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Abstract: This research work is devoted to investigate mye-
loid leukemia mathematical model. We give some details
about the existence of trivial and nontrivial equilibrium
points and their stability. Also, local asymptotical stability
of disease-free and endemic equilibrium points is dis-
cussed. Also, positivity of the solution has been discussed.
Some sufficient results are achieved to study the local exis-
tence and uniqueness of solution to the considered model
for Mittag–Leffler kernel using the Banach contraction the-
orem. Three numerical algorithms are derived in obtaining
the numerical solution of suggested model under three dif-
ferent kernels using Adams–Basforth technique. Numerical
results have been presented for different fractals and frac-
tional orders to show the behavior of the proposed model.

Keywords: fractal-fractional operators, myeloid leukemia,
model, Adams–Basforth method

1 Introduction

Abel first studied the notable application of fractional cal-
culus (FC) in physics. In the same way, Riemann, Liouville,
Lagrange, Hadmard, etc. have greatly contributed in this
field [1]. Latter, different definitions were introduced by
numerous researchers including Caputo, Fabrizio, Atangana
and Baleanu, etc. Therefore, the area has given much more
attention and also been applied to study various real-world
problems. For some historical contributions in this regard,
we refer to studies by AlBaidani et al. [2] and Ferrari et al.
[3]. Recently, researchers have conducted many results for
the existence theory and numerical solutions for different
problems using fractional differential operators. Here, some
significant contribution has been referred to previous stu-
dies [4–8]. Moreover, the use of FC in investigating different
real-world process is an important area of research in
recent times. Here, we refer some previous studies [9–13].

The different concepts of FC have been used in applied
mathematics and proved to be a good operator for modeling
any physical phenomena. Mostly, three types of operators
are used in FC, which are based on three kernels, i.e., power
law, exponential, and the Mittag–Leffler-type kernels.
Modeling and graphical visualization using these three
types of kernels are heavily influenced by the study of frac-
tional differential equations (here, we refer previous studies
[14,15]). Mathematical models have been studied very well
using fractional order derivatives [16–18]. For more details,
see some contributions on the said area in previous studies
[19–23]. Kumar et al. [24] studied the susceptible infected
recovered susceptible malaria infection model under Capu-
to–Fabrizio operator. A non-integer-order biological model
with the consideration carrying capacity is studied in by
Srivastava et al. [25]. Furthermore, human immunodefi-
ciency virus-1 infection model of CD4+ T-cells with effects
of antiviral drug therapy in fractional operator sense was
analyzed by Kumar et al. [26]. We include recent studies of
FC in different applied sciences in Singh [27] and Ahamed
et al. [28]. For further analysis, numerical results, and sta-
bility theory for various problems of FC, we refer to pre-
vious studies [29–33]. Also, researchers have derived some
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appropriate results devoted to computational analysis of
partial differential equations with Mittag–Leffler kernel as
well as of some biological models. Readers can read the said
work in previous studies [34–39].

Non-local derivatives, in general, are appropriate for
such circumstances because, depending on whether there
is a power law, fading memory, or crossover effects, they
can preserve non-localities and also some memory effects.
However, if more intricate behaviors cannot be replicated
using a fading memory, crossover behavior, or power law,
the recently developed fractals fractional derivative (FFD)
operators may be more effective mathematical tools to cope
with such behaviors [40]. The FFD operators havemany appli-
cations in real-world problems. A non-Newtonian generaliza-
tion of the derivative is the fractal derivative, which is often
known as the Hausdorff derivative. This type of derivative was
used to study a fluid flow problems in many studies. The FFD
operators have recently attracted the attention of researchers
very well. As the concept is still fresh, this area has to be
studied. These new operators were introduced by Atangana:
connecting the fractal calculus with FC [41]. Different complex
behaviors were studied through these operators [42,43]. Also,
recent contribution can be read in previous studies [44,45].
Compact in nature, fractal theory is a subfield of nonlinear
science with important applications in turbulence, aquifers,
porous media, and other media that typically display fractal
qualities. When it comes to understanding concepts such as
fractional-order integration and differentiation and their
mutually inverse relationship, FC is crucial. Many branches
of engineering and research, including electromagnetics, vis-
coelasticity, fluid mechanics, electrochemistry, biological
population models, optics, and signal processing, use FC [46].

The most powerful tools to investigate real-world pro-
blems from mathematical perspectives are devoted to
modeling. The said area has given much more attention
in the last many decades. With the help of mathematical
formulations, we easily understand about the transmission
dynamics of the process. Keeping in mind the applications,
researchers have increasingly used the said area to model
various chronic diseases. In this regard, significant work has
been performed using classical and fractional order deriva-
tives. Here, for reference, we refer few articles [47–49].

Chronic myelogenous leukemia (CML or chronic gran-
ulocytic leukemia) is a cancer of white blood cells (WBCs).
In CML, a wide range of WBCs are produced by bone
marrow, which also affects cell in blood circulation. This
form of leukemia is uncommon. Adults are more likely to
acquire CML than youngsters. CML occurs when the mye-
loid cells are transformed into immature cancer cells
through a genetic alteration. Such cells then expand slowly
and overtake the healthy cells in bone marrow and blood

[50] called translocation. In translocation, a chromosome 9
(called the ABL gene) breaks and makes bond with section
of the chromosome 22 (called the BCR gene), forming a
Philadelphia chromosome (Ph chromosome). Therefore,
Ph chromosome is a bond of two genes (ABL and BCR)
that forms a fusion of single gene BCR-ABL [51,52]. It is
only found in blood-forming cells. It causes myeloid cells
that make an abnormal activated tyrosine kinase enzyme
known as fusion protein, which allows us to grow WBCs
out of control [53,54]. The number of WBCs is normally
regulated by the body; however, more WBCs are generated
in stress or during infections, but after the recovery the
numbers become normal. In CML, the abnormal BCR-ABL
enzyme behaves as a switch stuck-in the on position, and it
proceeds to promote the growth and multiplication of
WBCs. In addition to increasing WBCs, there is also an
increase in the number of blood platelets that help in blood
clotting, and amount of red blood cells carrying oxygen can
be decreased. Therefore, an irregular or an unusual amount
of platelets or even RBC are seen in CML. The symptoms of
CML may include easy bleeding, pain in bones, feeling full by
eating some food, feeling tired, weight loss with no exercise,
fever, fullness or pain below ribs on left side, loss of appetite,
and very high sweating in sleep. CML has three phases, which
are accelerated, chronic, and blastic. The information from
tests and procedures performed to diagnose CML is also used
to plan treatment. Due to huge amount of blast-cells in blood
and bone marrow, space reduces for healthy WBC, RBC, and
platelets, which causes anemia, infections, bleeding, bone
pain, or a sensation of fullness under the left ribs. Blast cells
in the bone marrow and blood as well as the intensity of
symptoms will determine the disease stage. During chronic
CML process, blast cells are less than 10% of the cells in bone
marrow and blood. During the accelerated phase of CML, the
blast cells are 10 to 19% of the blood cells and the bone
marrow. Blast cells are 20% or more of the cells in bone
marrow or blood in blastic process CML.

Here, it should be worth to mention that researchers
have used the concepts of mathematical model to under-
stand and investigate the transmission dynamics of the
aforementioned disease properly. For instance, Moore and
Li [55] applied the traditional calculus to construct the fol-
lowing model as
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along with initial conditions

� � � � � �( ) ( ) ( )= = =0 , 0 , 0 ,0 0 0 (2)

where � represents the native T-cells, � represents the
effector T-cells particular with CML, and � represents the
CML cancer cells. Description of the nomenclatures is given
in Table 1.

Recently the significant applications of FFD operators
have been found. Because the mentioned operators can
describe many real-world process with irregular or com-
plex geometry with more excellent ways. The said area has
been found very fruitful in studying epidemiological as
well as other chronic disease models in terms of mathema-
tical concepts [56,57]. Therefore, our aim of this study is to
establish sufficient conditions for the existence theory as
well as numerical solutions for the proposed model given
in Eq. (1) for three different FFD operators. The three dif-
ferent FFD operators contain power law, exponential and
Mittag–Leffler-type kernels. Each and every operator has
its own merits properties, which have been discussed in
detail in the study by Khan and Atangana [58]. Therefore,
we first consider the model given in Eq. (1) under the FFD
operator with power-law kernel as
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Furthermore, since the FFD operators have exponential
and Mittag–Leffler kernels also attracted proper attentions

from researchers in the past few years. These operators
exhibit some more keen features to use in the analysis of
disease models. Therefore, we also consider our proposed
Model (1) under the FFD operator with exponential
kernel as
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The FFD operator with exponential kernel has been general-
ized to FFD operator with Mittag–Leffler kernel. Therefore,
we also undertake our proposedModel (1) under theMittag–
Leffler-type kernel as
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We use fixed point theory to establish the local existence
and uniqueness for the aforementioned systems of FFD
operators as (3)–(5), respectively. Furthermore, using the
Adams–Bashforth numerical method [59], we establish
numerical schemes for the three considered FFD operators
systems. Various numerical results are presented graphi-
cally for the proposed model. Also, for the existence theory,
we use a fixed point theory from Istratescu [60].

Our manuscript is arranged as follows: detailed intro-
duction is given in Section 1. Preliminaries are given in
Section 2. Our first part of main results is given in Section
3. Numerical schemes have developed in Section 4. In addi-
tion, numerical simulations are performed in Section 5.
Finally, discussion and conclusion are given in Section 6.

2 Preliminaries

Consider that �( )t be continuous and also fractal differen-
tiable on the interval ( )m n, . Let < ≤β0 ϱ, 1, where ϱ, and β

stand for the fractional orders and fractal dimension, respec-
tively. Here, FFI represents the fractal-fractional integral.

Table 1: Nomenclature and their description

Nomenclature Description

sn is the � source term
dn represents the � death rate
de is the � death rate
dc represents the � death rate
kn represents the � differentiation
η is the Michaelis–Menten coefficient
αn represents the � proliferation
αe represents the � recruitment
�max represents the maximum �

rc is the � growth
γ
e

represents the � loss due to �

γ
c

represents the � loss due to �
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Definition 2.1. [58] The Riemann–Liouville (R-L) FFD operator
with power-law-type kernel of �( )t is defined by
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Definition 2.2. [58] The FFD operator of �( )t with expo-
nential kernel is defined as
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Definition 2.3. [58] The FFD operator with Mittag–Leffler
kernel given by of �( )t is presented by
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Definition 2.4. [58] The FFI of �( )t in power-law case is
given by
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Definition 2.5. [58] The FFI of �( )t with exponential decay
type kernel is given by
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Definition 2.6. [58] The FFI of �( )t with Mittag–Leffler-
type kernel is
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3 Main work

We compute the equilibria points of Model (3). If we put
left sides of Model (3) equal to zero, then one has � = ,

s

d

n

n

and from the second equation of Eq. (3), one has �͠ = 0. In
addition, there does not exist any other equilibria for

which �͠ = 0. Hence, � � �( )͠ ͠= = ⎛
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⎞
⎠E , , , 0, 0

s

d

0 n

n

represents

the healthy (trivial) equilibrium solution of System (3). Further-
more, it has been proved in the study byMoore and Li [55] that
the equilibrium point E

0 is asymptotically stable.
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We see that the real parts of all eigen
values are negative. Therefore, the equilibrium point E

0 is
locally asymptotically stable. □

Remark 3.2.Moreover, any other non-trivial equilibria are
denoted by � � �( )͠ ͠=E* *, *, * . In the third equation of the
proposed model, the logarithmic function of � is involved.
Therefore, third equation increases as � increases. Hence,
for the term to be zero in third equation of the proposed
model, � must be negative. Thus, the expression in the
third equation decreases if � > 0. Hence, there exists a
unique value of � for which the third equation of Model
(3) becomes zero. Thus, we conclude that there exists at
most one equilibrium point E*, which occurs only if
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Hence, this equilibrium must have three nonnegative popu-
lations for it to have any physical significance. Keeping
in mind this discussion, as all parameters of Model (3)
are positive, hence from the first equation of Model (3),
� � �> > >0, 0, 0,0 0 0 the solution � �( ) ( )> >t t0, 0, and
�( ) >t 0, for every [ ]∈ < ∞t b b0, , . Hence, we conclude that if
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holds, then both E
0 and E* are globally asymptotically stable.

We will explore the existence and the uniqueness of
solution of the suggested model’s solution under the FFD
with all the three different kernels using fixed point theory
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in this part. For other types of operators, one can easily derive
the existence results. We will use the given theorem for the
existence and uniqueness of solution. Here, [ ]=X C T0, is the
Banach space, then = × ×X X XZ is also Banach space with
norm defined by
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Replacing the R-L derivative of fractional order ϱ (6) by the
Caputo to include initial condition, we obtain the equiva-
lent integral form as follows:
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∈

− −

∈

− −

∞ − −

∞

β
ξ t ξ ξ ξ ξ

β
ξ t ξ ξ ξ ξ ξ ξ

β
ξ t ξ M ξ ξ ξ

βM
ξ T ξ ξ

Φ Φ̄

sup
Γ ϱ

, Φ d

sup
Γ ϱ

, Φ , Φ̄ d

sup
Γ ϱ

Φ Φ̄ d

Φ Φ̄

Γ ϱ
d

Φ Φ̄ ,

t T

t

β

t T

t

β

t T

t

β

T

β

0,
0

1 ϱ 1

0,
0

1 ϱ 1

0,
0

1 ϱ 1

0

1 ϱ 1

where

( ) ( )∫ − =− − + −
ξ T ξ ξ T βBd , ϱ .

T

β β

0

1 ϱ 1 ϱ 1

Hence, one has


 
 �‖ ‖ ‖ ‖− ≤ −∞ ∞Φ Φ̄ Φ Φ̄ ,

which shows that 
 satisfies the Banach contraction the-
orem. Thus, Problem (3) has a unique solution. □

By Definition 2.3, we have

F�
�

��� [ ( )]
( )

( ( ))

( )

∫

⎟⎜

=
−

× ⎛
⎝
−

−
− ⎞

⎠

t
t

ξ ξ E

t ξ ξ

Φ
ϱ

1 ϱ

d

d
, Φ

ϱ

1 ϱ
d .

t

βM

β

t

ϱ,

0

0

ϱ

ϱ

Since the integral is differentiable, we achieve

F

�
�

��� [ ( )]
( )

( ( )) ( )∫ ⎟⎜

=
−

× ⎛
⎝
−

−
− ⎞

⎠

−t
βt t

ξ ξ E t ξ ξ

Φ
1 ϱ

1 ϱ

d

d

, Φ
ϱ

1 ϱ
d .

t

M

β

t

ϱ

0 1

0

ϱ
ϱ

Eq. (7) becomes

F

F

� ( )
( ( ))

( ) ( ( ))

∫

⎟⎜

−

× ⎛
⎝
−

−
− ⎞

⎠
= −

t
ξ ξ E

t ξ ξ βt t t

ϱ

1 ϱ

d

d
, Φ

ϱ

1 ϱ
d , Φ .

t

β

0

ϱ

ϱ 1

(9)
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Replacing the R-L derivative of fractional order ϱ (9) by the
Caputo to include initial condition, we obtain the equiva-
lent integral form as follows:

F

F

�

�

( ) ( )
( )

( ( ))

( ) ( )
( ) ( ( ))∫

= +
−

+ −

−

− −

t βt t t

β

Γ
t ξ ξ ξ ξ ξ

Φ Φ 0
1 ϱ

ϱ
, Φ

ϱ

ϱ ϱ
, Φ d .

β

t

β

1

0

ϱ 1 1

(10)

Theorem 3.5. Model (4) has a unique solution if � =1

F� �

( )

( )

( )

( ) ( )
⎡
⎣ + ⎤

⎦ <−− + −
M 1

βT βT β

Γ

B1 ϱ

ϱ

ϱ ϱ,

ϱ ϱ

β β1 ϱ 1

holds.

Proof. Let us define the operator by

F

F



�

�

( ) ( )
( )

( ( ))

( ) ( )
( ) ( ( ))∫

= +
−

+ −

−

− −

t βt t t

β

Γ
t ξ ξ ξ ξ ξ

Φ Φ 0
1 ϱ

ϱ
, Φ

ϱ

ϱ ϱ
, Φ d .

β

t

β

1

0

ϱ 1 1

(11)

Let ∈ ZΨ, Ψ̄ , using assumption A2, we have

F

F

F

F

F

F

F


 

�

�

�

�

�

�

� �

�

‖ ‖
( )

( ( ))

( )
( ( ))

( ) ( )
( ) ( ( ))

( ) ( )
( ) ( ( ))

( )

( )
‖ ‖

( ) ( )
‖ ‖ ( )

( )

( )

( )

( ) ( )
‖ ‖

‖ ‖

[ ]

[ ]
∫

∫

∫

− ≤
−

−
−

+ −

− −

≤
−

−

+ − −

= ⎡
⎣⎢

−
+ ⎤

⎦⎥
−

= −

∞
∈

−

−

∈

− −

− −

−
∞

∞
− −

− + −

∞

∞

βt t t

βt t t

β

Γ
ξ t ξ ξ ξ

ξ

β

Γ
ξ t ξ ξ ξ ξ

M
βT

β

Γ
M ξ T ξ ξ

βT β β T

Γ
M

B

Φ Φ̄ sup
1 ϱ

ϱ
, Φ

1 ϱ

ϱ
, Φ̄

sup
ϱ

ϱ ϱ
, Φ

d

ϱ

ϱ ϱ
, Φ̄ d

1 ϱ

ϱ
Φ Φ̄

ϱ

ϱ ϱ
Φ Φ̄ d

1 ϱ

ϱ

ϱ ϱ,

ϱ ϱ
Φ Φ̄

Φ Φ̄ ,

t T

β

β

t T

t

β

t

β

β

T

β

β β

0,

1

1

0,
0

1 ϱ 1

0

1 ϱ 1

1

0

1 ϱ 1

1 ϱ 1

1

which implies that


 
 �‖ ‖ ‖ ‖− ≤ −∞ ∞Φ Φ̄ Φ Φ̄ ,1

so 
 is a contraction and has a unique fixed point.
Therefore, Model (5) has a unique solution. □

Remark 3.6. The same procedure of Theorem 3.5 can be
repeated for Model (4) to show the existence of unique
solution.

4 Numerical schemes

We will use the Lagrange piecewise interpolation to gen-
erate numerical schemes for the proposed models under
three different kinds of FFD operators. In this section, we
discuss the following three cases.

4.1 Numerical scheme for Model (3)

Now, we will derive the numerical scheme of Model (3) FFD
operator with power-law kernel. From System (3), we have

� � � �
�

�

� � �
�

�
�

�

�

� ��

� � �
�

�
� ��

�


�


�


( ( ))

( ( ))

( ( ))

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

=
⎡
⎣⎢

− − ⎛
⎝ +

⎞
⎠
⎤
⎦⎥

=
⎡
⎣⎢

⎛
⎝ +

⎞
⎠

+ ⎛
⎝ +

⎞
⎠

− −
⎤
⎦⎥

= ⎡
⎣⎢

⎛
⎝

⎞
⎠ − − ⎤

⎦⎥

−

−

−

t βt s d k
η

t βt k
η

α
η

d γ

t βt r d γ

,

ϱ

,

ln .

t
β

n n n

t
β

n n e

e e

t
β

c c c

0,

ϱ 1

0,

ϱ 1

0,

ϱ 1 max

(12)

Replacing the R-L derivative of fractional order ϱ (12) by
the Caputo to include initial condition, we obtain the
equivalent integral system as follows:

� �

� � � �

� �

� � � �

� �

� � � �

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

∫

∫

∫

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪⎪

=

+ −

=

+ −

=

+ −

− −

− −

− −

t

β

Γ
ξ t ξ ξ ξ

t

β

Γ
ξ t ξ ξ ξ

t

β

Γ
ξ t ξ ξ ξ

0

ϱ
, , , d ,

0

ϱ
, , , d ,

0

ϱ
, , , d ,

t

β

t

β

t

β

0

1 ϱ 1
1

0

1 ϱ 1
2

0

1 ϱ 1
3

(13)

where

� � � � � �
�

�

� � � � �
�

�
�

�

�
�

��

� � � � �
�

�
� ��

( )

( )

( )

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= − − ⎛
⎝ +

⎞
⎠

= ⎛
⎝ +

⎞
⎠

+ ⎛
⎝ +

⎞
⎠

−

−

= ⎛
⎝

⎞
⎠ − −

ξ s d k
η

ξ k
η

α
η

d

γ

ξ r d γ

, , , ,

, , , ϱ

,

, , , ln .

n n n

n n e e

e

c c c

1

2

3

max

(14)
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Here, we derive the numerical algorithm of the aforemen-
tioned system at = +t t .n 1 So, Model (13) becomes

� �

� � � �

� �

� � � �

� � � � � �

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )
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∫

∫
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⎪
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
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+ −
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+ −
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−
+

−

+

−
+

−

+ −
+

−

+

+

+

β

Γ
ξ t ξ ξ ξ

β

Γ
ξ t ξ ξ ξ

β

Γ
ξ t ξ ξ ξ

ϱ
, , , d ,

ϱ
, , , d ,

ϱ
, , , d .

n

t

β
n

n

t

β
n

n

t

β
n

1 0

0

1
1

ϱ 1
1

1 0

0

1
1

ϱ 1
2

1 0

0

1
1

ϱ 1
3

n

n

n

1

1

1

(15)

Then, the approximation of the aforementioned system is
given as follows:

� �

� � � �

� �
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( ) ( )

( )
( ) ( )

∫

∫

∫

∑

∑

∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
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=

−
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−

+
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−
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+
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β
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ϱ
, , , d ,

ϱ
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1
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1
1
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2
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1
1
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3

Ω

Ω

Ω

1

1

1

(16)

We approximate the function � � � �( )−
ξ ξ , , ,β 1

1 using the
Lagrangian piece-wise interpolation (LPI) in [ ]+t t,Ω Ω 1 as
follows:
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Ω
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Ω Ω
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β Ω Ω Ω Ω
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Ω Ω
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β Ω Ω Ω Ω

Ω

Ω

Ω Ω

Ω

β Ω Ω Ω Ω
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Ω Ω
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β Ω Ω Ω Ω

Ω

Ω

Ω Ω
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Ω Ω
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β Ω Ω Ω Ω

1
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1
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(17)

Thus, System (16) becomes
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n Ω
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n Ω
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Ω
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1

1

(18)

Then, we reach
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(19)

4.2 Numerical scheme for Model (4)

Here, we set a numerical scheme for the proposed model
under the FFD operator with exponential kernel. Therefore,
applying the Caputo–Fabrizio integral to Eq. (4) to obtain the
following system of integral equations as follows:
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The derivation of the numerical scheme is presented at = +t tn 1. Thus,
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Taking the difference between the consecutive terms, one have
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Now, by LPI, we have
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4.3 Numerical scheme for Model (5)

We apply FFI with Mittag–Leffler kernel to (5) to convert
the proposed model into the equivalent integral system as
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At = +t tn 1, we have
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Using the approximation of the integrals of System (24)
gives
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Now, using the Lagrangian polynomial with piece-wise
interpolation, we obtain the following:
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The presented numerical method for three cases has been
proved that Adam–Bashforth method preserves accuracy in
solving both linear and nonlinear problems involving
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fractional or fractal-fractional order derivatives (see details
in the study by Zabidi et al. [59]).

5 Numerical simulations

For simulations, we consider the initial values for state
variables along with parameter values from Table 2. The
parameter values are also given in Table 2 and initial con-
ditions are taken from the study of Moore and Li [55].

� � �( ) ( ) ( )= = =0 1,510 ; 0 20; 0 10,000 ,

where all the initial values are considered in ∕cells μl.
Here, first, we use the numerical scheme for power-

law kernel given in Eq. (19) to plot the approximate results
for the proposed model in Figures 1–3, respectively. For
plotting, we assign the values to fractal order as =β 0.99

Table 2: Values of the parameters

Parameters Values Units

sn 0.073 ∕cell μl

day

dn 0.040 day ‒1

de 0.06 day‒1

dc 0.2 day‒1

kn 0.001 day‒1

η 100 cells/μl
ϱ

n
0.41

αe 0.2 day‒1

�max ×3 105 cells/μl
rc 0.03 day‒1

γ
e

0.005 ⎛
⎝

⎞
⎠day‒1 cells

μl

‒1

γ
c

0.005 ⎛
⎝

⎞
⎠day‒1 cells

μl

‒1

Figure 1: Graphical illustration for the naive � cells using Model (3) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 2: Graphical illustration for the effector � cells specific to CML using Model (3) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.
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Figure 3: Graphical illustration for the CML cancer cells � using Model (3) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 4: Graphical illustration for the naive � cells using Model (4) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 5: Graphical illustration for the effector � cells specific to CML using Model (4) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.
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Figure 6: Graphical illustration for the CML cancer cells � using Model (4) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 7: Graphical illustration for � cells using Model (5) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 8: Graphical illustration for the effector � cells specific to CML using Model (5) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.
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Figure 9: Graphical illustration for the CML cancer cells � using Model (5) for =ϱ 0.75, 0.85, 0.95, 1 and =β 0.99.

Figure 10: Graphical illustration for the � cells using Model (3) for different values of ϱ and β.

Figure 11: Graphical illustration for for the effector � cells specific to CML using Model (3) for different values of ϱ and β.
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and simulate the results through power-law algorithm for
different fractional-order =ϱ 0.75, 0.85, 0.95, and 1. Using
the given values of Table 2, we plot the graphs of approximate
results obtained in Eqs. (23) and (26) for the considered model
and obtain the graphs for Caputo Fabrizio and Atangana-
Baleanu-Caputo case in Figures 4–6 and Figures 7–9, respec-
tively. From Figures 1–3, we see that when naive T-cells are
exposed to professional antigen-presenting cell (APC), then the
number of naive T-cells are going to decreasing in approxi-
mately 1 month. As a result, the population of the effector T-
cells specific to CML rapidly increases up to 5 days but later
rebound, and the population of CML cancer cells rapidly
decreases about in 1 day. From Figures 4–6, we note that
the population of naive T-cells is steadily decreasing, resulting
in a rise in the population of CML-specific effector T-cells up to
6 days but later rebounding and gradually decreasing in 4
months; the population of CML cancer is also decreasing.
From Figures 7–9, we analyze that the population of naive
T-cells decreases more steadily. As a result, the effector T-cell
population increases and the CML cancer cell population
gradually decreases. We see that the information given by
the graphs of Mittag–Leffler kernel are more realistic than
Caputo–Fabrizo type and power-law type for different frac-
tional-order. By comparing the graphs obtained in the study
by Moore and Li [55] with the plots for the fractal-fractional
order model, it is clear that variation of the fractal-fractional
order and control parameters can capture more complex-
ities as compared to fractional differential operators.

Here, we present some plots for FFD operators with
power-law kernel corresponding to different values of ϱ

and β in Figures 10–12, respectively.

6 Discussion and conclusion

In this article, under newly proposed differentials and inte-
gral operators, we have investigated the mathematical
model of the relationship between CML and T-cells. We
have derived the results for the existence and uniqueness
of the solution of the proposed model. In general, we have
presented three numerical schemeswith the use of Lagrangian
polynomial piece-wise interpolation for the solution of the
model under Caputo, Caputo–Fabrizio, and Atangana–Baleanu
fractal-fractional operator. The first one is related to the
power-law type kernel, the second one is concerned with
the exponential-decay-type kernel, and the last one is related to
the Mittag–Leffler-type kernel. We have presented the numer-
ical results for fractional order =ϱ 0.75, 0.8, 0.95, 1 and fractal
order =β 0.99. If =ϱ 1 and =β 1, then we recover the results
of the ordinary operators from these operators. The increase
and decrease of the compartments of the proposed model are
due to varying fractional order. As we see in simulations, the
fractional order has a great impact on the fractal dimension.
The researchers also studied the influence of the fractal
dimension on the fractional orders in several papers.
From the figures, we have concluded that modeling with
the Atangana–Baleanu operator is better than the Caputo
and Caputo–Fabrizio because the dynamics of the proposed
model obtained through the Atangana–Baleanu operator is
more realistic than the other two differential operators. The
Atangana–Baleanu fractal-fractional operator is thus the
better choice for any dynamic model that does not predict
by ordinary differential operators to study complex beha-
vior. Furthermore, one can extend the current work to study

Figure 12: Graphical illustration for the CML cancer cells � using Model (3) for different values of ϱ and β.
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chaotic attractors and more complex behavior under dif-
ferent fractal and fractional operators of variable orders.
In the future, young researchers can investigate different
fractal-fractional differential operators in fuzzy sense, which
is a more popular applicable area of research in the current
time. Furthermore, the qualitative analysis of fractal-frac-
tional differential operators can be investigated using newly
established fixed point theorems. Also, spectral, collocations,
and spline method of numerical analysis can be extended to
investigate the said area.
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