lose density and ascend. The
surrounding colder fluid subsequently replaces it.

Shehzad et al. [29] examined the scenario of heat and
mass convection at the surface after considering this
theory and considering flow induced by a bidirectional
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stretched surface. Heat transmission in an unstable, con-
vection nanofluid with gyrotactic microbes and nanopar-
ticles was documented by Motsa and Animasaun [30]
using the paired quasi-linearization method. Abbasi
et al. [31] investigated Maxwell nanofluid mixed convec-
tion flow. The first unstable stage, when the temperature
increases the maximum, is when the convective accel-
eration element in the energy equation has a minimal
impact, according to Sandeep et al. [32], who analysed
three-dimensional Casson fluid flow over a zero-tem-
perature surface. Bhatti et al. [33] provided a detailed
discussion of the presence of diamond (C) and silica
(Si02) nanoparticles in a water-based hybrid nanofluid
floating on an exponentially elastic surface. In Bhatti
et al. [34], a mathematical model for coating boundary
layer flow of a Maxwell viscoelastic fluid with non-
Fourier heat flux and nonlinear quadratic convection is
proposed. Heat source/sink effects and nonlinear quad-
ratic thermal radiation are also considered. Lie symmetry
transformations are used. Nadeem et al [35] analysed
entropy creation by investigating irreversible sources in
the steady flow of a non-Newtonian Williamson fluid.

1.1 Novelty of this study

The study mentioned above stands out in numerical fluid

dynamics and heat transfer methods due to its numerous

new contributions, particularly in the context of non-

Newtonian boundary layer flow affected by spatial and

temperature-dependent heat sources. In a nutshell, the fol-

lowing are the main innovations of this study:

1) Exponential integrator scheme: The main novelty is a
new method for solving time-dependent partial differ-
ential equations (PDE) using an exponential integrator
technique. This scheme provides a novel way to handle
the problems given by dynamic systems effectively; it is
explicit and has second-order temporal precision.

2) Stability analysis: Using Fourier series analysis, the
research thoroughly examines the stability of the sug-
gested exponential integrator system. To guarantee the
correctness and dependability of the results, it is essen-
tial to establish the stability of a numerical scheme; the
offered analysis adds rigor to the investigation.

3) Application to non-Newtonian fluid dynamics: The sug-
gested exponential integrator is put to new use in mod-
elling Williamson fluid flow, an innovative application
of the numerical technique. Understanding how non-
Newtonian fluids differ from conventional Newtonian
fluid difficult endeavour, but studying their dynamics
still adds complexity.
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4) Space- and temperature-dependent heat source: This
research focuses on analysing the effects of a heat source
with varying coefficients in both space and time. This
characteristic enhances the mathematical model’s rea-
lism in scenarios involving dynamic and diverse heat
sources. The study stands out because it investigates
how these changes affect the system’s behaviour.

5) Comprehensive discretization approach: To provide a
thorough numerical framework, the research utilized a
discretization strategy that included a first-order scheme
for the continuity equation as well as the proposed expo-
nential integrator for the Navier—Stokes equation, energy
equation, and concentration equation with central differ-
ence in space. This comprehensive strategy enhances the
effectiveness and precision of the numerical solution.

Our research aims to address the following primary
question: How can we design efficient numerical models to
capture the complex structure of non-Newtonian boundary
layer flow when heat sources are both geographically and
temporally variable? Reliable numerical techniques for
solving time-dependent PDEs regulating such processes
are the focus of our work, guided by this overall concern.

Our investigation goes beyond the standard boundaries
by including space- and temperature-dependent heat sources
in the analysis. By including these extra factors, we hope to
replicate more realistic situations that users may face in
real-world applications. Because of their centrality in many
environmental and engineering situations, heat sources sig-
nificantly influence the distribution of temperatures and, by
extension, the dynamics of fluids. By including space- and
temperature-dependent heat sources, the study is improved,
the underlying physical processes are better represented, and
the study’s applicability is widened.

First, a complete mathematical framework for model-
ling non-Newtonian Williamson fluid boundary layer flow
using the modified exponential integrator for improved
numerical accuracy is introduced; second, the effect of
space- and temperature-dependent heat sources on the
flow properties is investigated; and finally, conclusions are
drawn from these results. Our goal in this systematic inves-
tigation is to illuminate the complex relationship between
non-Newtonian fluid dynamics, numerical methods, rheolo-
gical parameters, and heat sources. Understanding compli-
cated fluid behaviours is crucial for engineers, environ-
mental scientists, and others to optimize their processes.

Mathematical boundary layer flow models are expressed
as PDEs. Further, these PDEs are reduced into dimensionless
partial or ordinary differential equations. Matlab solver,
analytical methods, and finite or FEMs can solve ordinary
differential equations. In some situations, the accuracy of
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the solution is only required instead of any specific method.
Among the mentioned methods, the finite difference method
can be used to solve these equations. In this contribution,
an exponential integrator is proposed to solve the dimen-
sionless set of PDEs arising in the flow phenomenon of
flow over the flat and oscillatory plates. The method is
clearly defined and achieves second-order accuracy in
time. Spatial discretization is performed using second-
order central formulas.

2 Exponential time integrator

A two-stage explicit scheme is proposed that can be used
to solve time-dependent problems in science and engi-
neering. The scheme discretizes time-dependent terms in
a given PDE. Any other scheme can be used for space dis-
cretization. To propose a time integrator, consider an equa-
tion of the form [36]
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Let Eq. (1) be rearranged as
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The initial step of the scheme is described as
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The second stage (4) contains three parameters a, b,
and c. The values of these parameters will be determined
by utilizing the Taylor series expansion. To do this, re-write

Eq. 4) as
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v Upon solving Egs. (9)-(11), the values of parameters
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Substituting the Taylor series expansion (6) into Eq. (5), . )
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The stability analysis of finite difference methods for linear

2
@0 = b(ed - 1)2, (11)  differential equations is found in the literature by applying

2
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Von Neumann stability analysis. It can also be used for
finding stability conditions of nonlinear differential equa-
tions discretized by finite difference methods. Equations
are linearized to apply this analysis for finite difference
methods on nonlinear differential equations. So, in
this, just an estimation of differential equations will be
given. To apply this method, the dependent variable in
the difference equation is transformed to Fourier series.
Instead of considering the whole series, only one com-
ponent is employed for transformation. Consider the
following transformation to initiate the application pro-
cedure for these criteria:

o = prieiliieli, = Preiltieily,

PL = P Dleiy gL = Pl DIY,

Vl]+1

o . an
vij+1 = pheilhp(j+DIY,

Vi’éu = P"e(iﬂ)iw’leﬂ‘/’z

v’;” pr+loilhp I,

Utilizing some transformations from (17) into the first
stage of the scheme (15) yields
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By using De Movier’s theorem, Eq. (19) is expressed as
follows:
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Re-write Eq. (20) as follows:
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the second stage of the scheme (16) yields
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where
z = ¢l siny, + ¢ siny, + 2ad;(cosy, — 1)

Inequality (25) gives the stability condition of the
proposed finite difference method for the linear scalar con-
vection—diffusion equation. Further, this contribution con-
vergence analysis for the system of convection-diffusion
equation is also provided. For this purpose, consider the
system of convection—diffusion equation

ou ou ou o%u
=A

— =A—+ —+C—+D
ot Jax TPy Y ”

o (26)

By employing the proposed scheme in Eq. (26), the
discretized equation can be expressed as

it = ufje + (¥ - DiAs ) + B&,uj + Cisyuf]
@7)
+ Dui,]'}’
uljt = (uuem a5 + (M - Dia(ASul + BSyu);

(28)

+ CiSgus + Dufly - cull) + b(AS !

n+1)}

+ B8yu”+1 + C152 n+l Dun+1

Theorem 1. The proposed exponential integrator schemes
(27) and (28) converge for the system of Eq. (26).

Proof. For proving this theorem, consider the exact scheme
for Eq. (26) O
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By subtracting the first stage of the proposed scheme
(27) from the first stage of the exact scheme (29) and also let
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Then, the error equation is written as
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Apply norm ||. || on both sides of Eq. (31) as follows:

Dynamic simulation of non-Newtonian boundary layer flow == 7

n
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N | =

W, = 5 +alb| + &|b| + 4di|b| + |b||ID||. ~ |D|
fy = € + G+ G+ 4dy + ||Dll(e* - 1)

Let u = u, + p,u, then inequality (37) is expressed as

el < el + Q(O((A)%, (AX)%, (Ay)D), (38)
Put n = 0 in inequality (38) as
e < pel' + Q(O((AtY2, (Ax)?, (&)%), (39)

Since e1° =0 due to the exact initial condition, so
inequality (39) is written in the form

ef < QO((AtY, (Ax)%, ().

Substituting n = 1 in inequality (37) using (40) gives the
following equation:

el < pel' + Q(O((A)?, (Ax)?, (Ay)2))
< (U + DQO(AL?, (Ax)2, (Ay)3).

If this continues for finite n, then the following inequality
is obtained:

ef < (U + .+ + DO, (Ax), (Ay)H)

1 —qm
- [ = ]Q(O((At)z, (A2, (ay)).

For large n, i.e. n — o the series ...+ u" 1+ .+ u+1
becomes an infinite geometric series that will converge
if |u| < 1.

(40)

(41

(42)

4 Problem formulation

Examine the behaviour of a two-dimensional Williamson
fluid that is laminar, incompressible, unstable, and flows
over flat and oscillatory sheets. Let the x*-axis be placed
horizontally, whereas the y*-axis is chosen to be perpendi-
cular to the x™-axis. The streamwise coordinate of the flow
is the x™-axis and cross-streamwise is the y*-axis. The flow
in the fluid is generated by the sudden movement of the
plate towards the positive direction of the x*-axis. The fluid
is electrically conductive. The transverse magnetic field
B = (0, By, 0) and uniform electric field E= (0,0, -Ey)
are applied in the flow region. It is to be noted that an
electric field is stronger than a magnetic field, and a mag-
netic field follows Ohm’s law. f = G(f +7xB ), where o is

DE GRUYTER

the electric conductivity, J is a Joule current, and ¥ is the
velocity of fluid. The governing equation of this phenomenon
can be written as

ou* ov”

+ =0, 43
ox* oy* 43
ou u*au* Lout vazu* + 20T ou* o*u*
* * PR *2 * w2
ot ox oy ay oy" ay (44)

+ %(EOBO - Baw),

oT T T T u[au*]z
+ + = +

u v =a —
ot* ox* oy* ay?  pG,| ay”

«)3
N Lr[ai] 5)
pGCy | 9y*
g 1
+ —(WBy - Eo)* + ——q",
PGy PGy
oC oC aoC o%*C
+u * =D — —k(C-C,). (46
ar T Wax TV oy T DGy T h( ). 18)
Subject to the boundary conditions
uw=0,v=0 T=0,C=0whent* =0,x,y" >0
U = Uy, V=0, T=T,, C=Cywheny" =0,x*t">0 @)

>

uw-0,T-T,C~ Cowheny* - o x*t">0
uwr=0,v=0 T=0,C=0whenx*=0

1 Kuy

where g’ = XVPCP(A*u(TW - T..) + B (T - T..)) represents the
space- and temperature-dependent internal heat sources., A"
and B* are spatial and temperature-dependent parameters,
respectively. I is the time constant, p is the density of the
fluid, o represents the electrical conductivity, a is the thermal
diffusivity, & is the reaction rate, and D; is the mass
diffusivity.

To reduce Eqs. (43)-(47) into dimensionless PDES, con-
sider the following transformations:

* *

v Uyt* y X
, U= Y=, X =
[ A7

u= , V= (48)

Uw Uw

By employing transformations to Egs. (43)-(47), the
system of PDEs is given as follows:

ou ov

—+ =y, 49
ox oy 49

ou ou ou 1 o« ou o%u

— +tU— +yv— = —— + 2We——

ot ax Ay Reay? ay ay?  (50)

+ MY(E; - u),
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0 00 80 1 1% Ecfou)
— At Ut V— = ——— + —|—
ot ox 8y PrRedy*> Reldy

3
+ ECWE[a—u] +ECM2(u - B OD
oy
L 1 * *
+ ;E(A u + B*0),
0 0 0 1 1 02
@, —¢+v—¢=———q§—y¢. (52)
ot ox dy  Sc Re gy

With the following dimensionless boundary conditions

u=0,v=0,0=0,¢0=0whent=0,x,y>0
u=1,v=0,6=1,¢=1wheny=0,x,t>0
u—->0,0-0,¢~>0wheny—> o x,t>0
u=0,v=0,06=0,¢=0whenx=0

(53)

bl

where We is the Weisenberg number, E; is the local electrical
parameter, M is the magnetic parameter, Pr is the Prandtl
number, Sc is the Schmidt number,  is a dimensionless che-
mical reaction, Ec is the Exkert number, and Re is the
Reynolds number, and these are expressed as follows:

vl Eo oLB¢ % v
We=—, E = ,M? = ,Pr=—,8c=—,
2’7 uB, Plly a D,
= L—kl Ec = _ M , Re = Ly
Uy Co(Ty - To) %

The following physical quantities indicated in the pro-
blem formulation are significant for better comprehension
of the article:

Weisenberg number (We): The relaxation time of the
fluid as a function of the flow’s characteristic time scale is
represented by this dimensionless parameter. It measures
how much of an impact in non-Newtonian fluid flows is
caused by viscoelastic vs inertial forces. The Weisenberg
number increases as the impact of viscoelasticity on the
flow behaviour becomes more significant.

Local electrical parameters (E;): It helps determine the
electric force level in any fluid as a part of the fluid flow
process. Force on a fluid can be determined by knowing
the different parameters related to the fluid. Another
factor on which the movement of fluid depends extensively
is the magnetic forces.

Magnetic parameter (M?2): In a fluid flow, this dimen-
sionless quantity measures the inertial to electromagnetic
forces ratio. Important for understanding the effect of mag-
netic fields on fluid dynamics, the parameter measures the
relative strength of the field with respect to the fluid’s
velocity.

Prandtl number (Pr): This dimensionless variable repre-
sents the fluid’s momentum-to-thermal diffusivity ratio. It
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determines the thickness of the thermal boundary layer,
flow heat transfer rates, and the importance of momentum
vs thermal transport.

Schmidt number (Sc): This metric quantifies the rela-
tionship between the diffusion of momentum and the diffu-
sion of mass in the fluid. It measures the importance of
moving momentum compared to moving mass and regulates
the thickness of the layer where concentration changes occur
and the speed at which mass is transferred in the flow.

Eckert number (Ec): It is a measure of the correlation
between the change in enthalpy and the kinetic energy of the
fluid flow. The relative relevance of kinetic and thermal
energy can be better understood by gaining insight into the
flow’s equilibrium between kinetic energy dissipation and
heat transfer.

The skin friction coefficients local Nusselt and Sherwood
numbers are defined as follows:

T
Gt = —5 where %, = [

ouwr T [ ou* ]2
pud

+ —
ay* 2| oy"

y'=0
Lq, oT

oM (54)
KTy - Ty B = Ky

NuL

y'=0
Lg; ac

= —Q, ,:—D—
D(Cy-Coy U775

Shy :
y

y'=0

To make Eg. (54) dimensionless, transformations from
Eq. (48) are substituted into Eq. (54), the dimensionless Skin
friction coefficient, local Nusselt and Sherwood numbers
are reduced as

| Lou, wefou)
" |Reay  V2Zl|oy 0
Ny, = —[6—9] (55)
ay =0
0
ShL = _[_¢y
ay =0

5 Results and discussion

This contribution is based on the numerical scheme to
discretize time-dependent problems. The scheme can be
used to discretize those problems that contain only first-
order partial derivatives in time. The scheme is a two-stage
predictor—corrector stage. The first stage, or predictor
stage, is first-order accurate in time, while the second
stage, or corrector stage, provides second-order accuracy.
The spatial discretization is performed by applying second-
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order central difference formulas. The scheme is condition-
ally stable, so the time step is restricted. This condition also
depends on the choice of the parameter(s) in the consid-
ered problem(s). So, the scheme will remain stable if the
appropriate numerical value(s) of the parameter(s) and
suitable step sizes in space and time are chosen. The
scheme is also consistent because it is constructed using
the Taylor series and is second-order accurate. By Lax’s
equivalence theorem, the scheme will converge for linear
time-dependent problems. Since the continuity equation for
incompressible flow does not contain the time derivative
term, it is discretized by only first-order Euler’s scheme in
both spatial coordinates. The proposed scheme is employed
for Navier—Stokes’ energy and concentration equations.
Figure 1 illustrates the influence of the magnetic para-
meter on the velocity profile. The velocity profile decreases
as the magnetic parameter increases. The drop in the velo-
city profile is caused by the rising Lorentz force that acts
against the motion of the particles in the fluid. Figure 2
illustrates the impact of the Weisenberg number on the
velocity profile. The velocity profile decreases as the Wei-
senberg number increases. An increase in the Weisenberg
number results in higher fluid viscosity, leading to more
excellent resistance to deformation. The presence of resis-
tance causes a decrease in the flow speed, reducing the
velocity profile. Figures 3 and 4 illustrate the impact of the
coefficients of spatial and temperature-dependent factors on
internal heat generation. The temperature profile increases
as these values grow. Increasing these dimensionless factors
intensifies the heat-creation process, resulting in an elevation
in temperature. Figure 5 illustrates the impact of the Eckert
number on the temperature distribution. The temperature
profile becomes steeper as the Eckert number increases.
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A\ i | |
= ) | | |
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P o\ | | |
g R\ i | |
~— 0_4-777773- 77777 e S R
~ B\ I I l
> ‘\\\ | | |
=W | |
0.2F---------*N\c----------- R mmm e
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\'"..\ : :
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Figure 1: Variation of magnetic parameter on velocity profile
using Re = 3, We = 0.01, E; = 0.01.
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Figure 2: Variation of Weisenberg number on velocity profile
using Re =3, M = 0.1, E; = 0.01.

With an increase in the Eckert number, both self-heating and
the temperature profile rise due to the heightened dissipation
resulting from the fluid’s internal friction. By applying the rules
of electromagnetic and fluid dynamics, one may see why an
electric field improves the velocity and temperature profile
while a magnetic field has the opposite effect.

5.1 Adverse effect of magnetic field on
velocity and temperature

5.1.1 Lorentz force

The Lorentz force is a force that acts on electrically con-
ducting fluids as they pass through a magnetic field. The

3.5
3
2.5
3 2
(o]
N~
Q B
@ 150
=Y
1
0.5
0
0

Figure 3: Variation of coefficient of space-dependent term in a heat
source for temperature profile using Re = 3, We = 0.01, M = 0.1,
E;=0.01, Pr=0.9, B*=0.1,Ec =01, Sc=0.9, y=01.
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Figure 4: Variation of coefficient of the temperature-dependent term
in a heat source for temperature profile using Re = 3, We = 0.01,
M=01, E; =001, Pr=09, A"=01,Ec=01, Sc=09, y=01.

magnetic field and the current’s (or velocity’s) direction are
perpendicular to this force. Consequently, it acts as a barrier
to the fluid’s flow, causing the velocity to decrease.

5.1.2 Reduced energy transfer

The Lorentz force can also generate eddy currents within
the fluid, leading to internal friction and the waste of
kinetic energy. This dissipation reduces temperature, as
energy is transformed into heat due to the resistance
experienced by the fluid particles.
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Figure 5: Variation of Eckert number on temperature profile using Re = 3,
We = 0.01, M =0.1, E; = 0.01, Pr =09, A" =0.1,B*= 0.1, Sc = 0.9,
y =01
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Figure 6: Variation of Schmidt number on concentration profile using
Re =3, We =0.01, M=01, E; =0.01, Pr =09, A" =01, B" =01,
Ec=01, y=01.

5.2 Enhancing effect of electric field

5.2.1 Electrothermal effects

In contrast to the magnetic field, the electric field can gen-
erate Joule heating in the fluid, resulting in a temperature

rise. The heating effect occurs due to the fluid’s resistance
to the passage of electric current.

5.2.2 Electrohydrodynamic effects

The electrohydrodynamic force describes the action of an
electric field on charged particles in a fluid in specific

$(1.3878,y,1)

Figure 7: Variation of reaction rate parameter on concentration profile
using Re =3, We = 0.01, M =0.1, E; = 0.01, Pr = 0.9, A" = 0.,
B*=0.1, Ec=0.1, Sc=09.
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Figure 8: Variation of magnetic parameter and Weisenberg number on
skin friction coefficient using Re =1, E; = 0.01.

situations. Under the right circumstances, this force can
propel fluid motion while simultaneously amplifying the
velocity field.

The effect of the Schmidt number on the concentration
profile is shown in Figure 6. A higher Schmidt number is
associated with a flatter concentration profile. The mass
diffusivity drops, and the concentration profile flattens as
the Schmidt number rises. Figure 7 shows how the concen-
tration profile changes when the reaction rate parameter
changes. When the reaction rate parameter is increased,
the concentration profile gets flatter. Reactions that break
or create chemical bonds between atoms transform con-
centration atoms into other substances, which causes the
concentration profile to decay due to the process.

Figure 8 illustrates the impact of the magnetic parameter
and Weisenberg number on the skin friction coefficient. The

Figure 9: Variation of Prandtl number and Eckert number on local Nusselt
number usingRe =1, E; = 0.01, We =01, M=01, A" =01, B"=0.1.
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Figure 10: Variation of Schmidt number and reaction rate parameter on
local Sherwood number using Re =1, E; = 0.01, We = 0.1, M = 0.1.

skin friction coefficient decreases as the magnetic parameter
and Weisenberg number increase. This decline in skin fric-
tion coefficient results from a reduced velocity profile due to
magnetic parameters and Weisenberg number growth. So,
the skin friction rises when the velocity of the flow grows.
Figure 9 displays the effect of Prandtl and Eckert numbers on
local Nusselt numbers. Skin friction coefficient rises and
decays by enhancing the Prandtl and Eckert numbers, respec-
tively. Since heat transfer is better for growing thermal con-
ductivity, conduction heat transfer is affected by the declining
thermal conductivity that enhances the local Nusselt number.
Figure 10 illustrates the impact of the Schmidt number and
reaction rate parameter on the local Sherwood number. The
local Sherwood number rises as the Schmidt number and

Figure 11: Contour plot for the horizontal component of velocity profile
using Re =1, E; = 0.01, We = 0.01, M = 0.1, L, =25, L, = 27,
Uy, = 0.5 cos(1.5t).
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Figure 12: Contour plot for the vertical component of velocity profile
using Re = 1, E; = 0.01, We = 0.01, M = 0.1, Ly = 25, Ly = 27,
Uy = 0.5 cos(1.5t).

reaction rate parameter increment. Since mass diffusivity
decays by rising Schmidt number, this leads to a decline in
diffusion rate, and so local Sherwood number escalates.
Figures 11-14 show the contour plots of horizontal and ver-
tical components of the velocity profile over space and time
coordinates for the oscillatory boundary conditions. Two
different types of oscillatory conditions are considered
with different periods. Its effect along the time coordi-
nates on the horizontal component of velocity can be
seen in Figures 11-14.

Table 1 compares the suggested scheme and the second-
order Runge-Kutta method. The comparison is based on the
norm of error and the time consumption, for Example 1, as

0.4

Figure 13: Contour plot for the horizontal component of velocity profile
using Re = 1, E; = 0.01, We = 0.01, M = 0.1, L, = 25, Ly = 27,
Uy = 0.5(cos(1.5t) + sin(1.5t)).
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Figure 14: Contour plot for the vertical component of velocity profile
using Re =1, E; = 0.01, We = 0.01, M = 0.1, L, = 25, Ly = 27,
Uy = 0.5(cos(1.5t) + sin(1.5t)).

discussed in Li et al. [37]. The proposed scheme gives a
smaller error compared with the second-order Runge-Kutta
method, but the chosen Runge-Kutta method is computa-
tionally less expensive than the proposed scheme.

6 Conclusion

This study introduced a new method for efficiently solving
time-dependent PDEs using an exponential integrator. The
stability and second-order precision of the scheme in time
have been proven by Fourier series analysis, proving its
durability as a numerical tool for solving complicated fluid
dynamics problems. We have learned a lot about the sys-
tem’s behaviour by applying this technique to model and
simulate the flow of Williamson fluid under the effect of a
space and temperature-dependent heat source. A complete
framework for studying the complex interaction of para-
meters has been developed by discretizing the continuity
equation using a first-order scheme and applying the

Table 1: Comparison of proposed scheme with existing scheme
using Ny = 50 = N, (no. grid points), & (final time) = 0.1

At Proposed Time (s) Runge-Kutta Time (s)
L, error L, error

0.1/1,500 27479 x 107 28.9 5.3073 x 107 27.6

0.1/1,750 27472 x10™*  34.2 5.0873 x 107* 32.6

0.1/2,000 27470 x107*  38.9 4.9222 x 1074 36.3

0.1/2250 27467 x107* 423 47939 x 1074 40.9
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suggested exponential integrator to the Navier-Stokes,
energy, and concentration equations with central differ-
ence in space. The complex consequences of changing
the coefficients of the space and temperature terms of
the heat source under consideration have been better
understood by the display of concentration, velocity, and tem-
perature profiles under various situations. A proposed com-
putational scheme and its application on non-Newtonian fluid
have been provided. The scheme consisted of two stages. The
first stage is the first-order exponential integrator, and the
second stage corrects the solution. Both stages combined
proved the second-order exponential solution accurate. The
effects of these variables on the Sherwood number, local
Nusselt number, and skin friction coefficient are shown gra-
phically. The results of the investigation led to the following
findings:
1) A decrease in the velocity profile was seen as the
Weisenberg number and magnetic parameter increased.
2) The increasing magnetic parameter and Weisenberg
number caused a decrease in the skin friction coefficient.
3) The temperature profile has increased by increasing the
coefficients of the spatial and temperature-dependent
factors of the heat source.

The proposed exponential integrator also captures the
system’s behavior, making it a potentially valuable numerical
tool for investigating and understanding such complicated
processes. The scheme’s explicit character and second-order
precision make it a good choice for modelling time-dependent
PDEs in many scientific and engineering applications.

This study concludes that new numerical approaches
and sophisticated physical system investigations can help
us understand complex fluid dynamics [38-40]. This dis-
covery advances non-Newtonian fluid flow theory and
makes the exponential integrator more feasible for dynamic
and heterogeneous heat source situations. This work lays
the framework for future numerical method developments
and their application to more complex physical processes,
with implications beyond the system explored here.
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