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Abstract: In this research study, we focus on the general-
ized regularized long wave equation and the modified reg-
ularized long wave equation, which play pivotal roles in
characterizing plasma waves in oceans and ion acoustic
waves in shallow water, a domain deeply rooted in phy-
sical phenomena. Employing two computational techni-
ques, namely, the optimal auxiliary function method and
the Laplace iterative transform method, we approximate
these equations. These formulas are used to characterize
plasma waves in oceans and ion acoustic waves in shallow
water. The results discovered have important ramifica-
tions for our comprehension of many physical events.
Our results show that both methods are robust, easy to
use, and successful. Both methods yield results that are
satisfactory to each other. With the use of tables and
graphs, we compared the two suggested approaches. The
findings suggest that the suggested methods can be widely
applied to explore other real-world problems.
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1 Introduction

Fractional calculus is a field that is now seeing a lot of
activity and is drawing the interest of many academics
and professionals worldwide. The origins of this field can
be found in a conversation between two well-known math-
ematicians that took place around 1695. There was not a
sufficient response to the search for the definition of a
function’s half derivative. However, it is predicted that
fractional calculus, which makes use of differentials and
integrals of any order, will eventually eclipse traditional
calculus, in which derivatives and integrals are restricted to
integer orders [1-4]. Fractional-order mathematical models,
however, have shown to be extremely useful in a variety of
scientific and engineering fields [5-7]. As such, a great deal
of attention has been paid to solving the issues that result
from these areas. Numerous nonlinear processes have been
modeled extensively using fractional-order differential and
integral equations [8,9]. In the context of mathematical mod-
eling of physical processes, fractional derivatives are more
advantageous than integer order derivatives. It is common
to see the application of fractional derivatives in systems
biology research. Moreover, fractional derivatives are essen-
tial to the mathematical modeling of many different kinds of
physical issues. In the realm of oceanic engineering, the use
of mathematical modeling to the study of tidal oscillations and
tsunamis offers one example [10-12]. These equations can also
find use in engineering disciplines, including flatness analysis,
prediction of harmonic interactions, refractive prediction and
diffraction, and refractive prediction in the area of coastal con-
structions. Nonlinear evolutionary equations hold significant
importance across diverse disciplines including solid-state
physics, biology, chemical physics, oceanic engineering, astro-
physics, fiber optics, and plasma physics. There are several
strategies available for addressing the approximate solutions
to FDEs in the context of physical problems, sometimes referred
to as perturbation methods. These techniques exhibit a high
degree of precision and effectiveness in solving nonlinear frac-
tional differential equations [13-17]. The current investigation
relates two cases of time-fractional nonlinear partial differential
equations [18-23]:
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Eq. (1) is known as the time-fractional nonlinear gen-
eralized regularized long wave (GRLW) equation, while
Eq. (2) is known as the time-fractional nonlinear modified
regularized long wave (MRLW) equation. In Eqgs. (1) and
(2), the derivative is represented in the Caputo sense of
order ¢. ‘W(¥, Q) shows the probability density function,
Q is the temporal, and ¥ is the spatial coordinate. £ shows
the positive parameter.

The regularized long wave (RLW) equations have appli-
cation in many areas, including magneto-hydrodynamics
waves in plasma, ion-acoustic waves in plasma, rotating
flow down a tube, longitudinal dispersive waves in elastic
rods, and pressure waves in liquid—gas bubble mixtures.
The RLW equations are regarded as significant equations
for various essential physical systems in the fields of applied
physics and engineering. In addition, this simulation includes
many fluid flow challenges, which involve significant con-
siderations of either viscous dissipation or shock dissipation.
Moreover, it has the potential to be utilized in the modeling of
dissipation-related nonlinear wave propagation problems. The
dissipation observed in this context can be attributed to several
factors, such as heat conduction, mass diffusion, thermal radia-
tion, viscosity, chemical reactions, or other sources, depending
on the specific modeling of the situation [21-23]. The RLW
equations were formulated by Peregrine as a mathematical
framework for studying solitons and modeling small amplitude
long waves occurring on the outer layer of water. The present
model serves as an alternative to the Korteweg-de Vries (KdV)
equation in the investigation of soliton solutions. Secondary
solitary waves are generated from the collision of two soli-
tary waves, which are alternatively referred to as sinusoidal
solutions. The aforementioned attribute holds significant
importance within the context of the RLW equation. This
characteristic exhibits similarities to the phenomenon of
particle collisions, which give rise to the production of addi-
tional particles and radiation in the field of subatomic phy-
sics. Hence, the examination of the RLW equations yields
insights into the phenomenon of generating secondary soli-
tary waves and radiations, which can be linked to mechan-
isms observed in the field of particle physics. The nature of
collisions between solitary waves in the RLW equations dif-
fers from that of collisions between solitary waves in the
KdV equation. The soliton of the KdV equation exhibits
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interactions, collisions, and subsequent emergence without
interruption, except for a phase change. The soliton of the
RLW equations demonstrates the phenomenon wherein two
solitary waves can interact by passing through each other,
resulting in a reduction in amplitude and the generation of
secondary waves. In addition to this, it is possible for a notch
to appear in the negative amplitude wave. The aforemen-
tioned notch undergoes a transformation and develops into
a subsequent wave characterized by negative amplitude.
The phenomenon of wave amplitude shifting in opposite
ways can lead to the creation and elimination of many sec-
ondary waves with both positive and negative amplitudes.
The presence of several secondary waves could potentially
give rise to sinusoidal residual effects, which manifest as
radiation. The numerical formulation for the RLW equations
was presented by Benjamin in 1972. The RLW equations are
reliant upon the principles of conservation, including the con-
servation of mass, momentum, energy, and others [24,25]. The
fractional RLW equations are also utilized to clarify some
significant phenomena within the domain of ocean engi-
neering and science, including shallow water waves charac-
terized by long wavelengths and small amplitudes. The FRLW
equations, which describe nonlinear waves, have garnered
significant attention from researchers studying shallow water
waves in oceanic environments. The mathematical modeling
of nonlinear waves in the ocean was carried out using the
FRLW equations. In addition, the FRLW equations are utilized
to explain the phenomenon of Tsunamis, which are character-
ized by the presence of massive ocean waves. The large-scale
internal waves that occur within the ocean depths as a result
of temperature variations, posing a potential threat to naval
boats, can be effectively modeled using the FRLW equations in
a novel manner. Benjamin et al [25] introduced the adoption
of the RLW equations as a more favorable option compared to
the traditional KdV equations for the analysis and interpreta-
tion of a wide range of physical phenomena in the fields of
ocean engineering and science. The study of solitary waves
has received significant attention in the field of ocean wave
research. When two or three solitary waves encounter, it has
been observed that these waves tend to maintain their shape.
However, certain investigations have indicated the presence
of a little tail emerging after the collision occurs. However,
these characteristics have prompted researchers to conduct
extensive investigations in the realm of ocean waves during
the past few decades, employing both computational and ana-
lytical techniques to solve the associated problems. The FRLW
equations provide the capability to effectively characterize
numerous maritime engineering problems encountered in
the actual world, offering a simplified approach. The time-
fractional nonlinear MRLW equation and the time-fractional
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nonlinear GRLW equation have approximate solutions, which
is the aim of the current work. We use two computational
approaches to solve the stated problems: the iterative
Laplace transform technique and the optimal auxiliary
function method (OAFM). Hammad et al. [26] first presented
the idea of OAFM as a way to get approximate analytical
solutions for the motion of a fourth-grade fluid on a vertical
cylinder. This methodology offers an effective strategy for
managing the convergence of the approximation solutions
through the utilization of convergence-control parameters.
In the past few years, the examination of this particular
process has garnered significant attention from numerous
scholars, emerging as a tool of significant potential in var-
ious domains within the areas of natural sciences and engi-
neering. The OAFM is utilized to address the nonlinear
differential equation associated with the Blasius problem
[27]. The approximate solution for the thin film flow of a
third-grade fluid on a moving belt problem is obtained using
optimal auxiliary functions [28]. The Laplace iterative trans-
form method (LITM) was utilized in our study to evaluate
the proposed models, which combines the Laplace trans-
form with the novel iterative approach (NIM) introduced
by Jafari et al. [29].

2 Preliminaries

In this context, we present a set of fundamental definitions
related to fractional calculus.

Definition 2.1. The Riemann-Liouville fractional integral is
mathematically defined as follows [30]:

R(U)

T{p)'! (9 - Uy

JOW(®) = W(W).

JOWW) = dU,9>0,0>0, ()

In the above equation, I' represents the Gamma function.

Definition 2.2. In the Caputo sense, fractional derivative is
given by [33],

DIW(Q) = JOW(Q)D W(Q)

@

= T @J(Q I W (B,

where

-1<¢p<k, k€N, h>0.
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Definition 2.3. For the function W(W¥, Q) the Caputo time-
fractional differential operator of order ¢, where k is the
smallest integer that exceeds ¢, is defined as follows [31,32].

*W(Y, Q
DEW(Y, Q) = —ag(zw )
WY, B) ©)
k-p-1—_____ > 77
r(k w)I(Q 20 QK d,
k-1<g¢<k
kW (¥, Q)
DEW(P, Q) = =, keEN.

Definition 2.4. If W(¥, Q) expresses the Caputo fractional
derivate of the function “W(¥, Q), then its Laplace trans-
form is presented as follows [33-35]:

k-1
LIDGW(Y, Q)] = 0~ ) s9P L ®)(0"),
5 ®)
(k-1<¢<k),

where M(s) represents the Laplace transform of the func-
tion W(¥, Q).

3 OAFM methodology

To widen the scope of the OAFM’s effectiveness, it is essen-
tial that one consider its utilization inside the framework
of partial differential equations. The basic partial differen-
tial equation (PDE) is typically represented as follows:

X[W(, Q)] + R, Q) + Y[W(Y,Q)] =0, 7

subjected to ICs,

oW
|- 8
[w ag] 0, ®)

where operators denoting linear and nonlinear functions
are symbolized with the symbols X and Y, respectively. R
denotes the source function, whereas the unknown func-
tion is denoted by W(¥, Q).

The task of finding the exact solutions of highly non-
linear equations is a considerable difficulty. The following

equation presents the approximated solution.
WW, Q) =Wy (¥, Q)+ Wy(¥,2,0,) i=12.j7 9

To derive the first order approximation, Eq. (9) is substi-
tuted into Eq. (7), leading to the following expression:

[Wo(®, Q)] + X[Wi((¥, Q), 6))]
= R(Y, Q) + Y[Wy(¥, Q) + Wy(¥,Q,0,)] = 0.

(10)
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To obtain initial approximation, the following equation is
utilized:
0. (11)

X[Wy(¥, Q) + R(¥, Q)] =0, [‘Wo,

‘Wo]
Similarly, we can achieve Wy(¥, Q), i.e., first-order approx-
imation as follows:

X[(Wl(lp Q, @)] + Y[(Wo(‘*p, Q) + "Wl(‘-P, Q, @n)] =0,

6’W1] (12)

%[‘Wl, 0.
The following is the expression for the expansion of the
nonlinear term.

YW, Q) + Wy(¥, Q, 6))]

< Wb 13)
2 _4;:1 YOI WP, Q).
b=1

= Y[W(P, Q)] +

To effectively tackle the difficulties associated with
solving Eq. (12) and enhance the rapid convergence of the
first-order approximation “Wy(¥, Q, ©;) and the estimated
solution W (W, Q), we propose an alternative formulation
to substitute the existing term in Eq. (12). This alteration
enables the formulation of Eq. (12) in the following manner:

X[ WY, Q, 6;)] + Ui [ Wo(¥, DIY [ Wy(W, Q)]
+ Uy [ Wo(¥, Q), ;] =0,

oWy
2% o

(14)
%[’Wl,

Remark I. The auxiliary functions U; and U,, as illustrated
in Eq. (14), rely upon the initial approximation
Wo(P,Q) and a set of unknown parameters ©; and
0;,1=123..s,j=s+1s+2,..d.

Remark II. The auxiliary functions U; and U, exhibit an
absence of uniqueness and have a similar form as ‘Wy(¥, Q).
This arrangement can be represented as Y [Wy(¥P, Q)], or a
combination of Y [Wy(¥, Q)] and ‘Wy(¥, Q).

Remark III. The auxiliary functions will exhibit polynomial
behavior if Wy(¥, Q) and Y [Wy(¥, Q)] are polynomial func-
tions. Similarly, they will display exponential behavior if
Wo(P, Q) and Y[Wy(¥, Q)] are exponential functions.
Likewise, if Wy(¥, Q) and Y[Wy(¥, Q)] are trigonometric
functions, the auxiliary functions will manifest trigono-
metric behavior. If Y[ WP, Q)] = 0, then the initial guess
will correspond to the exact solution of the original problem.

The convergence control parameters ©; and ©; are
determined using the least square approach. In this
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particular context, we introduce the functional that inte-
grates the convergence control parameters within the
designated area.

QY
M, ) = [[Exw, 0,0, 0,)dwde, (15)
00
where E expresses the residual.
E(?,Q, 6, 6)) = X[W(¥,Q,6,6)] + R(¥, Q)
+Y[W(Y, 2,6, 6)],
i=1,23..s,j=s+1Ls+2..d
) ) a )
Mi_ oMy oMy M )
90, 90, 00, 90,

The equation mentioned earlier is employed to determine
the numerical values of the convergence control parameters.

4 Basic idea of LITM

To explain the fundamental concept of the iterative Laplace
transform method, we examine a general space-time frac-
tional partial differential equation accompanied by a starting
condition in the following format:

DEW = H(W, DYW, DEW, ....),
a,beN,

a-1<g<a (A7
b-1<w<h,
subjected to ICs

WY, 0) = Xo(P), @ = 0,1,2,3 .., a-1. (18)

Here, H(W, DYW, DX¥W, ....) is a linear or non-
linear operator of W, DHW, Z) OW.......,and the unknown
function ‘W = W(¥, Q) will be established later.

After taking Laplace transform of both sides of Eq. (17),
we achieved

a-1
Y s W e Y, 0),

w=0

= LIH(W, DLW, DEW, ..)].

SOLIW(Y, Q)] -

19)

In an equivalent manner,
a-1
= ) sTP W)Y, 0)

w=0
+ SOLIH(W, DLW, DEW, ..,

by applying the Laplace inverse operator to both sides of
Eq. (20), we received

LIW¥, Q)] 20)

a-1
WM, Q) =LY ) s @, 0)
m*z=0 (21)
+ LsOLIH(W, DYW, DFW, )]



DE GRUYTER

This can be expressed in a manner as follows:

a-1
Y sTEW @)W, 0)

w=0

+ F(W, DYW, DEW, ...),

WW,Q) =L

(22)

here
FIW, DLW, DEW, ....)
= LsOLIH(W, DYW, DEW, ...)]].
The LITM is a mathematical technique that expresses

the solution as an infinite series.

WY, Q) = YW,

c=0

23
where the term ‘W, can be computed iteratively. The
operator F(W, DYW, D¥W, ....) can be divided into

linear or nonlinear components as follows:

B

Z (WL‘:D{LI{' Z (WC,D‘Zyw Z (WL‘:"' ]

c=0 c=0 c=0

= 7:((M/O: ﬁ’Wo, D\zyw(W(), )
S < < 4)
+ Y F Y Wa, D4 Y Wer,DE Y W, .
c=1 \w=0 w=0 w=0
00 c-1 c-1 c-1
- Z Z WDy Z (Ww,Dlzpw Z W, een |
c=1 \w=0 w=0 w=0

By substituting Eqgs. (23) and (24) into Eq. (22), we achieved,

© a-1
wac =, Z sT-T @)y, ()
c=0 w=0
+ F(Wo, DYWo, DEW,, ....)
o C C Cc (25)
+ YT D W D4 Y Wer, DX Y Wa, .
c=1 \w=0 w=0 w=0
0 c-1 c-1 c-1
- YT 2 W D% Y We,D¥ Y W, ]
=1 \w=0 w=0 w=0
We format
a-1
Wo= L7 ) sToWO(Y, 0)]
w=0
(Wl = ?((Wo, Dg(WO, D%gw(WO, )
a a a , (26)
War1 = F| Y Wern DY Y Wer, DF Y W, e
w=0 w=0 w=0

a-1 a-1 a-1

D> We, D% Y W, D% Y Wa, .. ] az1
w=0 w=0

w=0
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The last solution is obtained as follows:

(W(IIJ’ g) = (WO(lIJ’ Q) + (Wl(lpx Q) + ..t (Wa(lpy Q)y
a=123...

@7

5 Applications

5.1 Problem 1
5.1.1 Solution using OAFM

Let us consider Eq. (1), subjected to the initial condition [38]

as follows:
W(Y, 0) = 3b sech? 11 b |, (28)
’ 2\V1+b
Linear and nonlinear terms in Eq. (1) are as follows:
*W(¥, Q)
=" 29
X[W(W, Q)] 307 s (29)
ow ow W
= . (30)
YW, Q)] ¥y W v ¥ oW29Q

Exact solution of Eq. (1) when ¢ =1 is given by [38]:

WP, Q) = 3b sech?

1 b
N1+p WP-Qa+ b)Q)] 3D

The following the initial

approximation:

equation illustrates

WY (P, Q)

307 0. (32)

The result produced through the use of the inverse operator

is as follows:
1 b
2\1+b w]

By substituting Eq. (33) into Eq. (30), the resulting
expression yields the nonlinear component as follows:

Wy, Q) = 3b sech? (33)

3 b b
——Eb [1+b][l+6b+COSh‘ mlp]
S T U
2\V1+b 2\N1+b |

The selection of auxiliary functions is made as follows:

(34

x sech
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1 b
2\ —
3bsech‘2 1+b‘Pl

2

[U1=@1

. (33
1/ b
2|2 |2
+(E)23bsech[2 1+b11’”,
1/ b °
_ 2|2 |2
U, (E)gi%bsech[2 1+b‘P”
(36)

8
1] b
+ @y|3b sech?| =, [ ——¥(| .
4|7 5¢¢ [2\/ 1+b
The standard statement of the first-order OAFM approxi-
mation is as follows:

*W(Y, Q, ;) _
Qe B

—[U1[ Wo(P, Q)]Y [Wo(¥, )] a7
+ U [ Wy(W, Q), 65]].

By finding Eq. (37) and then applying the inverse operator,
we obtain the first-order approximation as follows:

1 b
2\1+b v
4

1 b
— 5 -

3,888b°0, sech[ N1+ ‘Pl

b | b
+ m[l+6b+€03h[ mq’]

270 °

3 sech
16(p1"cpb sec

WY, Q) =

-432h30;

(38)
b
2 -
x 11304 + 72b*®, + 40, cosh 1+D lp}
+ O, cosh|2, L‘P tanh
! 1+b
X 1 b p
2\V1+b '
According to OAFM,
WP, Q) = WP, Q) + Wy(¥, Q). (39)

The convergence parameters for Eq. (39) are given as
follows:

07 = 562.511281098265; 0, = —79087.0489706844;
03 = 310.7258673082475; 0, = —86285.58836719836.

5.1.2 Solution by LITM

Let us consider Eq. (1) with the initial condition as follows:
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1/ b
2V1+b

W(P, 0) = 3b sech? g, (40)

By applying Laplace transform to Eq. (1) using Eq. (40), we

achieved,
3b sechz[% /%W]
LW, Q)] =
S (41)
1 ow ow W
¥ 54_ v Vou " awragl

By applying inverse Laplace transform to Eq. (41), we
achieved,

1 b
- 2|2 |2
W(¥, Q) = 3b sech lz 1+ ‘Pl

1 ow
+ Y= rl-
£ s® L[ oy

(42)
*w
ov20Q

ow
w -
ov

By utilizing the LITM procedure, we obtained the approx-
imation as follows:

1 b
= 2| =, | —— 43
Wy(¥, Q) 3bsech[21/1+b‘P], (43)
Qo3b 1fb
WP, Q)=72F(1+(p) 1+6b
b 1 b |
- - = (44)
+ cosh 1+b‘P]sech[2 1+b‘P

tanh

1/ b

— | —¥

2V1+b ]

In the same way, we can find ‘W, Ws......
The last solution is achieved as follows:

W =Wy + W + ..

5.2 Problem 2
5.2.1 Solution using OAFM

Let us consider the MRLW equation shown in Eq. (2), sub-
jected to the initial condition [38] as follows:

b
= - . 45
WY, 0) = Vb sech [E(“b)](tp A) (45)
Linear and nonlinear terms in Eq. (2) are as follows:
P
xiwer, o) = SN2, (16)

oQe
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Table 1: Exact solution, OAFM solution, and LITM solution for distinct values of ¢ at @ = 0.0001 and b = 0.02 for problem 1

Exact solution

OAFM solution

LITM solution

OAFM solution

LITM solution

Y p=1 o=1 =1 ¢ =0.85 ¢ =0.85

0. 0.059999999996 0.059999999999 0.060000000000 0.059999999998 0.060000000000
0.1 0.059997064916 0.059997065154 0.059997065154 0.059997085168 0.059997085168
0.2 0.059988248825 0.059988249299 0.059988249299 0.059988289319 0.059988289319
0.3 0.059973555181 0.059973555889 0.059973555889 0.059973615899 0.059973615899
0.4 0.059952989743 0.059952990685 0.059952990685 0.059953070660 0.059953070660
0.5 0.059926560567 0.059926561743 0.059926561743 0.059926661650 0.059926661650
0.6 0.059894278002 0.059894279410 0.059894279410 0.059894399209 0.059894399209
0.7 0.059856154678 0.059856156317 0.059856156317 0.059856295960 0.059856295960
0.8 0.059812205498 0.059812207367 0.059812207367 0.059812366795 0.059812366795
0.9 0.059762447624 0.059762449721 0.059762449721 0.059762628870 0.059762628871
1. 0.059706900465 0.059706902787 0.059706902788 0.059707101584 0.059707101586

YW, Q)] = ow ‘6 (WZB‘W g 3w @) By substituting Eq. (50) into Eq. (47), the resulting expression
’ oy oy 0P20Q yields the nonlinear component as follows:

Exact solution of Eq. (2) wheng =1 is given by the fol-
lowing equation [38]:

a1+b)(w—(b+DQ—A). (48)

WY, Q) = Vb sech

The following equation presented illustrates the initial
approximation.

WYY, Q)

49
300 0. (49)

The result produced through the use of the inverse operator is as

follows:
b
(Wo(lp, Q) = \/E sech lm (lp - A) . (50)

YWY, Q)] = -———==|bsec RNICER))
(1 +b) 1+ b)E
2
+ 6b sech m tanh 51)
(1 +Db)§
MECCER))
e ||

The selection of auxiliary functions is made as follows:
2

U; = 04{/b sech w-2

_b
1+ b)

b
+ 6y vb sech [75(1 D) (—ﬂ)’ ,

(52)

Table 2: Error analysis of problem 1 for distinct values of ¢, at @ = 0.0001 and b = 0.02

AE of OAFM AE of LITM AE of OAFM AE of LITM
Y o=1 p=1 ¢ =0.85 ¢ =0.85
0. 2.60394483 x 107" 3.06000363 x 1072 1.13997006 x 107" 3.06000363 x 1072
0.1 2.38189808 x 107"° 2.38320849 x 1070 2.02520203 x 1078 2.02525720 x 1078
0.2 473384463 x 107"° 473384463 x 107° 4.04937062 x 1078 4.04937062 x 1078
0.3 7.08075674 x 107'° 7.08055163 x 107'° 6.07181796 x 1078 6.07180933 x 1078
0.4 9.42137749 x 107"° 9.42137749 x 107° 8.09173790 x 1078 8.09173790 x 1078
0.5 1175424590 x 107° 1175437942 x 107° 1.01083175 x 1077 1.01083231 x 1077
0.6 1407762496 x 107° 1.407762496 x 107° 121207348 x 1077 121207348 x 1077
0.7 1.638943536 x 107° 1.638919568 x 10° 1.41281565 x 1077 1.41281464 x 1077
0.8 1.868719012 x 107° 1.868719017 x 10™° 161297359 x 1077 161297359 x 1077
0.9 2.096793301 x 107° 2.096972618 x 107° 1.81246110 x 1077 1.81246864 x 1077

1. 2.322817979 x 107° 2.323494346 x 107°

2.01119022 x 1077 2.01121869 x 1077
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Figure 1: (a) The 3D visual of OAFM solution, (b) the 3D visual of LITM
solution, and (c) the 3D visual of exact solution of the function # (¥, Q)
ate =1 and b = 0.02 for problem 1.

U, =03 Jb sech

6
b
[5(1 + b)](‘II - ’

(53)

+ 0y Jb sech

b
[5(1 + b)] H)]
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Figure 2: Comparison of 3D visuals at distinct values of ¢ using OAFM for
problem 1.
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Figure 3: Comparison of 2D visuals at distinct values of ¢ for the function
W (¥, Q) at b = 0.02.

The standard statement of the first-order OAFM approx-
imation is as follows:

% = —[Uy[Wo(E, QY [ Wy, Q)]

+ [UZ[(WO(IP: Q)r e_u]]

.(54)

Finding Eq. (54) and then applying the inverse operator, we
obtain the first-order approximation as follows:
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Table 3: Exact solution, OAFM solution, and LITM solution for distinct values of ¢ at Q = 0.01, b = 0.001, A = 10, and £ = 1 for problem (2)

Exact solution

OAFM solution

LITM solution

OAFM solution

LITM solution

Y p=1 p=1 =1 ¢ =0.85 ¢ =0.85
0. 0.030103483941 0.030103472245 0.030103472244 0.030100223030 0.030100223029
0.1 0.030132499273 0.030132487661 0.030132487660 0.030129265767 0.030129265766
0.2 0.030161268989 0.030161257463 0.030161257463 0.030158063034 0.030158063034
0.3 0.030189791810 0.030189780371 0.030189780371 0.030186613551 0.030186613551
0.4 0.030218066464 0.030218055114 0.030218055114 0.030214916045 0.030214916045
0.5 0.030246091687 0.030246080428 0.030246080428 0.030242969250 0.030242969250
0.6 0.030273866225 0.030273855056 0.030273855056 0.030270771911 0.030270771911
0.7 0.030301388829 0.030301377754 0.030301377754 0.030298322780 0.030298322780
0.8 0.030328658262 0.030328647281 0.030328647281 0.030325620617 0.030325620617
0.9 0.030355673295 0.030355662408 0.030355662408 0.030352664192 0.030352664192
1. 0.030382432705 0.030382421915 0.030382421915 0.030379452284 0.030379452283
Qv I W, Q) = WY, Q) + Wy(¥, Q). (56)
WY, Q) = o -b303sech (¥ - ))\/ A+ b
Pre The convergence parameters for Eq. (56) are as follows:
‘/7 8
- b*e, Sech[(qj - \/( bb)é ] 0, = 2582.258296906742; ©, = —1471956.734175127;
1+
) ©3; = —460826.7010963857; ©, = 4.51492442310289 x 108,
1 [ b
+ ———|b|bOsech|(¥ - A),| ———
Ja+nE| | V- b)E]
14
b (35 522 Solution by LITM
+ b0, sech|(W - 1) | —2—— .2.2 Solution by
256C [( )\/(1 N b)f] ]
JB(¥ - ) Let us consider the MRLW equation shown in Eq. (2), sub-
ech A+ D)E jected to the initial condition [38] as follows:
) W(Y, 0) = /b sech [L] @-nl. 61
Jb(¥ - 1) Jb(® - ) ¢+ Db)
x [1 + 6b sech tanh
1+ b)¢ J@ + b)Y

By applying Laplace transform to Eq. (2) and using (57), we

According to OAFM, achieved

Table 4: Error analysis for problem 2 for distinct values of ¢, at @ = 0.01, b = 0.001A =10,and § = 1

AE of OAFM AE of LITM AE of OAFM AE of LITM
Y p=1 p=1 ¢ =0.85 ¢ =0.85
0. 1.16965007 x 1078 1.16970235 x 1078 3.26091117 x 107° 3.26091227 x 107°
0.1 116118965 x 1078 116120395 x 1078 3.23350573 x 107° 3.23350603 x 107°
0.2 115257836 x 1078 115257836 x 1078 3.20595451 x 107° 3.20595451 x 10°

0.3 114382803 x 1078 114382599 x 1078 3.17825863 x 107° 3.17825859 x 107°

0.4 1.13494724 x 1078 1.13494724 x 1078 3.15041918 x 107° 3.15041918 x 107°
0.5 1.12594134 x 1078 1.12594257 x 1078 3.12243720 x 107 3.12243722 x 1078
0.6 1.11681246 x 1078 1.11681246 x 1078 3.09431364 x 107° 3.09431364 x 107°
0.7 1.10755944 x 1078 110755738 x 1078 3.06604943 x 107° 3.06604939 x 107°
0.8 1.09817787 x 1078 1.09817787 x 1078 3.03764544 x 107° 3.03764544 x 107°
0.9 1.08866007 x 1078 1.08867447 x 1078 3.00910247 x 107® 3.00910278 x 107°

1.07899506 x 1078

1.07904773 x 1078

2.98042128 x 107°

2.98042240 x 107°
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RV
2 0.0

©

Figure 4: (a) The 3D visual of OAFM solution, (b) the 3D visual of LITM
solution, (c) the 3D visual of exact solution of the function 7" (¥, Q) at
»=19=0.01, b=0.001, A=10, and =1 for problem 2.
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Figure 5: Comparison of 3D visuals at distinct values of ¢ using OAFM for
problem 2.
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Figure 6: Comparison of 2D visuals at distinct values of ¢ for the function
# (¥, Q) at b =0.001, A = 10, and £ = 1 for problem (2).

JD sech [ﬁ] W - 1)

s
oW oW (58)

1
- _ 2
* s‘PLl v Wy

LIWW, Q)] =

3w
o¥29Q

+&

By applying inverse Laplace transform to Eq. (58), we
achieved
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WY,Q) = Jb sech

b
[5(1 +b) - ’D'

1 ow ow
al 2 200 (59)
+ L [ ‘pi:[ v - 6W ow

63W

GWZBQ

By utilizing the LITM procedure, we obtained the approx-
imation as follows:

Wy(¥, Q) = /b sech

b
ER A)]’

o b sech by -1
V@ + b)T(A + o) (1+b)§

2
Vb - 2) ’h

1+ b)§
In the same way, we can find W, Ws......
The last solution achieved as W = W, + W, +

WY, Q) =

:

(1+Db)§

+ 6b sech

6 Results and analysis

Table 1 in problem 1 exhibits the exact solution of Eq. (31),
OAFM solution, and LITM solution of Eq. (1) ate =1, ¢ = 0.85
when b = 0.02 and Q = 0.0001, and Table 2 in problem 1
exhibits the absolute errors of OAFM solution and LITM solution
of Eq. 1) at ¢ =1, ¢ = 0.85 when b = 0.02 and Q = 0.0001.
Figure 1(a) shows the 3D visuals of OAFM solution of Eq. (1)
atg =1,b=0.02, and Q = 0.0001. Figure 1(b) shows the 3D
visuals of LITM solution of Eq. (1) at ¢ =1,b = 0.02, and Q
= 0.0001. Figure 1(c) represents the 3D visuals of exact solu-
tion of Eq. (31) at b = 0.02. Figure 2 in problem 1 highlights the
comparison of 3D visuals of OAFM solution of Eq. (1) at dis-
tinct values of ¢ at b = 0.02. Figure 3 in problem 1 highlights
the comparison of 2D visuals of OAFM solution of Eq. (1) and
exact solution presented in Eq. (31) at distinct values of ¢ at
b = 0.02 . Table 3 in problem 2 exhibits the exact solution of
Eq. (48), OAFM solution and LITM solution of Eq. (2) at
9 =1,0=0.85 when Q = 0.01, b = 0.001, A = 10, and & = 1.
Table 4 in problem 2 exhibits the absolute errors of OAFM
solution and LITM solution of Eq. (2) at¢ = 1, ¢ = 0.85 when
Q =0.01, b = 0.001, A = 10, and ¢ = 1. Figure 4(a) represents
the 3D visuals of OAFM solution of Eq. (2) at ¢ = 1, when
Q =0.01, b = 0.001, A = 10, and¢ = 1. Figure 4(b) represents
the 3D visuals of LITM solution of Eq. (2) at ¢ =1, when

Fractional view analytical = 11

Q =0.01, b = 0.001,A4 = 10, and ¢ = 1. Figure 4(c) represents
the 3D visuals of exact solution of Eq. (48) at b = 0.001,
A =10, and ¢ = 1. Figure 5 in problem 2 highlights the com-
parison of 3D visuals of OAFM solution of Eq. (2) at distinct
values of ¢ when b = 0.001, A = 10, and ¢ = 1. Figure 6 in
problem 2 highlights the comparison of 2D visuals of OAFM
solution of Eq. (2) and exact solution presented in Eq. (48) at
distinct values of ¢ when b = 0.001, A = 10, and ¢ = 1. This
research study was done for solving the time-fractional non-
linear GRLW equation and time-fractional nonlinear MRLW
equation using two computational methods, namely, the
OAFM and LITM. The outcomes obtained from both techni-
ques are nearly equal and strongly satisfy each other results.

7 Conclusion

This study examines the use of the OAFM and LITM
approaches to solve time fractional RLW, nonlinear time-
fractional GRLW, and time-fractional MRLW equations.
The mathematical simulation program Mathematica 13.3
is employed for this purpose. The findings that were achieved
play an essential part in the exploration of nonlinear physical
systems that arise in both the pure and applied fields
of science and engineering. This study demonstrates that
the proposed methodologies are straightforward to execute,
effective, and adaptable for a wide range of nonlinear equa-
tions. Both of these strategies are effective in reducing the size
of mathematical calculations. The tables and figures demon-
strate that as the parameter ¢ approaches the classical value
of 1in the given problem, the approximate solution converges
to the precise solution.
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