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Abstract: This study proposes a comprehensive heat con-
duction model that incorporates fractional time derivatives
and two-phase lags to describe the behavior of non-simple
thermoelastic materials accurately. Generalized fractional
differential operators with non-singular kernels are intro-
duced. This type of fractional derivative includes the
Caputo–Fabrizio and the Atangana–Baleanu fractional deri-
vatives. The model also consists of the two-temperature
idea, which considers the effect of microstructure through
a two-stage delay approach. Interactions of a thermoelastic
nature caused by the rapid heating of an isotropic substance
under the influence of an external body force were studied
as a practical application of the new concept. There has been
some discussion about the effect of the discrepancy index
and fractional differential operators. Finally, the graphical
representations obtained from the numerical simulations
were used to explain the behavior of the studied physical
fields. The generalized fractional heat transfer model is
demonstrated to be capable of producing a temperature
forecast that is in close agreement with experimental data.
As a result, the proposed model may be useful for solving
difficulties in heat transfer, anomalous transport, and other
branches of engineering analysis.

Keywords: fractional thermoelasticity, two-temperature,
phaselags, non-singular kernels

Nomenclature

λ μ, Lamé’s elastic parameters

α
t

thermal expansion parameter

C
s

specific heat

= +γ λ μ α3 2
t

( ) thermal coupling parameter

T
0

reference temperature

= −θ T T
0

temperature change

T absolute temperature

� displacement vector

=e div� dilatation

σij stresses

eij strains

� heat flow vector

K thermal conductivity

ρ material density

Q heat source

t instant time
δij ′Kronecker s delta

ϕ conductive temperature

τq phase delay of heat flow

τϕ phase deley of conductive temperature
D

t

α( )
fractional operator

τ
0

thermal relaxation time

α fractional orders

η The entropy

1 Introduction

Generalized thermoelasticity is a subfield of continuum
mechanics that builds on the traditional theory of thermo-
elasticity to include more realistic and complicated
responses from materials. In the field of conventional
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thermoelasticity, the prevailing assumption is that heat
transmission occurs immediately. However, in the context
of extended thermoelasticity, this assumption is loosened.
The present theory considers a limited thermal wave velo-
city, a factor that holds significance in specific materials
and circumstances [1]. The concept of generalized thermo-
elasticity has found use in various fields, including inves-
tigating heat propagation in semiconductors, examining
thermal shock, and modeling and simulating biological
tissues.

In contrast to conventional thermoelasticity, which
assumes instantaneous heat transfer as described by the
parabolic heat transfer equation, extensional thermoelasticity
involves hyperbolic heat transfer models. These models often
include thermal delays, measuring the amount of time
required for temperature changes to propagate through a
given material [2]. Lord and Shulman [3] proposed a compre-
hensive theory of thermoelasticity that incorporates a single
relaxation period. Consequently, the governing system for the
heat equation has transformed into a hyperbolic form. In their
study, Green and Lindsay [4] put forward an alternative
model that incorporates two distinct relaxation phases. In
their research, Tzou [5,6] introduced a thermoelastic model
incorporating the dual-phase-lag (DPL) approach to both the
heat flow vector and the temperature gradient. In his work,
Choudhuri [7] expanded the DPLmodel to derive the equation
for heat conduction’s three-phase lags (TPLs). This model
allows for the estimation of TPL based on the heat flow com-
ponent, temperature gradient, and thermal displacement,
as opposed to relying on the classical Fourier transform
law of heat transfer. The theories proposed by Green and
Naghdi [8–10] encompass the fundamental principles
of thermoelasticity, including both dissipative and non-dis-
sipative systems. The aforementioned models introduce
significant fundamental modifications to the constitutive
equations, allowing the solution of a much wider range of
heat flow problems, which can be classified as types I, II, and
III. In recent times, several endeavors have been undertaken
to alter the conventional heat transfer rule. Abouelregal et al.
[11–15] made significant contributions by introducing gener-
alized versions of heat conduction that incorporate higher-
order time-derivative terms.

The two-temperature theory (2TT) approach is employed
in examining thermal and heat transport processes in specific
materials, necessitating the differentiation between two sepa-
rate temperatures. This theory is especially relevant in
materials where the movement of charge carriers, such as
electrons, significantly affects the heat conduction process
and where there may be a significant temperature difference
between these carriers and the lattice or crystalline structure.
Numerous researchers have investigated the linearized form

of the two-temperature theory (2TT), focusing on two separate
temperatures, namely, the conductive and thermodynamic
temperatures [16–18]. The conductive temperature is a para-
meter linked to the heat conduction rate within a certain
material. It refers to the local temperature at which heat
conduction occurs. In the classical thermoelasticity, the tem-
perature referred to is equivalent to the thermodynamic
temperature, and heat conduction is believed to occur instan-
taneously [19]. Nevertheless, in the context of generalized
thermoelasticity, the conductor may exhibit discrepancies
with thermodynamics as a result of the limited velocity of
heat conduction. This implies that the temperature asso-
ciated with heat conduction, which is conductive, shows a
delay in the thermodynamic temperature throughout the
heat transfer process inside the material. The thermody-
namic temperature refers to the typical temperature con-
cept that is often employed in the field of thermodynamics.
The parameter in question denotes the state of thermal
equilibrium for a given substance and is the temperature
variable utilized in equations of state and thermodynamic
relationships. In the context of classical thermoelasticity, the
thermodynamic temperature is employed to represent the
temperature distribution inside the material [20]. Quinta-
nilla [21] has engaged in a discussion over the existence,
structural stability, and spatial behavior of the solution
within the context of the 2TTmodel. Lesan [22] has proposed
and proven the theorems of uniqueness and reciprocity in
the context of the 2TT thermoelastic model. The two-tem-
perature theory finds utility in several domains, such as
investigating the dynamics of ultrafast laser interactions
with materials, simulating semiconductor devices, and exam-
ining the response of materials under the influence of strong
electromagnetic radiation. This facilitates a more precise
characterization of temperature dynamics in such materials,
wherein the electron temperature exhibits fast fluctuations in
response to external influences.

Fractional derivatives are an extension of conven-
tional derivatives, which are typically defined for integer
orders to encompass non-integer orders. The concept of
derivatives offers a means to quantify the rate of change
of a function at a certain point or over a given interval,
encompassing non-integer orders. The idea of fractional
derivatives holds significant importance within the frac-
tional calculus. Using integral operators commonly estab-
lishes fractional derivatives [23,24]. The Riemann–Liouville
(RF) fractional and Caputo (C) fractional derivatives are
widely recognized as the two most prevalent definitions
in the field. The selection of a definition is contingent
upon the particular problem under consideration. Frac-
tional derivatives have been shown to have several appli-
cations in a wide range of disciplines, such as physics,
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engineering, economics, biology, and control theory. These
models represent and examine phenomena characterized
by intricate dynamics and memory effects, including, but
not limited to, anomalous diffusion, viscoelasticity, and
fractional Brownian motion [25,26].

Fractional derivatives involving non-singular kernels can
be considered an extension of classical derivatives. In clas-
sical calculus, derivatives characterize the rate of change of a
function at a certain location, typically denoted by integer-
order derivatives. The definition of fractional derivatives
expands the notion of differentiation to include non-integer
orders, with a notable feature being the utilization of non-
singular (or non-local) kernels. Researchers have recognized
the significance of discovering novel fractional derivatives
utilizing distinct unique or non-singular kernels to address
the requirement for effectively simulating real-world phe-
nomena across several disciplines, including hydrodynamics,
viscoelasticity, physics, biological sciences, and mechanical
engineering [27]. Non-singular kernels sometimes incorporate
transcendental functions such as gamma, exponential, or
more intricate functions such as Mittag–Leffler functions.
The selection of these kernels is based on ensuring that the
fractional derivatives exhibit well-defined mathematical fea-
tures and hold practical importance in many applications.

Caputo and Fabrizio [28] proposed a solution to deal
with the single kernel problem that occurs in Liouville–
Caputo and RL fractional derivative definitions of fractional-
order derivatives, among others. The solution is provided
through the use of an exponential function. Nevertheless,
this particular operator had some challenges, one of which
pertains to its non-local nature. Furthermore, it should be
noted that the integral corresponding to the fractional-order
derivative is not a fractional integral. Atangana and Baleanu
[29] successfully addressed these challenges. Two fractional
derivatives, namely, the Liouville–Caputo and RL derivatives,
were presented. These derivatives are defined using the
extended Mittag–Leffler function. A comprehensive formula-
tion encompassing all previously established fractional deri-
vative operators featuring non-singular kernels was recently
introduced in the study by Hattaf [30]. The definitions dis-
cussed earlier have been included in various physical and
engineering models [31–52].

In the fields of material science and continuum mechanics,
the idea of fractional thermoelasticity with phase delays and two
temperatures is relatively new. The new aspect of this method is
that it can help us better understand the thermal processes
occurring within materials, even ones with complex and non-
local behavior. Non-local andmemory-dependent impacts, which
standardmodels of thermoelasticity do not capture, can be mod-
eled using this framework thanks to the introduction of fractional
derivatives. To accurately characterize the dynamic behavior of

materials, it is necessary to account for the time lag between the
application of a thermal stimulus and the resulting mechanical
response, and this can be done by integrating phase delays. The
accuracy of temperature forecasts and thermal analysis can be
improved by considering two temperatures, a technique known
as dual-phase-lag modeling. This allows for a more accurate
description of the thermal interactions between distinct compo-
nents or phases inside amaterial. The evaluation of the suggested
model involves the utilization of fractional derivatives, incorpor-
ating both singular and non-singular kernels. This proposed
approach also allows extracting some previous cases from the
thermoelasticity model, whether with one temperature or two
temperatures, bothwhen fractional differentiation is present and
when it is not.

The current work utilizes the newly developed model
to investigate a thermoelasticity problem involving two
temperatures. Specifically, the thermodynamic response
of a one-dimensional elastic medium with a surface free
from traction under the influence of thermal shock and a
decreasing external force is examined. Discussions were
conducted to determine the effect of temperature difference
coefficients, phase delay coefficients, and fractional factors
on the propagation behavior of thermal and mechanical
waves within the material. The numerical results in this
study were compared with those in previous literature
and were determined to be comparable and consistent. In
addition, the results and observations showed a high degree
of agreement between the analytical solutions and their
numerical counterparts.

2 Derivation of the fractional
thermoelasticity model

Fourier’s law holds significant importance within heat con-
duction, serving as a foundational concept for compre-
hending the mechanisms by which heat is transmitted
across solid and liquid mediums. This statement elucidates
the correlation between heat flux � , which represents the
rate of heat transfer per unit area, and thermal gradient ∇θ,
which denotes the spatial change of temperature within a
material. The mathematical expression of Fourier’s law can
be represented as:

= − ∇r rt K θ t, , .�( ) ( ) (1)

The laws of energy conservation are essential notions
within the fields of physics and engineering. These con-
cepts articulate the fundamental law that energy is con-
served, meaning it cannot be generated or destroyed.
Instead, energy can only transform or be moved between
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other systems. The aforementioned concepts are encom-
passed under the laws of thermodynamics, which are
widely recognized as fundamental and firmly established
principles in physics. The equations that follow may be
obtained using the increment in entropy denoted by η:

+ = −Q ρηTdiv ̇ ,
0

�( ) (2)

= +η
ρC

ρT
θ

γ

ρ
.div

s

0

�( ) (3)

We may obtain the energy equation using Eqs. (2) and
(3) as follows:

∂
∂

+
∂
∂

= − +ρC
θ

t
γT

t
Qdiv div .

e 0
� �( ) ( ) (4)

The following has changed the conventional form of
Fourier’s law (1), according to Quintanilla [21]:

= − ∇r rt K ϕ t, , .�( ) ( ) (5)

Chen and Gurtin [17] and Chen et al. [18,19] developed
the theory of heat transfer in flexible structures. This theory
depends on two different temperatures: the conductive tem-
perature, ϕ, and the thermodynamical temperature, θ. The
equation that describes the relationship between the two
temperatures, θ and ϕ, may be written as [17–19]:

= − ∇θ ϕ β ϕ,

2 (6)

where β is the characteristic parameter to distinguish
between temperatures.

Tzou [5,6] included the influence of microstructural
influences on the delayed temporal response in the macro-
scopic formulation. This was achieved by considering the
delayed rise in lattice temperature resulting from phonon–
electron interactions at the macroscopic scale. A macro-
scopic lagging, or delayed, reaction between the tempera-
ture gradient and the heat flow vector seems like it could
happen because of interactions that happen over time.

In this case, the usual Fourier law is replaced by a
rough approximation that uses a changed version of the
law. This approximation has two separate phase lags for
the heat flow vector (τq) and the conductive temperature
gradient (τϕ):

+ = − ∇ +r rt τ K ϕ t τ, , .q ϕ�( ) ( ) (7)

In order to obtain a close approximation of the mod-
ified heat transfer rule, the Taylor series expansion of Eq.
(7) is utilized at a specific position r and time t, using only
the first-order variables in τq and τϕ:

⎛
⎝ +

∂
∂

⎞
⎠ = − ⎛

⎝ +
∂
∂

⎞
⎠∇τ

t
K τ

t
ϕ1 1 .q ϕ� (8)

According to Quintanilla [21], if >τ τ2 θ q holds, then the
system is (even exponentially) stable, but if <τ τ2

θ q
holds,

then it is not (exponentially) stable.
The fractional heat equation is a partial differential

equation (PDE) that extends the traditional heat equation
by incorporating fractional derivatives. The given sentence
explains how the temperature of a substance changes over
timewhen non-local or fractional-order diffusion phenomena
are considered. The fractional heat equation represents the
heat conduction in materials with intricate characteristics
and behavior.

The fractional heat equation is a mathematical model
that describes the phenomenon of heat conduction, in
which the local temperature gradient and previous tem-
perature behavior in the surrounding area both impact the
heat transfer rate at a given location. This phenomenon has
special significance in materials characterized by fractal or
multifractal features, as well as materials that display anom-
alous diffusion or sub-diffusion.

The established formulation for the C time-fractional
derivative is expressed as follows:

∫=
− −

< <D t
α t

α
1

Γ 1

1 d

d

d , 0 1.

C

t

αt

α

0

s

s

s
s�

�

( )
( ) ( )

( )( ) (9)

The representation of the fractional derivative of frac-
tional order α, as proposed by Caputo and Fabrizio [28],
may be expressed as follows:

∫=
−

⎛
⎝−

−
−

⎞
⎠

< <

D t
α

α t

α

α

1

1

exp

1

d

d

d ,

0 1.

CF

t

t

α

0

s s

s
s�

�

( )
( ) ( )( )

(10)

The investigation into the development of fractional
differentiation in latex has also brought to light the notion
that the derivative introduced by Caputo and Fabrizio can
be considered a filter rather than a true fractional deriva-
tive. This conclusion is based on the observation that the
employed kernel is localized and may not adequately
capture the intricate dynamics of the heat flow process.
The idea of elasticity can be characterized by employing
a non-local framework, exemplified by the extended
Mittag–Leffler function.

The mathematical expression for the Atangana–Baleanu
(AB) fractional time derivative is given by the following for-
mula [29]:

∫=
−

⎛
⎝− −

− ⎞
⎠

< <

D t
α

α

α
t

α

1

1

E

1

d

d

d ,

0 1.

AB

t

α
α

t

α

0

s
s

s
s�

�

( ) ( )
( )( )

(11)
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The function E z
α
( ) represents a Mittag–Leffler func-

tion, which may be mathematically represented as

∑=
+

∈ < <
=

∞

E z
z

rα
z α

Γ 1

, , 0 1.

r

r

α

0

�( )
( )

(12)

By substituting a derivative of fractional order in place
of the time derivative in Eq. (8), we may convert the Fourier
law (8) into an improved formula of fractional order as

+ = − + ∇τ D K τ D ϕ1 1 .ϕ
α

q

α

t

α

t

α

�( ) ( )
( ) ( ) (13)

By performing the divergence operation on both sides
of Eq. (4), the resulting equation may be obtained:

+ = − + ∇τ D K τ D ϕ1 div 1 .q
α

ϕ
α

t

α

t

α
2

�( ) ( ) ( )
( ) ( ) (14)

By combining Eq. (9) with the energy Eq. (4), we obtain
the fractional two-temperature heat transfer equation:

+ ∇ = + + −K τ D ϕ τ D ρC θ γT e ρQ1 1
̇

̇ .ϕ
α

q
α

t

α
2

t

α

s 0
( ) ( )( )

( ) ( ) (15)

The fractional heat equation has utility in several
domains, such as the representation of heat propagation
in intricate substances, including fractal media, porous
materials, biological tissues, and polymers. Also, under-
standing heat transport in systems that display phenomena
outside the scope of conventional diffusion models has
considerable importance.

Furthermore, the stress–strain–temperature, the rela-
tionships describing the material properties, and the rela-
tion between strain and displacement for thermoelastic
isotropic materials at a constant ambient temperature T

0

are given by

= + + −
= +

σ λ δ μ γθδ

e

div ,

2 ,

kl kl l k k l kl

kl l k k l

, ,

, ,

u u

u u

�( ) ( )
(16)

+ + − + =μ λ μ γθ ρ
̈

.k ll l kl k k k, , ,
u u F u( ) (17)

In this article, we define the equilibrium point and
give stability concepts and accompanying conclusions for
fractional-order systems. Now, let us look at a generic kind
of fractional differential equation that uses the AB frac-
tional time derivative

= =D t g t t g g, , 0 ,

AB

t

α

0

� �( ) ( ( )) ( )
( ) (18)

where < <α0 1, and ∈g n� .
The equilibrium point P is defined as a point of stabi-

lity for the AB fractional-order system (18) if and only if the
function =g t P, 0( ) . Also, the local asymptotic stability of
the equilibriumpoints of the fractional-order system (18) is deter-
mined by the satisfaction of the condition =λ απarg /2i| ( )| for all
eigenvalues of the Jacobian matrix of the system, which are
assessed at said equilibrium sites [53].

3 Special cases

Three previous models of thermal elasticity with one tem-
perature can be derived without the discrepancy coeffi-
cient and fractional derivatives ( =β 0, =α 1). These
models include the classical thermoelasticity (CTE) model
( = =τ τ 0q ϕ

), the Lord and Shulman (LS) model with a
single delay coefficient ( =τ 0ϕ ), and the dual-phase lag
model (DPL). Furthermore, in the event of the discrepancy
factor being absent ( =β 0) and considering the inclusion of
fractional differential derivatives ( < <α0 1), two distinct
fractional models of thermoelasticity may be derived at a
given temperature. These models are fractional Lord and
Shulman (FLS) and fractional dual-phase lag (FDPL).
Finally, when considering the incorporation of the model
of thermoelasticity at two temperatures ( >β 0) and the
utilization of fractional operators with orders ( < <α0 1),
two further models for fractional thermoelasticity emerge.
These models are two temperature fractional Lord and
Shulman (2TFLS) and two temperature fractional dual-
phase lag (2TFDPL).

4 Problem formulation

In order to assess the precision of the suggested model, its
utilization in the context of a thermoelastic problem is
being examined. This study will discuss the thermoelastic
behavior of a half-space with infinite area ( ≥x 0), where
the x -axis is directed inward into the medium and is per-
pendicular to the surface =x 0 (Figure 1). The medium
under investigation is initially at rest without pressure or
strain and is at an initial temperature ofT

0
. A laser pulse of

uniform intensity is directed into the medium at a level
defined by the surface =x 0. In this study, a one-

Figure 1: Representation diagram of an infinite half-space.

Generalized model of thermoelasticity  5



dimensional problem can be conceptualized as a dynamic
problem within a half-space. Thus, all areas under investi-
gation depend only on time and space variables, x and t.

The expression for the displacement components can
be described as follows:

= = =x t, , 0, 0.
1 2 3

u u u u( ) (19)

Also, the expression for the only non-zero strain is
provided by

=
∂

∂
e

x t

x

,

.

u( ) (20)

In mechanics and physics, external body forces are those
that come from outside of a body as opposed to those that
come from internal tensions or interactions within the body.
The forces in question may possess diverse components con-
tingent upon the particular problem and the underlying
physical phenomena at play. Forces can be considered to be
exponentially fading with time in several different physical
systems. In the present study, the selection of the components
of the external body force can be determined as

= = =−e , 0, 0,

x
1 2 3

b
� � � (21)

where the parameter > 0b is responsible for determining
the rate of decay.

Eqs. (6), (15), (16), and (18) can therefore be reduced to
the following forms:

= −
∂
∂

θ ϕ β
ϕ

x
,

2

2

(22)

⎟⎜= = +
∂
∂

− ⎛
⎝

−
∂
∂

⎞
⎠

σ σ λ μ
x

γ ϕ β
ϕ

x
2 ,xx

2

2

u
( ) (23)

+
∂
∂

−
∂
∂

+ =
∂
∂

−λ μ
x

γ
θ

x
ρe ρ

t
2 ,

x

2

2

2

2

u u
b( ) (24)

⎟⎜+
∂
∂

= + ⎛
⎝

∂
∂

+
∂
∂ ∂

⎞
⎠

K τ D
ϕ

x
τ D ρC

θ

t
γT

t x
1 1 .ϕ

α
t

α

2

2
q

α

t

α

s 0

2u
( ) ( )

( ) ( ) (25)

In physical and mathematical modeling, dimensionless
quantities are essential for simplifying and comparing systems
or circumstances. The subsequent dimensionless amounts are
introduced to streamline the resolution of the problem at hand:

′ = ′ = ′ =

′ ′ =

′ = ′ = ′ ′ =

′ =

x χc x χc σ
ρc

σ

τ τ c χ τ τ

t c χt β χ c β θ ϕ
γ

ρc
θ ϕ

ρ

χρc

, ,

1

,

, , ,

, , , , ,

,

q ϕ q ϕ

0 0

0

2

0

2

0

2 2

0

2

0

2

0

3

u u

� �

{ } { }

{ } { }
(26)

where = +
c

λ μ

ρ0

2
2 and =χ

ρC

K

s .

Eqs. (22)–(25) can be rewritten in non-dimensional
forms by utilizing Eq. (26) while disregarding the
primes

= −
∂
∂

θ ϕ β
ϕ

x
,

2

2

(27)

=
∂
∂

− +
∂
∂

σ
x

ϕ β
ϕ

x
,

2

2

u (28)

∂
∂

−
∂
∂

=
∂
∂

− −
x t

θ

x
e ,

x

2

2

2

2

u u
b (29)

⎟⎜+
∂
∂

= + ⎛
⎝
∂
∂

+
∂
∂ ∂

⎞
⎠

τ D
ϕ

x
τ D

θ

t
ε

t x
1 1 ,ϕ

α
q
α

t

α

2

2
t

α

2u
( ) ( )

( ) ( ) (30)

where =ε .

γ T

ρ c C
s

2

0

2

0

2

The initial conditions, along with the conditions of
regularity, are provided by

= = = = =
∂
∂

=
∂
∂

=
∂
∂

= =

= = = = → ∞

θ ϕ σ t

θ

t

ϕ

t

u

t
t

θ ϕ σ x

0, at 0,

0, at 0,

0, at .

u

u

(31)

Since the upper part of the medium is not subjected to
traction and is loaded with heat, the following boundary
conditions are applicable:

= =σ x t x, 0, at 0,( ) (32)

= =ϕ x t t x, , at 0,h( ) ( ) (33)

where

=

⎧

⎨
⎪

⎩
⎪

≤

< ≤

>

t

t

ϕ

t
t t t

ϕ t t

0, 0,

, 0 ,

, ,

0

0

0

0
0

h( ) (34)

where ϕ
0

and t
0
are the constants.

5 Methodology used to solve the
problem

The Laplace transform is a useful mathematical tool for
analyzing and solving differential equations in various
scientific and engineering disciplines, especially for time-
varying linear systems. This method allows complex sys-
tems to be solved by transferring them from the space–
time domain to the space domain only. The integral repre-
sentation for the Laplace transforms of a function x t,g( ),
designated as x s

̅
,g( ), is expressed as follows:
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∫=
∞

−x s x t e t
̅

, , d .

st

0

g g( ) ( ) (35)

Transforming Eqs. (23)–(26), we obtain

= −θ ϕ β
ϕ

x
̅ ̅

d ̅

d

,

2

2

(36)

= − +σ
x

ϕ β
ϕ

x
̅

d
̅

d

̅

d ̅

d

,

2

2

u (37)

− = − −
x

s
θ

x s
e

d
̅

d

̅

d

d

1

,

x
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Eqs. (38) and (39) can be rewritten as
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By eliminating the variable e̅ from Eqs. (41) and (42),
the following DF may be derived:
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The solution of Eq. (44) that is guaranteed to remain
finite as x approaches infinity is expressed as follows:

= + +− − −ϕ x s e̅ , e e ,

x x x
1 2 3

1 2
h h b

� � �( ) (46)

where = − +α /
3 4

4 2b lb� �( ) and
1

� and
2

� are the
integration coefficients.

Moreover, the coefficients
1

h and
1

h represent the solu-
tions to the equation

− + = 0.

4 2k lk � (47)

By substituting the value of (46) into Eqs. (36) and (42),
we can obtain the following expressions:
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By substituting Eq. (48) into Eq. (20), the resulting
expression yields the converted displacement:
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Furthermore, by substituting Eqs. (46) and (48) into Eq.
(37), we obtain
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(51)

In Eqs. (32) and (33), the Laplace transform is employed
to obtain the modified boundary conditions as

= =

=
−

= =
−

σ x s x

ϕ x s
ϕ e

s t
s x

̅
, 0 at 0,

̅ ,

1

̅ at 0.

st
0

2

0

0

R

( )

( )
( )

( )
(52)

By substituting the expressions for ϕ̅ and σ̅ provided in
Eqs. (41) and (46) into the boundary conditions (47), the
integral coefficients

1
� and

2
� can be determined.

6 Numerical methods for Laplace
transform inversions

The inverse Laplace transform is employed to obtain the
initial function from its corresponding Laplace transform.
Numerical methods for Laplace transform inversions are
used to approximate the inverse Laplace transform of a given
function. There exist multiple techniques for quantitatively
comparing the inverse Laplace transform. When conducting
numerical inversions of Laplace transforms, it is crucial to
consider the selection of numerical methods, the desired level
of precision, and the processing resources at hand. The choice
of a suitable methodology is contingent upon the particular
situation and the characteristics exhibited by the function
that has undergone the Laplace transformation.

The Bromwich integral is a widely used technique
employed in the numerical inversion of Laplace transforms.
The process encompasses the utilization of contour integra-
tion inside the complicated plane. The inverse Laplace trans-
form can be approximated by picking a suitable contour and
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employing numerical integration algorithms. Further infor-
mation regarding these strategies can be located in the work
of Honig and Hirdes [54].

7 Numerical results

The present section aims to present a realistic illustration
to substantiate the precision of the existing fractional ther-
moelastic model incorporating phase lags and two tem-
peratures. In order to facilitate numerical analyses, we
have adopted the copper material coefficients as the values
to be utilized [55]:

= = = ×

= = = ×
= × = =

− − − −

− − −

− −

C T α

K t λ

μ φ ρ

383.1 J kg K , 293 K, 1.78 10 K ,

386 Wm K , 0.12 s, 7.76 10 Nm ,

3.86 10 Nm , 1, 8,954 kgm .

tE

1 1

0

5 1

1 1 10 2

10 2

0

3

We provide a selection of illustrations to illustrate and
enhance our understanding of observable physical events.
To analyze the effect of phase lag and the coefficient of
variation of the two temperatures on measurable thermo-
physical quantities in the range of ≤ ≤x0 5, the corre-
sponding graphs are plotted. In addition, the results
obtained can be arranged in a tabular manner to facilitate
the use of these results by other researchers, enabling
them to conduct comparative analyses and verify the accu-
racy of their results. Based on the aforementioned physical
coefficients, the field quantities are calculated using MAT-
HEMATICA programming and visually shown through gra-
phical means. The simulations were conducted for three
different scenarios.

Case I: The effect of the temperature discrepancy
Thermoelasticity with dual temperatures represents

a non-classical framework within the field of thermo-
mechanics, specifically addressing the behavior of elastic
solids. The main difference between this theory and the
traditional model is its dependence on temperature. This
analysis will examine the impact of temperature discre-
pancies on the thermo-physical variables under study. In
this particular scenario, the utilization of a FDPL thermo-
elastic model is employed, which incorporates the AB frac-
tional derivative operator. It should be noted that the value
of =β 0 represents the one-temperature fractional DPL
model (1TFDPL), whereas a value of >β 0 represents the
2TFDPL. Figures 2–5 exhibit the variances of thermody-
namic and conductive temperatures, θ and ϕ, as well as
displacement u and normal stress σ , respectively, for var-
ious values of distances x . In addition, for the purpose of
computation, we have assumed that =τ 0.02ϕ , =τ 0.05q ,

=t 0.1
0

, and =α 0.85.
The observation of limited transmission of wave

speeds can be deduced from the analysis of tables and
figures. Furthermore, it can be observed from the pre-
sented tables and figures that the various models exhibit
notable variations in values close to the surface borders.
These discrepancies gradually diminish as the distance
from the boundaries increases. This trend can be attrib-
uted to the influence of thermal shock exerted on the
stress-free boundary. The conductive temperature pattern
exhibits a peak value at the surface =x 0, indicating
thermal loading, and subsequently diminishes progres-
sively until reaching zero. It is observed that the thermal
stress σ becomes negligible at the surface =x 0, consistent
with the limited mechanical condition described in Eq. (32)
for the discussed problem.

Figure 2: Influence of discrepancy index β on the variation of conductive temperature ϕ.
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Figure 5: Influence of discrepancy index β on the variation of stress σ .

Figure 3: Influence of discrepancy index β on the variation of thermodynamic temperature θ.

Figure 4: Influence of discrepancy index β on the variation of displacement u.

Generalized model of thermoelasticity  9



Figure 2 shows a constant decreasing trend of the field
ϕ with increasing depth into the medium. The figure also
shows that the amplitude of the function ϕ in the case of
the 1TFDPL model at =β 0 exceeds the amplitude of the
2TFDPL model with two temperatures. In addition, the
decay rate of the ϕ curve associated with the 1TFDPL model
is higher compared to the histogram representing the 2FDPL
model. Furthermore, it has been observed that the para-
meter “β,” which represents the two-temperature index,
exerts a substantial impact on the fields under investigation.
Therefore, based on the findings, it is crucial to distinguish
between thermodynamic and conductive temperatures.

Figure 3 shows the effect of the two temperature differ-
ence indexes on the thermodynamic temperature change θ.
Figure 3 shows the relationship between θ and the spatial
coordinate x in both the 1FDPL and 2FDPL models, consid-
ering two different values of =β 0 (representing a single-
type temperature) and >β 0 (representing a two-type
temperature). The observed actions in this figure exhibit
similarities to those depicted in Figure 2. As one moves
deeper into the medium, the dynamic and conductive tem-
peratures decrease from their maximum values at the sur-
face. These results are consistent with the physical properties
of thermoelasticity and confirm the validity of the general-
ized models [56]. Based on the proposed novel framework, it
is imperative to establish a revised categorization scheme for
materials based on their two temperature parameters. These
parameters serve as a novel metric for evaluating the thermal
conductivity of materials [57].

Figure 4 depicts the graphical representations of the
displacementu as a function of x for the 1TFDPL and 2TFDPL
systems. The displacement field exhibits both expansion and
compression deformations. This phenomenon arises due to
the occurrence of thermal shock, leading to the expansion of
the half-space areas next to the boundary edge in an uncon-
strained direction. First, this results in negative displacement,
which gradually transitions from negative to positive. Even-
tually, the displacement reaches a steady state and becomes
zero at the heat wavefront [58]. The smallest displacement
values are obtained using the 2TFDPL model with ( =β 0),
whereas the biggest displacement values are obtained using
the 1TFDPL theory (Figure 4).

Figure 4 illustrates the fluctuation of the stress σ with
respect to the variable x . The normal stress σ exhibits a
high cost across all values of t. The stress differences have
similar characteristics for both models, while disparities
become more pronounced at higher temporal values. The
stress σ first assumes a zero value due to the boundary
condition, then experiences a rapid increase, and ultimately
approaches zero. It is worth mentioning that the radial
stress increases as the parameter β grows, regardless of

the values of x . The provided graphic illustrates that the
stress experienced at the boundary is compressive.

Case II: Comparison of fractional differentiation
operators

Various mathematical strategies are employed to solve
non-integer-order models of PDEs in mathematical ana-
lysis. The mathematical theory of fractional calculus deals
with nonlocal integration and differentiation. Fractional cal-
culus has found extensive application in mathematical mod-
eling and several physical phenomena. Numerous scholars
have recently addressed thermoelastic difficulties in heat trans-
mission under diverse mechanical and thermal circumstances
by utilizing fractional C derivatives and Riemann–Liouville (RL)
fractional derivatives. The AB time-fractional derivative is a
recent and adapted version of the Caputo–Fabrizio (CF) tech-
nique. It possesses desirable characteristics such as non-singu-
larity, non-locality of the kernel, prominentmemory influences,
and transmission effects.

This study introduces a thermal conductivity model
incorporating fractional differential operators D

t

α

( )
( ) and

two distinct temperatures. In the present section, we will
conduct a comparative analysis of fractional derivatives
AB, CF, and C, focusing on the potential benefits associated
with fractional derivative AB in relation to fractional deri-
vatives CF and C. The impact of certain fractional differ-
entiation operators D

t

α

( )
( ) and the fractional parameter α

on system fields such as temperature and displacement
was analyzed graphically and tabularly, respectively. The
study also included a comparison of thermoelastic models
incorporating fractional derivatives and those incorpor-
ating integer derivatives ( =α 1). Furthermore, for the pur-
pose of computational analysis, it has been postulated that
the values of τϕ, τq, t

0
, and β are 0.02, 0.05, 0.1, and 0.001,

respectively.
• The new FDPL thermoelastic model appears to improve
the temperature field, as shown in Table 1. This improve-
ment can be attributed to the incorporation of fractional
operators, which effectively decrease thermal diffusion
within the medium. This observation aligns with both
experimental findings and established physical facts.

• It was found that the two-temperature thermoelastic C
fractional model with phase delays (2TFDPL-C) has much
higher thermodynamic and conductive temperatures as
the fractional parameter is raised. This is in contrast to
the CF fractional model (2TFDPL-CF) and the AB frac-
tional model (2TFDPL-AB).

• It is imperative to acknowledge that the transmission of
thermal and mechanical waves within an elastic medium
is contingent upon the specific fractional-order deriva-
tive operator utilized. Hence, it can be inferred that the
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Table 1: Dynamic temperature distribution under the influence of different fractional differential operators

x 2TDPL 2TFDPL-C 2TFDPL-CF 2TFDPL-AB

==α 1 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75

0.0 0.826009 0.792505 0.7609570 0.731233 0.703209 0.676771 0.651815
0.5 0.423119 0.405957 0.3897960 0.374570 0.360215 0.346673 0.333889
1.0 0.215114 0.206389 0.1981730 0.190432 0.183134 0.176249 0.169750
1.5 0.109364 0.104928 0.1007510 0.096816 0.093105 0.089605 0.086301
2.0 0.055601 0.053346 0.0512222 0.049222 0.047335 0.045556 0.043876
2.5 0.028268 0.027122 0.0260421 0.025025 0.024066 0.023161 0.022307
3.0 0.014373 0.013790 0.0132407 0.012724 0.012236 0.011776 0.011342
3.5 0.007308 0.007012 0.00673259 0.006470 0.006222 0.005988 0.005767
4.0 0.003716 0.003566 0.00342388 0.003290 0.003164 0.003045 0.002933
4.5 0.001890 0.001814 0.00174174 0.001674 0.001610 0.001549 0.001492
5.0 0.000962 0.000923 0.000886547 0.000852 0.000819 0.000789 0.000760

Table 2: Conductive temperature distribution under the influence of different fractional differential operators

x 2TDPL 2TFDPL-C 2TFDPL-CF 2TFDPL-AB

==α 1 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75

0.0 0.874464 0.838995 0.8055960 0.774128 0.744460 0.716472 0.690051
0.5 0.443852 0.425848 0.4088960 0.392924 0.377866 0.363660 0.350249
1.0 0.225652 0.216499 0.2078810 0.199761 0.192105 0.184883 0.178065
1.5 0.114721 0.110068 0.1056860 0.101558 0.097666 0.093994 0.090528
2.0 0.058325 0.055959 0.0537314 0.051633 0.049654 0.047787 0.046025
2.5 0.029653 0.028450 0.0273178 0.026251 0.025245 0.024296 0.023400
3.0 0.015076 0.014465 0.0138893 0.013347 0.012835 0.012353 0.011898
3.5 0.007666 0.007355 0.00706229 0.006787 0.006527 0.006281 0.006050
4.0 0.003898 0.003740 0.00359149 0.003451 0.003319 0.003194 0.003077
4.5 0.001983 0.001903 0.00182696 0.001756 0.001688 0.001625 0.001565
5.0 0.001009 0.000968 0.00092987 0.000894 0.000859 0.000827 0.000797

Table 3: Displacement distribution under the influence of different fractional differential operators

x 2TDPL 2TFDPL-C 2TFDPL-CF 2TFDPL-AB

==α 1 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75

0.0 −0.12601 −0.12505 −0.1095700 −0.091230 −0.08032 −0.06768 −0.05182
0.5 0.379483 0.364091 0.3495980 0.335943 0.323068 0.310923 0.299458
1.0 0.193224 0.185387 0.1780080 0.171055 0.164500 0.158316 0.152478
1.5 0.098241 0.094256 0.0905047 0.086970 0.083637 0.080494 0.077526
2.0 0.049951 0.047926 0.0460186 0.044222 0.042527 0.040929 0.039420
2.5 0.025402 0.024372 0.0234020 0.022488 0.021627 0.020815 0.020048
3.0 0.012920 0.012397 0.0119039 0.011439 0.011002 0.010588 0.010199
3.5 0.006575 0.006309 0.0060583 0.005822 0.005600 0.005390 0.005191
4.0 0.003349 0.003214 0.00308639 0.002966 0.002853 0.002746 0.002646
4.5 0.001709 0.001640 0.00157544 0.001514 0.001457 0.001403 0.001351
5.0 0.000875 0.000840 0.000807237 0.000776 0.000747 0.000719 0.000693
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fractional arrangement considers the variability of the
elastic medium, as each operator and fractional order
signifies a distinct characteristic of elasticity.

• The aforementioned theoretical findings possess poten-
tial utility in addressing some practical issues. Based on
the theoretical findings and empirical evidence, selecting
a fractional mathematical model that exhibits congru-
ence between the experimental findings and theoretical
outcomes is possible.

• Tables 1–4 showcase the empirical results, which suggest
that the power-law kernel exhibits a resilient memory
effect in long-term historical data. On the other hand,
non-singular kernels may be more suitable for describing
relaxation or diffusion processes characterized by excep-
tionally strong memory.

• It is demonstrated that the decay rate of the model with a
stretched exponential kernel, which is of the CF type, is
much quicker than that of the model with a power-law
kernel. This indicates that a CF-type derivative model
with a stretched exponential kernel, as opposed to one
with a power-law kernel, may be used to describe a
wider variety of relaxation events.

• It is important to acknowledge that a mathematical
model employing the AB-type derivative with a stretched
Mittag–Leffler function kernel exhibits a slower diffusive
motion compared to a model utilizing an exponential
kernel.

• Furthermore, it is highly anticipated that the novel frac-
tional derivatives of AB and CF will significantly contri-
bute to investigating the macroscopic characteristics of
particular materials associated with nonlocal exchanges.
These exchanges predominantly govern the properties of
these materials.

8 Conclusions

The physical aspects of relaxation and thermoelastic heat
transfer models are studied in this work. It focuses on the
newly introduced temporal derivative that uses a non-
power function kernel. The use of analytical analysis
shows that the C-type derivative idea, when combined
with a power function kernel, is not good at describing
the non-exponential changes that are often seen in asym-
metrical heat conduction. Because of this, a new version of
the thermoelasticity theory has been made that includes
two temperatures, two separate phase delays, and frac-
tional-order differential operators that are not in a single
position. The revised definition’s primary benefit is repla-
cing the singular power-law kernel with a Mittag–Leffler
function and a non-singular exponential kernel. This repla-
cement facilitates using the revised definition in theore-
tical analysis, numerical calculations, practical scenarios,
and real-world applications.

The results show that the field variables, such as tem-
perature, displacement, and thermal stress, are affected by
the two-temperature parameter (β) and fractional-order
differential operators, as well as the position (x) and
time (t). The impact of fractional differential operators
on various field quantities is particularly important in aca-
demic research. All the investigated field quantities are
considerably impacted by fractional differential operators.
The fractional coefficient characterizes the thermal con-
ductivity of a thermoelastic material, necessitating the
development of new categories of materials. Moreover,
there is a great expectation that the unique fractional deri-
vatives proposed by AB and CF will make a substantial
contribution to the study of the macroscopic properties
of specific materials that involve nonlocal interactions.

Table 4: Thermal stress distribution under the influence of different fractional differential operators

x 2TDPL 2TFDPL-C 2TFDPL-CF 2TFDPL-AB

==α 1 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75 ==α 0.85 ==α 0.75

0.0 0 0 0 0 0 0 0
0.5 −0.4218 −0.40469 −0.388578 −0.37340 −0.35909 −0.34559 −0.33285
1.0 −0.21474 −0.20603 −0.197825 −0.19010 −0.18281 −0.17594 −0.16945
1.5 −0.10918 −0.10475 −0.100580 −0.09665 −0.09295 −0.08945 −0.08616
2.0 −0.05551 −0.05326 −0.0511408 −0.04914 −0.04726 −0.04548 −0.04381
2.5 −0.02823 −0.02708 −0.0260063 −0.02499 −0.02403 −0.02313 −0.02228
3.0 −0.01436 −0.01378 −0.0132280 −0.01271 −0.01223 −0.01177 −0.01133
3.5 −0.00731 −0.00701 −0.00673156 −0.00647 −0.00622 −0.00599 −0.00577
4.0 −0.00372 −0.00357 −0.00342877 −0.00330 −0.00317 −0.00305 −0.00294
4.5 −0.0019 −0.00182 −0.00174961 −0.00168 −0.00162 −0.00156 −0.00150
5.0 −0.00097 −0.00093 −0.000895892 −0.00086 −0.00083 −0.00080 −0.00077
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These interactions primarily regulate the characteristics of
these materials.

The AB and CF fractional operators offer reliable math-
ematical frameworks for comprehensively capturing non-
local interactions inside materials. These operators empower
researchers to construct advanced models that account for
the impact of remote events on the macroscopic features of
thematerial. By integrating these fractional operators into the
governing equations, scholars are able to adequately consider
the long-range correlations and spatial dependencies that are
inherent in materials with nonlocal interactions. This enables
a more precise depiction of their macroscopic behavior.
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