DE GRUYTER

Open Physics 2024; 22: 20240029

Research Article

Mamta Kapoor, Nasser Bin Turki, and Nehad Ali Shah*
Study of fractional telegraph equation via Shehu
homotopy perturbation method

https://doi.org/10.1515/phys-2024-0029
received January 06, 2024; accepted April 24, 2024

Abstract: The iterative Shehu transform homotopy pertur-
bation method (HPM) is used in the present research to
address fractional telegraph equations in different dimen-
sions, respectively. Considered equations particularly stand
out in the field of material science and certain other signifi-
cant fields. A graphic comparison of estimated and actual
results is used to assess the validity and efficacy of the sug-
gested technique. Graphs show a match of approximate to
exact findings. Without any linearization or discretization,
the iterative Shehu HPM offers a reliable and efficient way
to deliver approximations and accurate outcomes that is
also error-free. The development of numerical regimes
based on discretization is difficult and expensive computa-
tionally. Additionally, discretization error is produced as a
result of discretization in purely numerical regimes. The
present regime has produced robust results and is time-
efficient. Also, no discretization error was produced.

Keywords: fractional hyperbolic telegraph equations, Shehu
transform, homotopy perturbation method, error analysis,
numerical convergence

1 Introduction

Numerous areas of the physical sciences, including diffu-
sion, control processes, elasticity, relaxation processes, and
many others, use fractional calculus extensively [1-3]. The
telegraph equation is employed in the reaction—diffusion
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process, as well as in signal observation for the transmission
and propagation of electrical signals [4,5]. Many researchers
have offered various types of solutions for fractional tele-
graph equations. Momani utilized Adomian decomposition
method (ADM) [6]. Yildrim [7] put homotopy perturbation
method (HPM) into the application. The variable separable
technique was incorporated by Chen et al [8]. Variation
iteration method (VIM) was implemented by Sevimlican
[9]. For the fractional hyperbolic telegraph (HT) equation,
Khan et al [10] adopted natural ADM, combining natural
transform and ADM to produce a fusion. Fractional VIM
was utilized by Jassim and Shahab [11] to solve the HT equa-
tion. The Shehu transform was used for the fractional HT
equation in one dimension (1D), two dimension (2D), and
three dimension (3D) by Kapoor et al [12]. The concept of
Laplace ADM in the Caputo sense was applied by Khan et al.
[13] to cope with the fractional-order telegraph equation.
The ECB-spline technique was utilized by Akram et al [14] to
solve the fractional telegraph problem. Regarding the pseudo
HT equation, Modanli [15] provided compatibility between
Caputo and Atangana-Baleanu fractional derivatives. The
Legendre collocation method was applied to the fractional tele-
graph equation by Mishra et al [16]. To obtain the precise
analytical solution of fractional-order telegraph equations,
Khan et al. [17] employed the triple Laplace transform.

1.1 Shehu transform

Integral transformation is necessary to effectively answer
mathematical issues. Dealing with several partial differential
equations (PDEs) is also made easier via an integral transform
that has been proven to work. The integral transform is a
straightforward method for managing numerous complex
PDEs. Many studies on integral transformations have been
conducted in recent years. Sumudu transformation, Elzaki
transformation, natural transformation, Pourreza transforma-
tion, G transformation, Sawi transformation, Shehu trans-
form, etc., are a few examples of integral transformations.
Some integral equations, ordinary differential equations,
PDEs, and fractional PDEs (FPDEs) can be solved using
transformations described in literature [18-23].
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Result 1
Iterative Shehu transform of fractional derivative in

Caputo sense:

S[Df6) = [%](3[9] - gi[%](_r_lerw). &)

r=0

Result 2
The iterative Shehu transformation has been notified
as follows:

S[o(D)] = ].;el_%]o(t)dt.
0

Laplace transform would be converted from iterative
Shehu transform via considering v = 1.

Iterative Shehu transformation will lead to Yang trans-
formation via considering s = 1.

Result 3
Considered S[Q(t)] = J(s, v) and S7Y[J (s, v)] = Q(t), then
Q) = S (s, v)] = I (5, v)as.
B
where s and v are reported as Shehu transform variables.
Result 4
oo t .
Sisinh(an)] = [ exp|->-|sinh(at)dt,
0
K st)(e® - e %)
S[sinh(at)] = ‘0[ VJTdt,
- lim [ t(av s) (av+s)t
—_— +
t(av-s) (av+s)t
+e v s-e v s-2av
VZ
GED)
Result 5
T t
S[cosh(at)] = Iexp —%] cosh(at)dt,
0
* t at + —at
S[cosh(at)] = Iexp —S—] %dt,
0

(av+s)t
av — e v o av

t(av s)

e p—T—

- 2(a%V? - %)
(av+s)t

Sst+e v

t(av-s)

+e v s—Zs]

_ SV
(sz — a2v2)'
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Result 6 Linearity property of Shehu transform.

Sl fi() + o f,(O] = aS[ (D] + &S[f,(D].

——}'(t)dt

~Laso + apon
st

—Vyl(t)dt
—%t]/z(t)dt

= aS[/O] + oS HO].

Proof

SIf®O] =

exp

oh.g

Slafi(®) + afy0] = [ exp
0

o

=q| exp
0

+ czj exp

Proved.
Result 7 Shehu transform of single derivative of f{t).
Proof
K st
t -—|f(t)dt
SIf] = {ex o,
SIf(®)] = | exp|-—

0
= [e-%‘f(t)]: - J%e‘%f (e,
0
- [e-%‘f(t)]: - I[—%]e‘%f(t)dt
0
- e—%‘f(t)]: + [%]je-%‘f(t)dt,

[f(®]

[etro] +[Sstr

~time 370 - 10 + [Sfsirco)
@i =[2Jstrn - fo

Proved.
Result 8 Shehu transform of double derivative of f{t).
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Proof
st7o1 = [ expl- froat,
0
st = [ expl-S | o,
0

- [e‘svtf’(t)]: - T%e‘svtf’(t)dt,
0
- ip o
- [e‘svtf’(t)]: + [%]Ie‘svtf’(t)dt,
0
~lme-$70 - 1O + [ 2] Ssiro1 - 10

2
SLFO1 = ZZSIFO) = () = £(0).

Proved.
Result 9 Shehu transform of triple derivative of f{t).
Proof
K st
st = [ema|- o
K St
SIF ()] = {exp -,

- [e‘svtf”(t)]: - _[%e‘svtf”(t)dt,
0
- [e‘svtf”(t)]o - ![—%]e‘svtf”(t)dt,
vl e
0
-tme S0 -7+ [2) st
- 2f0 - f’(O)},

SLO1 = S8 O1 - S0 - 27/ ©) - f0)
Proved.

Result 10 Shehu transform of nth derivative of f{t).
Proof similarly,

SLFUO] = SSLFWO) - S (0) -
Proved.

In Tables 1 and 2, charts are provided regarding Shehu
transform and iterative Shehu transform.

SF (@)= fr1(0).
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1.2 HPM

He [18] first proposed the idea of HPM and then combined
the conventional perturbation regime with the Homotopy
regarding topology by producing a Homotopy (convex in
nature). He then found the solution to the problem, which
was then presented in series form and converged to the
precise solution. He [24-26] used HPM to address non-
linear issues in applied sciences, such as the Duffing equa-
tion and the Ear Drum equation, among others.

A Chinese scholar named He [27] launched HPM. He
combined the conventional perturbation regime with topo-
logical Homotopy, which is used to resolve several crucial
equations. Fundamentally, Homotopy is a concept bor-
rowed from topology and differential geometry [28]. The
French mathematician Poincare referred to the idea of
Homotopy [29].

For HPM, the following equation is considered:

D(u) = 0. @)

Any convex homotopy deformation H(u, p) in the case
where D is regarded as a differential operator is as follows:

H(u,p) = (1 - p)Fw) + pD(u), (&)

where u is the known solution to F(u), which is regarded
as a basic operator.

In such a method, the equation's solution is given as a
power series and embedding parameter “p” is originally
employed.

U= uy+ puy + p*uy + p3us + ...+ p'uy, @
U= limU,
p—1 (5)
U=ug+uy+u+u+ ...+ Uy, (6)
U=1lmU,
p—1 @)
U= ) u. ®)
n=0

1.3 Time-fractional HT equation

Due to their relevance in numerous engineering and scientific
sectors, FPDEs have recently become most crucial topic from
the viewpoint of researchers and scientists. The fractional deri-
vatives have a very high degree of flexibility, which results in
an outstanding tool for expressing the varied past and inher-
ited traits of the numerous prototypes. For the develop-
ment of analytical and numeric outcomes of linear and
non-linear FPDEs, large-scale research is conducted.
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Fractional hyperbolic telegraph equation in 1D [10].
Some more references relevant to fractional calculus are
provided in previous literature [30-37].

0F +p O, 1) + VB = Oy + $(x, D).

p, v — arbitrary constants. 6(x,t) is an unknown
function.

For p > 0, v =0, damp wave equation model would
be retrieved.

For p > 0, v > 0, telegraph equation model would be
retrieved.

In signal processing for transmission of electrical
impulses and wave theory processes, the telegraph equa-
tion model is primarily and most frequently utilized. The
biomedical sciences and aerospace have seen a number of
these models implemented. Problems involving fractional
derivatives are attracting the attention of researchers.
Fractional-order PDEs are modelled specifically by linear
PDEs of integer order. For outcomes of integer-order tech-
niques, fractional-order schemes converge. Some latest
references are provided in previous literature [38-48].

Fractional HT equation in 2D [10].

DtZ(G + ZZD[( + BZQ = O + eyy + g(X,y, 0.

LC.:0(x,y,0) = fi(x,y) and 6:(x,y, 0) = f,(x, y).
Fractional HT equation in 3D [10].

DFO+2(Df0 + B2 = Oy + O,y + 6, + (X, 9,2, 1).

LC.:0(x,y,2,0) = fi(x,y,2) and 8:(x, y, z, 0) = f,(x,y, 2).

1.3.1 Motivation of the study

There are many literary solutions to fractional telegraph
equation in 1D, 2D, or 3D, but there are very few approaches
that address the fractional telegraph equation in all three
dimensions. The development of a method that can demon-
strate the reliability of the estimated analytical solutions to
the aforementioned equations in one, two, and three dimen-
sions is therefore the main goal. In the present study, an
iterative approach to tackle fractional HT equation in 1D, 2D,
and 3D is presented. The present approach is simple to use
and does not require intricate numerical discretization pro-
gramming. It is difficult to create numerical programs for
FPDEs, hence creating such iterative techniques is necessary
to obtain approximate analytical solutions. Numerous trans-
forms are offered in literature; however, from the perspec-
tive of calculation, some transforms are simple to use and
others are not. Among all the available integral transforms,
Shehu transform HPM is regarded as one of the simplest to
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use. Due to the significance of these equations, this research
concentrates on their solution, maintaining the study's unique-
ness. Additionally, the article includes assessments of conver-
gence and error.

1.3.2 Research questions

1Q. What is the novelty of this work?

Reply - In the present study, a numerical convergence
aspect is discussed in detail regarding the proposed regime.
Moreover, graphical and tabular compatibility of results are
also validated.
2Q. Why only Shehu transform is used in this study?

Reply — Some integral transforms are simple to use
from a calculation standpoint, whereas others are more
difficult. The Shehu transform is one of the simplest inte-
gral transforms, hence it is being used.
3Q. Why is any discretization-based technique not
implemented?

Reply — The development of numerical regimes based
on discretization is difficult and expensive computation-
ally. Additionally, discretization error is produced as a
result of discretization.

1.3.3 Outline of the research work

The present study is framed into diversified sections to
create a better notion regarding the work done. In Section 2,
general formulas are developed for fractional Telegraph equa-
tion in 1D. In Section 3, five examples are evaluated regarding
fractional HT equations in different dimensions. In Section 4,
graphical and tabular analyses of the work are provided along
with numerical convergence. Section 5 is related to the con-
cluding remarks.

2 Implementation of the regime

Implementation upon 1D fractional Telegraph equation.
Déu(x, £) + Llu(x, )] + N[u(x, t)] = q(x, t).
Applying Shehu transform
SIDfu(x, 1)] = =S[L[u(x, )] = N[u(x, )] + q(x, t)],

G

¢ 6-1 )1
S[u(x, t)] - Z[;] = =S[Lu(x, t) + Nu(x, t)]

r=0

+ S[q(x, )],
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(2] stux, 01 - ez:[%]“ - S[LuCx, O + Nu(x, )]

+ S[q(x, 1],

(010 \r-1 (Y
S[u(x, t)] = E] 205] - [E] [SILu(x, £) + Nu(x, )]

+ S[q(x, )11,
s

v ¢
_ S—l[[;] [S[Lu(x, t) + Nu(x, t)] + S[q(x, t)]]].

u(x, t) = §1

Applying HPM

0-10 o \{-1-
3T
s} olv

+ 2 P"Hy()

n=0

S|L

ol

s

2 p"un]
n=0

anun =g
n=0

+ S[q(x, 0]

where N[u(x, t)] = ¥p-op"Hn(w).
Comparing p°

up(x, t) = 871

bl

B3] - st

r=0 v

Comparing p!

v ¢
w(x, t) = =871 [E] [S[L(uo) + Ho(w)]]

>

Comparing p?

VY
uy(x, t) = -§71 [;] [S[L(w) + Hi(w)]]|,

Comparing p®

v
us(x, t) = =S [;] [SIL(up) + Hy(w)]]),

and so on.

In Figure 1, steps regarding the solution of the pro-
posed regime are provided.

Uniqueness and convergence theorems

Theorem 1. Let X be a Banach space and let 6,,(Qi, a1)
and 6,(Q1, @) be in X. Suppose y € (0, 1), then the series
solution {6,,(Q1, a1)hm-o Which is defined converges to the
lower bound solution whenever 6,,(Q1, @) < y0n-1(R1, @),
Vm > N, that is for any givene > 0, there exists a positive
number N, such that | |Onn(Q1, a)|| <€, Vm,n> N .
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Proof provided.
Mo(Q1, @) = 0o(1, @),
Mi(Qq, a1) = 00(R1, @) + 6:1(, @),
My(Q1, a1) = 6p(Q1, &) + 61(Q1, a1) + 0,(Q1, @),
M3(Q1, a1) = 6p(1, &) + 61(Q1, a1) + 05(Q, 1)
+05(Q1, @),

Mn(Q1, @) = 6p(Q1, @) + 01(Q1, @) + 62(, @)
+03(Q, @) + ot On(Q, @).
The aim is to prove that M,,(Q4, a;) is a Cauchy sequence

in the Banach space.
It is provided that for y € (0,1),

| Min+1(Q1, 1) = Min(X, @)|| = [| Ome1(R1, )|
<Yl Om(Q1, @)l
<Pl Om-1(Q1, @)l
P3| On-2(Q1, @)l

< ym100(Q1, @)

Let us find

| Min(R1, @1) = Mp(Q1, ay)|
= || Mn(Q1, 1) = Mm-1(R1, @)
+ Mn-1(Q1, @1) = Mm-2(21, 1)
+ Mp-2(Q1, @1) = Mp-3(Q1, @)
ot Mpa(Q1, @) = Mp(Q, )|

| Mm(Q1, a1) = Mn(Q1, @)l|
< | Min(Q1, 1) = Myp-1(Q4, )|
+ || Min-1(R1, @1) = Min-2(Q1, @)
+ || Mipn-2(Q1, 1) = Mp-3(R1, )|
ot || Mpaa(Q1, a1) = Mp(Q1, @)

|| Min(R1, @1) = Mn(R1, a1)|
=" [ 60(Qu, @)l + Y™ || 60(Q1, @)
+ Y2 ] 0p(Q, @)l
+ P3| 0p(Q1, @] + ot Y| Bo(Qu, @)|
a$-y™n

| Mm(R1, a1) = Mn(Q1, @] < a-p

Y 6o(Q, @)l

1-y
A-y™mymt| fo(Qua) I’

[[Mn(Q1, a1) — Mn(Q1, @p)|| < €,

Considered € =

T Mp(@1, a) ~ M@, )] = 0.
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=>{Mn}m=-o is a Cauchy sequence.

Theorem 2. Let Z _00i(Q1, ay) Dbe finite and 6,21, )
be its approximate solution. Suppose y >0, such that
[10:41(R1, a)|| S V|| :(R1, @)||, ¥y € (0,1), Vi, then the
max. absolute error for the lower bound solution is

| 6(Q1, @) - Zexszl, @)l <

i=0

|| 00(R1, @)||.

Proof Let Z{;O 60i(Q1, ay) < oo, then

j
Y 6:(Q1, @)l

i=0

=l 2 6@, @l

i=j+1

< Y 116(Q1 @)l

i=j+1
< 2 V6@, @)
i=j+1
< || 60(Qq, @)l|[y/*t+ pI 2+ pit e ]
< 6@, al y7™t
< = _

I 8(Q1, ar) -

3 Examples and discussion
Example 1

Considered fractional 1D HT equation is as follows [12]:
Oxy. ©)

I.C.: 0(x,0) = e¥ and 6,(x,0) = —2e*,0 < { < 2.
Applying Shehu transform upon Eq. (9)

DfO=0-26-

S[DF 6] = S[6 - 26, — By,
S ‘ 5 s e r =
:[;] S[0(x, t)] - go[;] 0"(x,0) = S[0 — 26; — O],

K (S[Q(X, 1] = ef s (_Her(x, 0) = S[0 - 26; — 6],
v v

r=0
SS[00x, )] = [E]{Z()[%](—r_ler(x, 0) + [5]63[9 - 20, - B,

el oo

(¥ st0 - 25, - XX]]

=0(x, t) = S

+ 871
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Applying HPM
3 P00 0 = 57

n=0
Ve 6-1
s
S -

r=0

s{ef 3y "o

|

[g]‘éﬂ[g]“*e«x, 0|

+ pS™

"On(X, t)

6-1 6-1
i Z[Zp”eno(, O] = | 20", 1)
r=0

r=0 t

Comparing p®:

=0y(x, t) = §71

Considered 6 = 1:

=0o(x, 1) = §7*

2 e

=0o(x, t) = 6(0),
=00(x, £) = B(x, 0) + tB(x, 0) = By(x, £) = (1 - 2t)e*.

Comparing p':
vY
=6i(x, 1) = 5“1[;] S[(6o) = 2(60); — (9o)xx]],

where

B0 = (Bp)x = (Bo)xx,

S

S6i(x, £) = 5‘1‘[5](5[—2(90)&] S 0y(x, 1) = 4exs-1l[§]([1]],

{+1
=204(x,t) = 4e"8‘1l[g] I = 04(x, t) = 4eX T+

Comparing p?
¢
=0x(x, t) = 5_1‘[5] S[(61) = 2(61): - (el)xx]}’ where
01 = (0D)x = (OD)xx

¢
=0,(x, 1) = -23‘1[%] S[(91)z]],

—1

|

=0,(x, t) = -2§~ 1[ ] ‘4&3"(

I'(a+1)
¢
=205(x,t) = —Sexﬁs_ll[v S[l’( 1]]
¢ ¢
e )
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20
=0,(x, t) = —8e* r(i‘rfn Sl [ ]
- ger CTC_ X
= 0)(x,t) = -8e I+ DI
Comparing p?
=0;(x, t) = 3_1“5 Sl(w) = 2(up)e = (W)l

where

0y = (0))x = (ez)xx,

[{]CS[—Z(OZ)J],

e 0]

I({+1) T()
(¢ @-1, tzw]

I+ D) @)
s ]f@f i

(¢ -1,

I+ 1) T(2)

(¢ -1 i 1}

T((+1) TQ) [(( b ] ’

(I (-Drei-1 ., ]“ 1},
N

=05(x, t) = §71

=05(x,t) = =28~ 1

= 05(x, t) = 16e*

= 03(x, t) = 16e*

=05(x, t) = 16e*

=03(x, t) = 16e*

D 1@
IS (S W
SRS Ten  1e- D

Comparing p*

v
=20,(x, t) = S*l[;] S[(63) — 2(65); - (93)xx]]:

where
6= (0)x = (8
S0,(x, 1) = s-l[[f](S[—wg)t]],
=0,(x, t)
g o
6,01, 1) = 320" (?f S - ;ggc ) r(f?f(‘_zl)) s-ll

A4
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v)¥¢- 3}

t4(—2
r(4¢-3)°

= 04(x, t)

(¢ @C-Dred-1 G¢-29I6C-2) o
“T¢+D I(2¢) IG¢-1

S

(re  Q@2¢-
I(¢+1)

Comparing p®

DI -
I

D B¢-9IE¢ - 2)
I(3¢-1)

VY
= 05(x, 1) = S*‘[;] S[(6s) — 2(60); - (94)xx]l,

where

03 = (0)x = (On)xx»
¢
=05(x, t) = 3'1[[%] S[—2(94)z]],

S0s(x, £) = baer—oLe (26 DIQC- 1)

[+ 1) I(2¢)
. BC-2TEC-2) (40-3)
I(3(-1) TI4(-3)

s—llr(4( - 2)[%]5{_2],

(I¢  @2¢-DrEd-1) 3¢-2)r@eg-2)
I(¢+1) I'20) IrG¢-1)
. (40-3) TaC-2) o,
T(4¢ - 3) T(5¢ - 2)

0=0y+601+0,+03+0,+ 65+

U Y | S
=0=(1-2t)eX+4e T+ 1) 8e I({+ 1) T(20)

(T{ (2{-DrEe¢-1 %
I(¢+1) r'@g) rG¢-1

(I¢  2¢-1r@ec-1) 3¢-2)r@¢ - 2)
I(¢+1 I'20) IrG¢-1

£4C-2
“T(c-3)

(I¢  Q2¢-DrEd-1) 3¢-2)r@q-2)
I(¢+1) I'20) IG¢-1)
-3 A=) o

T(4{ - 3) T(5( - 2)

Considered ¢ =

—05(x, ) = 64eX

+ 16e*

- 32eX

+ 64e*

2:=0(x, t) = exp[x - 2t].

I'(3¢ Example 2

Considered fractional 1D HT equation as follows [12]:

DEO =0~ 0, - Oy. 10)
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I.C.: 6(x, 0) = e* and 6,(x,0) = —e*; 0 < { < 2.
Applying Shehu transform upon Eq. (10)

=S[D{6] = S[0 - 6, - 6,

- [ sten 01~ 5[5 o0y = sto -6 0.0

r=0

:[%](s[e(x, 0] = 02[3]( 00,00 + 5160 - 6, - 6,

r=0

510001 = - ]621[ ]Ulef(x 0+ (2 ]sw 6, - O],

1 E]Cg[%r—r—le’(x, 0)

=S[0x, )] = S

= B

=6(x, t)-sl[ wzl[ ]( “orx,0)

+s-1[s] S[0 - 6, - exx]].
Applying HPM

5[ oo
s

- [Z P"On(x, t)
n=0 t

= ZP"Gn(X, 6 =
n=0

+ 81 [Z P"Oa(X, t)]
n=0

)

- [Z P"0n(x, t)
n=0

Comparing p°
)4 ¢ 0-1| s ¢-r-
=>60(X) t) = S_l [g] Zr=0 ;] er(X: 0) .

Considered 6 =1

S0p(x, ) = S [%]{[%]{_19(;(, ),

> B4(x, £) = 6(x, 0) S1 E] > 0%, 1) = 6(0),

= 00(x, £) = 0(x, 0) + t B,(x, 0) = B(x, ) = (1 - t)eX.

Comparing p!

DE GRUYTER

=0,= S 1[[ ] S[(60) = (6o): = (GO)XX]],

(+1
=> 0= eXS‘lilg] ]=> 61

50,=§ 1[[ ] STe*]

_ eX t{
Ta+1)°

Comparing p?

=>0,=§ 1‘[ ] S[(61) = (61): - (91)xx]l

v [
» 6= 12 si-@a]
v até?
- -1 = —_|px
=60,=S§ S S|-|e I +1) s

o S (VY e
20= S 1[[s] St 1]]’

oo sl

L CTEQ)
F(( + 1 T2

=0, =
Comparing p®

=03=§ 1[ ] S[(02) = (62)c = (Gz)xx]],

[v]" l T (- 1)t2{‘2]”,

2O ST e @
LTQ L1 _
POTNCey T | HES Z]]’
LI -1 “
T8 @D s ]r(zc ;) I

3(1

o ST @C-Drec-1) 1
I(¢+1) I2¢)

{TE@) @¢-Dree-1) 2
I+ I2¢) r@-1

=03 =

=>93 = eX
Comparing p*

S[(63) = (83)c - (93)xx]l

:@-sﬂ

-1

SERS

=0,=

[ex (T(Q) (20-DrEE-1) %2 ”
G+ 1) TE-Df




DE GRUYTER
=0, =
L LTQ) (C-DTRL-1) (¢-2) 3(31
Ty TR TGI-1° ] S
L ST©) Q- DIeE-D (¢-2)
o ey e s J rox
v 3(-2
EH I
ST @C-DTeE-1) (3C-2)
CUT NGy Te TR 1[ e
V2
- 2)[;] ],
>0, =

_ ST C-DIQE-1) BC-2) TGL-2) g

¢+

I'(2¢) IGB-1DTMEC-2)

Comparing p®

c
=>05= 8§ 1‘[ ] S[(6s) - (O4); - (94))0(]}’

> 05 = s-l[[E]KS[—wut]],

(T(Q) @I-Dr@f-1) G¢-2) IG-2)

20 = ety @ tec-nrac-2 MY
S HEGS
. ,
MO @D GI-D TG
28 = ety 1@ ter-nrac-2 MY
(vye v
S [H r¢ - 3>[§] ]
S0 = e (T(Q) 2(-1Dr@¢-1) (3(-2) I'(3( - 2)

=05 =

I'(c+1)
50-3
x (4¢ - 3)T(4¢ - 3)S” 1‘[ l

I20) I3-1DTMAC-2)

() (24-Dre¢-1) (3¢-2) T3~ 2)
¢+ TQ)  TE-DTA-2)
L W-rUC-3) o,

(5 - 3)

eX

Considered { =1

= 0(x,t) = exp[x - t].

Example 3
Considered fractional 1D HT equation as follows [12]:

D¥ 0+2Df 6+ 0= 0. an

Study of fractional telegraph equation via Shehu HPM

I.C.: 6(x,0) = ¥ and 6,(x,0) = - 2e*.
Applying Shehu transform upon Eq. (11)

> S[DX 0+ 2D 6+ 0] = S[0y],

=>S[DX 0] = S[0 - 0 - 2D¢

ﬁlg]zzsw(x, 0] - 92:[%

6],

20-r-1
] 0"(x, 0) = S[6y - 0 - 2D50],

b

]2(—r—1
r=0

2
:[%] S[0(x, t)] = 07(x, 0) + S[Oy - 0 — 2D{ 6],

2{-r-1
] 0"(x, 0)

200-1
=S[0(x, t)] = [ ] Z
+[z “

S

S[0x-0-2Df 6],
=0(x,t) =S~ 1[

20
[E] Sl0 — 0 - 2D o]],

[ ]2(0 1[ ]z( r-1 0. 0)

(2] ste.c - e]] - zs-ll[f]zcswf 9]]-

Applying HPM

2¢0-1

2

20-r-1
] 07(x, 0)

+ 871

S 0(x,t) = §1

+ 871

= Zp"B,,(x, t)=5871

n=0
[ ]
S

ERe
N

200-1¢ \20-r-1
i3] ewo

r=0

+ 81 S|| > p"0a(x, )
n=0

- [ 2 P"Oa(x, 1)
n=0

XX

-2871 D¢ | D pou(x, 0|

n=0

o]

E] > 6, = 6(0),

Comparing p°

=>00 = §71

=0, = 0(0)S™

=0y = 0(x,0) + t 6:(x,0) = 6y = (1 - 2t)e*.

Comparing p!

=0, = 8_1[

20 20
2] st - (9@]] - zs-ll[g] siof (90>]],

where 6y = (6g)xx,
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t2(+1

20 S
0, = -2 sll[g] SIDf (eo)]], 0 ey

o sor- o

Considered 6 = 1

Comparing p®
=>91 =-2 S_l

20

~0; = s-l[[E]MS[(ez)xx - (92)]] - zs-ll[g] sipe (ez>]],

where

=0, =-281 [z]zf‘[i]( [6o] - [ 90(0)” SIDF 6] = [%](8[02] ) [%]{—1 0,0,
20 ¢
=6, =257 [s] ‘[v] Slbol - [ 90(0)” =03 = -2 s-l‘[%]zzs[pf (02)]],
Where S[6] = S[(1 - 2t)e*] = ‘[g] -2 [5]2},
o= 251 [%]2(‘[%]18)( E] L 2 $101 ” 0 =25 1 92] (0)”

=05 = -2 S‘ll[g] S[0,] - % 92(0)]’

-

>0, = —2¢* §1

BIGl

RGN

= 03 =16 ¥ 81[[

V)2 2]

o=

20((1,)2-¢
=0, = 4eX §71 [E] H%] H, . 30+2 30+
e ] n ey
. 2+ . t¢
=0, = 4e* S~ l[s] } = 0, = 4e T +2) Comparing p*
20 2
Comparing p? 6, = sl[[g] S[(@5)sr - (03>]] - 28'1[[5] sID¢ (Gsﬂl,
2¢
=0, = [ V] S[(6Dx (91)]] 28 1[[2] SIp¢ <91)ll where
' ¢-1
where SID{ (65)] = [%] S[6s] - [%] 65(0),

01 = (0)xx,
=>94 =-2 S_l

T s0a- T ool
2T

0,25 st0a] - - 2572 e

20
56, = -2 sl‘[g] sinf (el)]],

where =0, =-281

6-1 {-r-

siofon - (3 stox o1~ 3 (2] orco o

T3¢+ 2) ||

=0, =287 [%]2( [%J(Swl(x’ o= z[slm"{“’)”’ >0, = -32 % S_ll[g]q 2] > 60,=-32¢ ré?f 2
=0, = -2 8_1[[5](8[91] - [EJ(H&(O)I, Comparing p°
I R S A R

where
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siof @01 =[] steu - 4] 0o

20
=05 = -2 sl[[%] SIDf (94)]},

v -1
=»95=—2sl[s] [ ] (6] - [ ] o
¢ 47+1
=-26"1 K] — xti
=>05=-28 [s S|-32e Tar+2)
47+2
=>05—64€x31| ] I
v 50+2 50+1
= X S| — = D G —
=0;=64¢e*S [S =>0;=64e F(5(+2)
0=0)+0;+0,+0;+0,+ 05+
9 X X t( X t2(+1
=0=(1-2t)e*+4e IC+2) - 8e T2C+2)
30+1 401
1 X 2 X—
e ey T2 T+ o)
t5(+1
X -
T

Considered { =1
= 0(x, t) = exp[x - t].

Example 4.

Considered fractional 2D HT equation as follows [12]:

DX O+3D0+20=0,+8, 0<asl

I.C.: 0(x,y, 0) = exp(x + y) and B¢(x, y,0) = —3exp(x + y).

Applying Shehu transform upon Eq. (12)
>SID¥ 6 + 3Df0 + 20] = S[0y + O,y],

=>SID* 6] = S[6x + 6y, - 20] - 3S[D{6)],

0-1

=)[%]255[9()(, O - Z[%]K_r_ler(x’ 0) = S[6xx + 6y - 26]

r=0
- 3.5[D¢ 0],
2(9—1[ S ]2(—r—1

215

2¢
0"(x, 0) + [1]
r=0 S

= S[0(x, 0)] = [E]

v)¥
S0 + By — 26] - 3[;] S[Df 6],

Study of fractional telegraph equation via Shehu HPM =~ == 11

o= [ v

v)¥
+ 52 5100 + 6, - 20
2¢
-351 [E S[Dfe]l.
Applying HPM
2¢0-1 20-r-1
= ane =S 1[ ] Z ] 07(x, 0)
n=0
+ 571 [—] S|[2 P60 +|2p"6n| -2 3 p6,
S n=0 XX n=0 yy n=0
e o
- 357 [3] s|pé| S p"Gn] .
S n=0

Comparing p°

V)01 g y2¢-r-1
=0, = S [—] Z[—] 0"(x, 0)|.
s) ol

Considered 6 = 1

gy = - [%]2([5]2(_19(0)],

s ool

=0, = 0(0),
=0y = 0(x,y,0) + t 6:(x,y,0) = 6 = (1 - 3t) exp(x + y).

Comparing p!

2
2S00 + 0 - zwm]

=0, = s_ll
v)¥
g

=0, = -3 s-l{[ﬁ
S

SID¢ (60)]],

_33—1

2

SIpé (90)]],

where

stof onl = 2] stewl - (2] 3,0,

-1
exp(x +y),

siof o0l =[] st00 - [
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T
=0, = —33‘1‘[5]53[90] - [% i

where

-1
=0, =-3 s

exp(x + y)] ,

exp(x +y)|,

S[0o] = S[(A - 3t) exp(x + y)I,

23]
vl

S[6o] = exp(x +y)

o
S

exp(x +y)|,

=>91 = -3 S_l

I

(+1
=0; = -3exp(x +y) 8‘1[[5] -

|

{+2 {+1
-]
N S

v
=0, = - 3exp(x +y)SY-3 [E] ,

leXp(x +y)

-1

(+2 ¢+
=01 = 9exp(x +y) S~ 1“\/] ] = 0; = 9exp(x +y)

Comparing p?

V¥
S0, - s-l‘[;] SIOse + (B1)yy - 2(61)]]

-3 s-l[[f]zc SID{ 601,

.
=0, = -3 s-l‘[{]z S[Df (91)]},

where
' -1
S[DS0,] = [%] S[64] - [3] 6,(0),
¢
sinfe) = (2] s
2(
=0, = -351 ] ‘ S[ell :62=—381[ 91]]
where
¢
S[6:] = 5|9 exp(x + Y|

T((+2)

DE GRUYTER

S[61] = 9 exp(x +Y)[ ](+2

B [9 exp(x +) [V]M”,

2+2
=0, = -27 exp(x + y) 5-1‘ [E] I > 0,

=0, = -3871

t2(+1
T2 +2)

= -27exp(x +y)
Comparing p®

=>93 =51

20
[E] SIO)ux + (B, - 2(62)]]

[E]ZZ SID{ )],

20
=03 =-3 8‘1“%] S[Dr((ez)]l,

_38—1

where

stofen =2 s - (<] 0.0,

siofen = 2] sten,
s - s

where

$102 = 5|27 explx + Vgt |

sto = -z7espto+ )[4
s {3 3]

30+2
=0; = 81exp(x + y) S‘ll[g] l = 63

30+

T3¢ +2)

= 8lexp(x +y)
Comparing p*

V¥
S0, - 3-1[[_J STO)ex + (8),y - 2(93)]]

-35 1{[ ] S[D{(65)],
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20
20, = -3 Sll[%] S[Df(eg)]],

where
: B i( _6’—12(—r—1 .
siofon = [y siea- 3] wico
¢
SID{ 6] = [3] S[6s],
20 e ¢
=0, = -3571 [%] [[%] 5[93]] = 0,=-3571 [E] 8[93]l,
where
30+1
S[6;] = S|81 exp(x + y) m )
3(+2
sies] = srexpoc+ ) [4|

]

40+2
=0, = -243 exp(x + y) S‘ll[g] ]
t4(+1

T4 +2)

=?94 =-3 S_l

= 0, = -243exp(x + y)

Comparing p®

81 exp(x + ) [g]w”,

v)¥
=0; = S_ll[;] S[(Ox)xx + (94)yy - 2(94)]]

il

-3 8_1[[%]2( SIDEBY]

20
=05 = -3 sl[[g] S[Df(ao]l,

where
¢ _ E( _ 9_12(_'._1 r
stofou = (1] sio0 - 5[5 oo
¢
SIDS6y] = [%] S[4],
2 [\
=05 =-3571 [E] ‘[S] 3[94]] =0;=-3 3_1l
where
t4(+1
S[64] = Sl—243 exp(x +y)m ,

](3[94]],

Study of fractional telegraph equation via Shehu HPM ~ =—— 13

v 40+2
sion) = -u3expic+ )2
¢ 47+2
=0;=-35"1 [%] ‘—243 exp(x +y) [E] H
152
=05 = 729 exp(X + ) 8‘1[[;] l
t5{+1
= 05 = 729 exp(x +y) m

0=0p+0;+0,+0;+ ..
¢+1
I(¢+2)
30+l
T30+ 2)
t5(+1
r(5(+ 2) = e

=0=0-3t)exp(x +y) +9exp(x +y)
20+1

T(2( + 2)
40+1

T(4{ + 2)

- 27exp(x +y) + 8lexp(x +y)

- 243 exp(x +y) + 729 exp(x + y)

Considered { = 1
=0 = exp[x +y - 3t].
Example 5.
Considered 3D time-fractional HT equation as fol-
lows [12]:
DXO+2D{0+30 =0y + 0+ 0, 0<{<1 (13)

I.C.: 6(x, y, z, 0) = sinhx sinhy sinhz and 6;(x, y, z, 0) =
—sinhx sinhy sinhz.
Applying Shehu transform upon Eq. (13)

=S[DX0 + 2Df0 + 30] = S[Oy + Oy + 0,,],

=>'S[DIZ(U] = Sluex + Uy + Uy, = 3u] - ZS[D[(M],

s\ 0-1 20-r-1
:»[;] s[6] - Z[;] 0"(x,y, 0) = S[Oyy + Oy + 6,, — 36]
r=0
- 28[D{ 6],
s)\¥ 0-1 s %1
:[;] S[6] = Z[;] 07(x,y, 0) + S[By + O,y + 6,, — 36]
r=0
- 28[D¢ 6],
Vv

N

20 0-1[ s ]2(—r—1
Vv

> S[0] = [—] )3 0(x,y, 0) + [g]zz

V¥
S[Oxx + Oyy + 0,, = 360] - 2 ;] S[Dé 6],
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VX0 gy2-r-1
! | = r
o=s 5[] rwro
V¥
+ 81 [;] S[Oy + Oyy + 6,, — 30] (14)
2¢
- 23-1‘ E] S[Df@]}.
Applying HPM upon Eq. (14)
® V) 01 gy2-r-1
= > pf, =81 —] Z[—] 07(x, y, 0)
n=0 S r=0 v
+87 [_] S|| 206 +|2p"6a| +|2 p"6n
S n=0 XX n=0 W n=0 7z
0 v 2( o
-3 p"g,||- 257 [;] S|DE| Y p6a|||-
n=0 n=0

Comparing p°

=>90 =51

3 el

N

Considered 6 = 1

{6

=00 = 0(x,y,2,0) + t 6(x,,2,0) = 6

20-1
=0, = s

9(0)‘ = 6, = 6(0) s-l[%] = 6, = 6(0),

= (1 - t) sinhx sinhy sinhz.

Comparing p!
2¢
=01 = 3_1l[§] S[(Bo)xx + (Bo)yy + (B0)zz — 390]]
2¢
- 28*[[2] sID¢ (eo)ll,
2
=60, = - zs-l[[%] S[Dﬂeo)]],
where
( oY -1 Sy
siof ol =[S st00 - 212 50,
n=0
Considered 0 = 1

S ( S (_1
S[Df6,] = [;] S[6] - [;] sinhx sinhy sinhz,

=>91 = -2871

bl

v 2¢ S ¢ s (_1 . ' .
[;] H;] S[0o] - [;] sinhx sinhy sinhz

DE GRUYTER

¢ p et
Sluo] - [;] sinhx sinhy sinhz

>

=)91 = - 28_1[[K
S

where
S[6;] = S[(1 - t) sinhx sinhy sinhz],
: . . v v)?
S[0o] = sinhx sinhy sinhz 3 ;] ,
¢ 2
=0;= -2871 [E sinhx sinhy sinhz % - [g] ”

>

Bl

=0, = - 2sinhx sinhy sinhz S!

vt
- [E] sinhx sinhy sinhz

=0, = - 2 sinhx sinhy sinhz S

’

]
e

{+1

T(C+2)

= 2 sinhx sinhy sinhz
Comparing p?

V%
:>92 = Sﬂ[[;] S[(gl)xx + (gl)yy + (Ql)zz - 391]]

b

-2 s-l‘[E]Z(S[Df 6]

20
56, = -2 sl[[%] S[Df(el)]],

where
s) s)?
D{ = [_] - [_] )
S[Dr 6] y S[64] . 6,(0)
¢
S
SID{ 61] = [;] NA
20 { ¢
=0, =-2571 [K] [[i] 5[91], =0;,=-2 S'1[[Z] 3[91]],
s) [lv s
where
0 2 sinhx sinhy sinh e
S[61] = S|2 sinhx sinhy sin zm,
0 inhx sinhy sinh il
S[61] = 2 sinhx sinhy sinhz § T+
v {+2
§[61] = 2 sinhx sinhy sinhz ;] ,
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Figure 1: Steps regarding the solution of the proposed regime.

vy V)2 . . . v+
=0, =-2571 [;] 2 sinhx sinhy sinhz [;] , =0, = —4 sinhx sinhy sinhz §™ [g]
o £+

= 0, = -4 sinhx sinhy sinhz m

*  Approx. profileatt=1
— Exactprofieatt=1
#  Approx. profileatt=2
— Exactprofie att=2
#  Approx.profleatt=3
— Exactprofileatt=3

Figure 2: Comparison of approximate and exact outcomes at t = 1, 2, and 3 for Example 1.
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DE GRUYTER

1 T T

¥ Approx. profileat t=1
Exact profie att= 1

#  Approx. profile att=2
——EBadprofieatt=2
*  Approx. profleatt=3
Exactprofie att=3

u(x.t)
T

Figure 3: Comparison of approximate and exact outcomes att =1, 2, and 3 for Example 2.

Comparing p®

V¥
=>93 = S_ll[g] S[(GZ)XX + (ez)yy + (02)22 - 362]]

>

-2 s-l{[%]zzswf 6]

20
é%=a54&]ﬂwme

where

st = [ si0. - 5] 60,

¢
ﬂw@n%ﬂﬂm,

e sed

:93 =-281

5 05= -2 s—ll[%](s[ez]],

where

¥ Approx. profileatt=1
Exactprofil att= 1
*  Approx. profileatt=2
Exactprofie att=2
¥ Approx. profile att=3
Exactprofie att= 3

09

08~

Figure 4: Comparison of approximate and exact outcomes at t = 1, 2, and 3 for Example 3.
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Approximated Solution att=1 Exact Solutionatt =1

T

I
3

X

Approximated Solution att =1 Exact Solutionatt =1

> 10000

000

5000

Approximated u(x,y.t)

Figure 5: Comparison of approximate and exact outcomes at t = 1 for Example 4.

Approximated Solution att=2 Exact Solutionatt =2

Exact Solution att =2

& =
=} =3
> S

Exact u(x,y,t)
N
8

Approximated u(x,y,t)

o

Figure 6: Comparison of approximate and exact outcomes at t = 2 for Example 4.

17
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. . . t2[+1
S[6,] = S[—4 sinhx sinhy sinhz T+ )|
v 20+2
S[6;] = -4 sinhx sinhy sinhz —] ,

=’93 =-28"1

v ¢ v 20+2
[;] -4 sinhx sinhy sinhz [;] ,

il

t3(+1

T3¢+2)

=03 = 8 sinhx sinhy sinhz S

= 05 = 8 sinhx sinhy sinhz

Comparing p*
v
=0, =871 [;] S[(03)xx + (B3)yy + (83),, — 305]

’

) s-ll[%]zzswf 6]

i
=0, = -2 s-l[[g]z S[Dﬂes)]],

where
S ( S (_1
SID{ (85)] = [—] S105] - [— 05(0),
v v
4 s\
S[D¢ (8)] = [;] S[0s],
v¥|(s)¢ v
a2 f o
=0, S S ‘ . S[0s]f| = 6, N S S[05]
where
) . . ¢3¢
S[0s] = S|8 sinhx sinhy sinhz m ,
v 3(+2
S[65] = 8 sinhx sinhy sinhz ;] ,
v v )32
=0, =-257" [E] 8 sinhx sinhy sinhz ;] ,

=0, = -16 sinhx sinhy sinhz §!

]

t4(+1

= 0, = —16 sinhx sinhy sinhz m

Comparing p°

DE GRUYTER

V¥
=>95 = s_ll[;] S[(94)xx + (94)yy + (04)zz - 304]]

il

-2 s-l[[%]KS[Df 6]

2¢
=05 = -2 Sl[[%] S[Df(94)]],
where

stoen =2 siea - (2] a0,

sIDf6] = [E](S[&;],

s

=05 = -2 =

= 05 = -2 S_ll[%](swl’

where

t4(+1

S[04] = Sl—lﬁ sinhx sinhy sinhz m ,

v 40+2
S[6,] = -16 sinhx sinhy sinhz ]

’

79
]

t5(+1
I(5¢+2)°
0=0p+0;+0;,+05+0,+ 05+ ..

N

:?05 = _2-5_1

c
[E] [—16 sinhx sinhy sinhz

=05 = 32 sinhx sinhy sinhz §!

= 05 = 32 sinhx sinhy sinhz

= 0 = (1 - t) sinhx sinhy sinhz
e
I({+2)
t2(+1
T2¢+2)
t3[+1
I3+ 2)
t4(+1
Tr(4¢+2)
t5(+1

+ 2 sinhx sinhy sinhz

- 4 sinhx sinhy sinhz

+ 8 sinhx sinhy sinhz

- 16 sinhx sinhy sinhz

+ 32 sinhx sinhy sinhz
Considered

3
{ = 1: =0 = sinhx sinhy sinhz 1 - ¢ + ¢2 - 43% + ...
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Approximated Solution att=3

T

Approximated Solution att=3

- ) ©
153 S

Approximated u(x,y,t)
o
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Exact Solutionatt=3

T T

Exact Solutionatt=3

Figure 7: Comparison of approximate and exact outcomes at ¢t = 3 for Example 4.

4 Graphs and error analysis

In the present section, graphical and tabular analyses of
the present regime is proposed for several examples. Along
with it, the error analysis via L. error norm is provided.
Compatibility of approx. and exact profiles is also notified.

In Figure 2, comparison of approximate and exact out-
comes is notified at t = 1, 2, and 3 for Example 1. In Figure 3,
comparison of approximate and exact outcomes is mentioned
att =1, 2, and 3 for Example 2. In Figure 4, comparison of
approximate and exact outcomes is notified at¢ =1, 2, and 3
for Example 3. In Figure 5, comparison of approximate and
exact outcomes is notified at t = 1 regarding Example 4. In
Figure 6, comparison of approximate and exact outcomes is
mentioned att = 2 regarding Example 4. In Figure 7, compar-
ison of approximate and exact outcomes is provided at ¢t = 3
regarding Example 4. Using Figures 1-3, the compatibility of
the outcomes is matched att = 1, 2, and 3 for Example 1-3,
respectively. Compatibility of outcomes is claimed at¢ =1, 2,
and 3, respectively, for Example 4. In Table 3, L. error is
calculated att =1, 2, and 3 for N = 21, 31, and 41 for Example
1. In Table 4, approximate and exact outcomes are matched at
t =1and 2, respectively, for Example 1. In Table 5, L., error is
evaluated att =1, 2, and 3 for N =11, 21, and 31, respectively,
for Example 2. In Table 6, approximate and exact outcomes

are compared at ¢ = 1 and 2 for Example 2. Through Table 7, an
approximate and exact solutions are provided at ¢ = 1 and 2
regarding Example 3. In Table 8, L., error is evaluated at t = 11,
12, and 13 for Example 4. In Table 9, approximate and exact out-
comes are matched at ¢t = 1.1 and 12, respectively, for Example 4.

4.1 Observation regarding numerical
convergence of the proposed regime

Through Table 3, numerical convergence of the proposed
regime is provided. It is notified that on increasing the value

i(x, t)

S

P Ldx Rdx Q
g

de{lc‘dx u(x +dx, t)
)

X x +dx

i(x +dx, t)
—_—p

u(x, t)

Figure 8: Telegraph transmission line with leakage.



20 — Mamta Kapoor et al.

Table 1: Iterative Shehu transform of diversified functions
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Table 2: Inverse Shehu transform of diversified functions [19]

S. No. f S[f ()] f(s,v) Q(t) = S[f (s, V)]
1 1 v 1 v 1
N S
2 t v 2 v2 t
s &
3 2 23 3 m+1 o
s3 [E] zm
4 t3 6t n
4 4 v m+1 T(:'Hl)
6 exp(at) v s
s—av
7 sin(at) av? > s —v av et
52:32‘,2 6 my? sin(mt)
8 cos(at) S Zem?
9 sinh(at) av? 7 % cos(mt)
s2 - a&? so+ m2v .
10 cosh(at) L 8 m? sinh(mt)
§% — av §4 — m-y
1 exp(bt) sin(at) v2 9 sv2 cosh(mt)
a (a2 +b2)v2 - 2bvs + 52 52— m¥v
12 exp(bt) cos(at) ITCEY ) N
(a%+b2v2 - 2bsv +s2
13 exp(bt) sinh(at) 2v2 . . H
N O s 4.2 Application of the proposed regime
14 exp(bt) cosh(at) w5
(a®v% - (bv - s)%) . s . .
15 exp0) — expa) o 2 4.2.1 Telegraph transmission line with leakage
o-o @ @ - -5
16 LeOU AN g 4 b ) Any system that transmits telegraph signals over a long
17 (sin(at) - at cos(at)) " distance — usually by a wire or cable — is referred to as a
3 02, N2 . . . . .
2a (@i syt telegraph transmission line with leakage. In this context,
18 t sin(at) 3 " " 3 i
2 e leakage" refers to the weakening of the signal down the
19 sin(at) + at cos(at) V252 transmission line, which can be caused by a number of
20 u . “’?Z”Z;z different things, including capacitance, inductance, and
. v(2s —av .
cos(at) - ;at sin(at) 2+ D) resistance.
21 t cos(at) v2(s? - a2v?)
(a2 +s2)2
23 Lsinh(at) vy Table 3: Analysis of errors for Example 1
y p
2a (av-s)Xav +s)*
26 t cosh(at) vis?
(av - s)%(av +s)? N L error
27 (3 - a’2)sin(at) - 3at cos(at) ve
8a5 (@21 528 t=1 t=2 t=3
i _ at 5,
28 T P 21 -3.1042x 1077 -6.0062 x 107 27791 x 1073
_ -16 _ -15 - -9
29 (1 +a%?)sin(at) - at cos(at) vis2 31 4.4409 x 10_16 9.3814 x 10_15 1.3578 x 1914
Tl @ p 41 -4.4409 x 10 -4.2744 x 10 3.0923 x 10
30 3t sin(at) + at? cos(at) v3s3 1 1 l
8a @+ s?® Converging up Converging up Converging up
31 t2 sin(at) (3s2 - vZa2yt to 101 to 101 to 101

2a

(@2+ 523

of N at different time levels, the L., error got reduced and
thereafter became stable regarding Example 1. Through
Table 3, the reduced error is obtained on an increase in
the number of grid points at different values of time levels.
The method got converged up to 107 regarding Example 2.
Through Table 8, the reduced L., error is notified at different
values of “t" on an increment in the number of grid points
regarding Example 4.

Table 4: Approximate and exact outcomes match for Example 1

X Approx. Exact Approx. Exact
t=1 t=2
1.00x107"  1.50x107"  1.50x10"  2.02x107%  2.02x1072
150 x 107" 1.57x107"  157x107"  213x1072 213 x1072
200x107"  1.65x107"  1.65x10"  224x1072 224x1072
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Table 5: Analysis of errors for Example 2
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Table 7: Approximate and exact outcomes match for Example 3

N L error X Approx. Exact Approx. Exact
t=1 t=2 t=3 t=1 t=2

1M -1.3916 x 1077 -2.6433 x 1074 -2.1305 x 1072 1.00 x 107" 0.4066 0.4066 0.1496 0.1496

21 8.8818 x107® -3.1042 x 107" -1.4863 x 107° 1.50 x 107" 0.4274 0.4274 0.1572 0.1572

31 —-4.4409 x 107" -4.4409 x 107" -1.6653 x 107" 2.00 x 107 0.4493 0.4493 0.1653 0.1653

1 l 1
Converging up Converging up Converging up
to 106 to 106 to 10

Table 6: Approximate and exact outcomes match for Example 2

X Approx. Exact Approx. Exact
t=1 t=2

1.00x 107" 4.07x107"  4.07x107"  150x10" 150 x 10"

150 x 1077 427x107"  427x10""  157x107" 157 x107"

200x107"  4.49x107"  449x10"  165x107"  1.65x 10"

Some main elements and traits of a leaky telegraph
transmission line:

Transmitter: A telegraph transmitter is located at one
end of the wire. This device produces electrical signals that
must be transferred in order to represent telegraph codes,
such as Morse code.

0 T

Transmission line: An electrical signal travels from the
transmitter to the receiver via a physical conductor, typi-
cally a wire or cable. When it comes to telegraphy, this
connection can link offices or telegraph stations over great
distances.

Leakage: Losses in electrical impulses along the trans-
mission line result in leakage. This may be caused by ele-
ments such as the line's inductance, capacitance between
the conductors, and wire resistance. The signal gradually
weakens as a result of these losses.

Receiver: A telegraph receiver at the other end of the
wire deciphers the weaker signals and transforms them
back into legible telegraph code. Despite any communica-
tion losses, the recipient bears the responsibility of
deriving the provided data.

Plotting the transmission line: A straightforward line
representing the physical link between the transmitter and
the receiver would be used to depict the telegraph trans-
mission line visually. In keeping with this, you might

Approx. solution att=1
Approx. solution att=2
Approx. soulion st L= 3

Figure 9: Approximated solution up to fourth term for a = 0.25 att =1, 2, and 3 regarding Example 1.
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Approx. sduton att = 1
Approx. solution att= 2
Approx. solution att= 3
.////
a 1 1 1 1 1 1 1 1
i 2 3 a4 S 6 7 8 9 10

Figure 10: Approximated solution up to fourth term for a = 0.45 att =1, 2, and 3 regarding Example 1.

incorporate components that depict leakage, like arrows
that show the signal intensity decreasing at different spots.

Consider an infinitesimal piece of the telegraph cable
wire as an electrical circuit (Figure 9), and consider that
the cable has the perfect insulation, so that the capacitor
and leakage to the floor are present. C is the capacitance to
the ground; x is the distance from the end of cable; u(x, t)
is the voltage; G is the inductance; i(x, t)is the current; L is

the inductance of the cable. Figure 8 is provided regarding
the notion of Telegraph transmission line with leakage.

4.2.2 Fractional derivative model equations are as
follows [10]:

2DSi=DFi+ 6+ ¢)Di+00pi

Approx. soluticn att=1
Approx. solution att= 2
Approx. solution att=3

2 3 4 5

6 7 8 9 10

Figure 11: Approximated solution up to fourth term for @ = 0.25 at t = 1, 2, and 3 regarding Example 2.
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Approx. sclution att= 1
— Approx. sdlulicn 8t L« 2
Approx. sdution 8t t= 3
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05
1 2 3 4

Figure 12: Approximated solution up to fourth term for a = 0.75 at t =1, 2, and 3 regarding Example 2.

and
DS u=DFu+ 6+ @)D u+ Ogu.

and where0 <a<1,1<§,<2.

<10

— hpprox. sclution att= 1
a— Approx. solution at 1= 2
———— Approx. sduticn at 1= 3

4.2.3 Study of effect of changed values of “a” on the
numerical solution

The effect of different values of fractional order derivative
is claimed via Figures 9-14. For Example 1, a = 0.25 and 0.45
is taken into account. For Examples 2 and 3, a = 0.25 and
0.75 is considered. These figures will be useful to

o
1 2 3 K

Figure 13: Approximated solution up to fourth term for a = 0.25 at ¢t = 1, 2, and 3 regarding Example 3.
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2 3 4 5

8 7 8 9 10

Figure 14: Approximated solution up to fourth term for a = 0.75 at t = 1, 2, and 3 regarding Example 3.

Table 8: Error analysis for Example 4

N L., error
t=11 t=12 t=13
20 23873 x 1073 1.3436 x 1072 6.5796 x 1072
30 25102 x 107" 43929 x 107'° 1.1569 x 107°
40 17462 x 1070 1.9918 x 107" 6.2482 x 107'°
! ! !
Converging up Converging up Converging up
to 1010 to 1010 to 1010

understand the changed values of fractional derivative and
approximated solution.

Table 9: Approximate and exact outcomes match regarding Example 4

(x, y) Approx. Exact Approx. Exact
t=11 t=12

(314x107",314 691x1072 0.069136 5.12x 1072 0.051217
x 107"

(6.28x107",6.28 130 x 107" 0.129592 9.60 x 1072 0.096004
x 107"

(9.42x107,9.42  243x10"" 0242915 1.80 x 107"  0.179956
x 107"

(x, y) are points in the spatial domain. t is the time level.

5 Concluding remarks

This article presents the integration of the Shehu trans-
form with the homotopy perturbation method. The series
and accurate approximation of the fractional HT equation
in various dimensions are the subjects of this research.
There are five instances of fractional HT equations in 1D,
2D, and 3D that are covered. Tabular and graphic discus-
sions are also included. It is evident from the graphs that
the approximate and accurate profiles are compatible with
one another. Tables are another way that the result's
numerical convergence is indicated. Numerical conver-
gence is clearly verified by the fact that L. error decreased
as the values of the various grid points increased. In the
literature, the suggested regime will undoubtedly be
useful in solving a variety of fractional differential equa-
tions, fuzzy differential equations, higher-order fractional
differential equations, and partial-integro differential
equations.
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