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Abstract: The calendering process is pivotal in enhancing
various materials’ surface properties and characteristics,
making them indispensable for achieving desired product
quality and performance. Also, this process holds signifi-
cant relevance in various industrial applications, such as
polymer processing, food production, and the manufac-
turing of composite materials. So, the aim of this study is
to theoretically examine the calendering process applied to
third-grade materials. It specifically explores how tempera-
ture variations impact material behavior during passage
through two counter-rotating heated rolls. Particular consid-
eration is given to the influence of temperature-dependent
viscosity via Reynold’s model. The complexities of mass,
momentum, and energy balance equations are reduced
through the application of the Lubrication approximation
theory. Solutions to these equations for variables such as
velocity, flow rate, and temperature fields are accomplished
by combining perturbation and numerical techniques. In
relation to the calendering process, the thickness of the
exiting sheet is specifically explored. Furthermore, this study
quantifies substantial engineering parameters such as roll-
separating force, pressure distribution, and power transferal
from the rolls to the fluid. The governing equations belong to
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three key dimensionless parameters, namely, the Brinkman
number, which is a product of Eckert number and Prandtl
number, the temperature-dependent consistency index p,
and a parameter n correlating to non-Newtonian behavior.
The outcomes of this study are presented both graphically
and in tabular form. It has been observed that a rise in the
third-grade parameter decreases detachment point and sheet
thickness due to increased material rigidity. Furthermore,
established results in the literature regarding the calendering
of Newtonian fluids are validated.

Keywords: calendaring, third-grade material, variable visc-
osity, rigid rolls, lubrication theory, numerical solutions,
exact solutions

Nomenclature
Hy half of the nip region
H/Hy thickness of the coating
R (m) roll radius

. m
U roll velocity [?]
p fluid density %]

dimensionless flow rate

1 Introduction

Calendering is a vital mechanical procedure in which a
material, often in a semi-molten state, is passed through
sets of heated rollers to achieve a sheet of desired thick-
ness. The term calendering, derived from the Greek word
“kylindros” meaning cylinder, refers to these combined
rolls. The process significantly enhances the surface prop-
erties, reduces sheet thickness, and imparts special effects
like a glaze or polish, which significantly affect the final
product’s aesthetics. There are many different ways by
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which the calendaring process can be used in real life.
Many industries, like those that make paper, textiles, plas-
tics, and rubber, use calendaring methods. Calendering is
an essential part of the paper business for improving paper
products’ surface finish, smoothness, and printability. It
helps textile companies make materials with the right
thickness, texture, and gloss. Calendering is used in the
plastics industry to shape and laminate plastic sheets and
films that are used for building materials, car parts, and
packaging. Similarly, calendering is used to make sheets or
coats for tires, conveyor belts, and seals, among other
things, in the rubber industry. Overall, calendering is an
important part of improving product quality, performance,
and usefulness in many fields, which is why it is an essen-
tial part of modern manufacturing.

The technique has widespread application in var-
ious industries, especially in manufacturing paper, textiles,
coated fabrics, and plastic films, to achieve a specified sur-
face finish and texture. Edwin and Charles initially used this
technique for shaping materials into films and sheets in the
United States [1] in the 1830s. Ardichvili [2] later performed
the first theoretical analysis of calendering, which was
further extended for Newtonian and Bingham plastics by
Gaskell [3]. The process has been subject to continuous
improvements, with notable contributions from McKelvey
[4] and Brazinsky et al. [5]. Alston and Astill [6] investigated
hyperbolic tangent viscosity model fluids, while Middle-
man’s [7] approximation solution focused on Maxwell fluid.
Concurrently, Tokita and White [8] incorporated experi-
mental observations on the milling of elastomers, and Sofou
and Mitsoulis [9] provided numerical results for isothermal
viscoelastic calendering sheets. Interestingly, Siddiqui et al.
[10] observed the effect of magnetohydrodynamics (MHD)
on the calendering of Newtonian material, proposing that
magnetic fields serve as a pivotal parameter in modulating
power transmission, separation force, and the divergence
between attachment and detachment points. Siddiqui and
his team [11] applied thermodynamically compatible models
to third-grade fluid analysis in the calendering process,
advancing our current understanding of this procedure.
Calendering, as a finishing operation in the papermaking
industry, has been used to enhance the smoothness and
gloss of final paper products [12]. Their recent work has
shed light on the surface morphology of calendered compo-
site paper, providing valuable insights into the impact of
calendering on fiber and paper. The research conducted
by Zahid [12,13] highlighted the importance of calendering
in achieving a smoother surface and enhancing the overall
quality of paper products. Calendering dates back centuries
and has been an important process in various industries.
Research on the impact of various parameters, such as
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MHD, heat transfer, and other factors, on non-Newtonian
fluid and nanofluids across different geometries has gar-
nered significant attention in recent years due to its poten-
tial applications in various fields including engineering,
biomedicine, and renewable energy [14-18]. The analysis
of dimensionless parameters on different flow fields, con-
veyed through comprehensive graphs and tables, reveals a
profound understanding. Through systematic variation and
graphical representation, the study elucidates the significant
impact of each parameter on key quantities of interest.

Third-grade fluids are recognized as a significant class
of non-Newtonian materials. Among noteworthy research
areas is the flow of non-Newtonian material due to counter-
rotating rolls, considering its widespread applications in diver-
sified industrial sectors like polymer film rolling and metal
sheet extrusion. Numerous studies have been conducted on
third-grade fluid, recognizing its pragmatic implications in
contemporary science. Fosdick and Rajagopal [19] have cru-
cially explored the stability of third-grade material. Mean-
while, other researchers [20] utilized numerical results and
the finite-difference scheme to investigate the impact of fluc-
tuating viscosity on third-grade material in a pipe. Further
work by Abbasbandy et al. [21] employed numerical solutions
to assess flows between two permeable walls of third-grade
material. Yurusoy [22] analyzed similarity solutions con-
cerning third-grade material for specific channel coordinate
systems. Ogunsola and Peter [23] conducted research on the
effect of radiation and Arrhenius reaction on the flow of third-
grade material. Adding to this, Akinshilo and Sobamowo [24]
evaluated third-grade material’s functionality as blood using
gold nanoparticles. Aksoy and Pakdemirli [25] leveraged the
perturbation solution in studying the third-grade material
across diverse flow channels.

This theoretical research’s vital aspect lies in the exploration
of non-Newtonian material with variable viscosity. This is pri-
marily because the customary Navier-Stokes theory becomes
inadequate for describing complex rheological materials
like polymer solutions, paints, and plastic films. Consequently,
Massoudi and Christie [20] probed the influence of variable
viscosity and the associated description of the third-grade fluid
flow in a pipe. Based on this concept, Pakdemirli and Yilbas
[26,27] worked on the closed-form solution using a perturbation
method, determining the entropy generation for both Vogel and
constant’s model of viscosities. Jayeoba and Okoya [28] pre-
sented the analytical approximate solution to determine the
temperature fields for the steady flow of a third-grade fluid
in a pipe with models of viscosities, including a heat generation
term for the no-slip boundary condition. Ali et al [29] studied an
Eyring-Powell fluid under the effects of temperature-dependent
viscosity cases in a pipe. They first convert their dimensional
forms of momentum and energy equations with boundary
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conditions into non-dimensional form, and then discuss Rey-
nolds and Vogel models for both momentum and energy equa-
tions. In their research work, they solved their equations with
the help of both perturbation and numerical methods that
match well. Yurusoy [22] presented the heat transfer
effects of third-grade fluid between two concentric cylinders.
During his study, he considered that the fluid temperature is
lower than the pipe temperature. He calculated the solution
by using the perturbation technique and discussed the Rey-
nolds model. Makinde [30] studied the flow of thin films of
Newtonian fluid with temperature-dependent viscosity down
an inclined plate and obtained approximate analytical solu-
tions using the perturbation method. Tshehla [31] investigated
the flow of Newtonian fluid with temperature-dependent visc-
osity on an inclined plane with a free surface, solving the
resulting system of coupled ordinary differential equations
using the perturbation and Runge-Kutta numerical methods.
In all such investigations, calendering with variable viscosity
has not been considered [32]. The reader is encouraged to
explore the provided references for a more comprehensive
understanding of the topic [33].

This research provides a comprehensive theoretical
exploration of the calendering procedure as applied to
third-grade fluid. It delves intensely into the complex
dynamics influenced by temperature variations as the fluid
passes among two counter-rotating heated rolls. Notably, it
addresses the unique challenges third-grade fluid encoun-
ters by emphasizing the impact of temperature-dependent
viscosity, accurately captured through Reynold’s model.
The study innovatively employs the Lubrication approxi-
mation theory (LAT) to simplify the mass, momentum, and
energy balance equations. The investigation of critical vari-
ables such as velocity, flow rate, and temperature fields was
done using the perturbation method. Furthermore, the study
quantifies essential engineering parameters such as roll-separ-
ating force, pressure distribution, and power transfer from
rolls to the fluid, offering practical applications and refining
the calendering process for third-grade fluid. This approach
underscores the significance and innovation of calendering
for such materials, contributing to advancements in both the-
oretical understanding and practical applications within rele-
vant industries.

To the best of our knowledge, calendering a third-
grade fluid with variable viscosity represents a novel
advancement in the field, as no such study has been
reported in existing literature.
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2 Basic equations

The basic equations of the conservation of mass, conserva-
tion of momentum, and conservation of energy governing
the flow of an incompressible, non-isothermal third-grade
fluid in the absence of body forces are [34,35] as follows:

V- V=0, @
DV
pD_t =V-7-Vp, 2
DO
pCpE = KV%0 + 7-VV, 3

where V is the velocity field, p is the constant density, 7 is
the extra stress tensor, p is the material pressure, 6 is the
temperature,  is the thermal conductivity, G, is the specific
heat, and D% denotes the material time derivative, which is

DO) _ v oy + 20
D_t_(VV)()+ Py 4

The stress-constitutive relation 7 for third-grade [36]
material is given by

T=UA + mi; + a2A12 + ﬁ(trAlz)Al, )

where u(6) denotes the coefficient of viscosity and a;(6),
ay(0), B are the material moduli, usually referred to as
normal stress coefficients. However, the term S can be
determined if the relationship between the stress and
the Rivlin—Ericksen tensor of the fluid is known. The
Rivlin—Ericksen tensor A; and A, are defined as

A = VV + (V) ©

D
A, = E(An_l) + Ap (V) + Ay (VV), V)

n=273,..

where V is the gradient operator and * represents the
transpose of a matrix. If all the coefficients except u are
set equal to zero, then the above model reduces to the
classical linearly viscous model.

The Reynold viscosity model is exploited to represent
the fluctuation of viscosity corresponding to the tempera-
ture. While the variables of the third-grade fluid could be
temperature-dependent, they are, for simplicity in this con-
text, regarded as constant. The definition of the Reynold
model of viscosity is y = exp(—-M0). Using the Maclaurin
series, this expression can be written as
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@=1- M0+ 0(0%, ®)

where M is a viscosity variation parameter and corre-
sponds to a constant viscosity case if M = 0.

3 Formulation of the problem

Consider the two-dimensional, steady, and isothermal flow
of a third-grade material, considered incompressible. To
generate a sheet, the substance is permitted to be dragged
through two counter-rotating rolls operating at identical
angular velocities U = wR. The physical model under study
is shown in Figure 1, where 2Hj is the smallest gap between
the rollers, xandy represents the material movement direc-
tion and gap-wise direction, respectively. Given the substan-
tial disparity between the curved channel length created by
the rollers and the gap at the nip, i.e, Hy < R, it is reasonable
to be considered as two-dimensional flow.

V = [u(x,y), vix, ). 9)

Given the symmetric nature of the presented physical
model, only the upper half of the physical model requires
consideration. When faced with a complex physical system,
scientists and engineers frequently simplify the mathemati-
cally determined model to provide an approximation that can
be useful. The purpose of this process is to generate an
approximation. A solid understanding of the physical system
and a full comprehension of the various dimensions of the
fluxes, forces, velocities, and other components that are
involved in the problem is necessary for the successful imple-
mentation of simplifications. We form these simplifications
by considering the more significant terms in the governing
equations and disregarding the less significant ones. Since
there is only a small amount of roll separation in the nip
region, we will start with the LAT argument. The LAT, which

Nozzle

Figure 1: Mathematical illustration of the physical model under study.

Roll sleeve
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posits that the most significant dynamic events occur predo-
minantly in the nip-region, sets the stage for analysis. In this
region, which spans distally to both sides by an order of xq,
the surfaces of the roll exhibit near-parallel. Now it is quite a

reasonable physical situation to undertake that, v <« u, and

a a . . . .
w <o The material progresses in the x-direction, and the

X

f/elocity in the y-direction is negligible. Then, Eq. (9) implies
that g—z = 0, which means that u = u(y). Hence, the velocity pro-
file and temperature field can be of the form, V = [u(y), 0, 0],
0=0(y), and u = u(y). Thus, the conservation of mass as
defined in Eq. (1) is identically satisfied, the acceleration part %
in the momentum equation is reduced to divz — Vp = 0. This
leads Eq. (2) in component form as

oy _ p

—=0 10
dy ox 1
dr )
Ohy 9P _ 0, (11)
dy oy
where
Tyy = % + 2B % 3 12)
w = U dy dy
dul’
and 7y, = (2m + az)Ld—LJ‘.
Generalized pri sgj e P can be introduced as
2
du
P=p-(2 —. (13)
p - Qa + ) dy]

Using Egs. (12) and (13) in Egs. (10) and (11), we obtain
the following momentum and energy equations:

Z
) du), gpdufdu 0P (14)
dy| dy dy| dy ox
opP
5 =0, (15)
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Eq. (15) shows that P = P(x), so Eq. (14) becomes

2 32
d ydu + 6p du duzdP’ (16)
dy( dy dy) dy dx
d’o du) dul'

Sy a7
Kdyzw[dy + 2 dy] °

If both the rolls are identical and rotating with the same
speed U, then the appropriate boundary conditions are

at y=h(x), u=U, 6=0,

w_, 4o
dy T dy

= 0. a8

at y=0,
where h(x) represents the y-distance taken from the line of
symmetry to the surface of the roll, i.e.,

h(xX) = Hy + R - (R? - x2)a. (19)

By restricting the analysis to the values of x in such a
way that x < R, we get a good approximation to h(x)
given as

X2
= Hy|1 . 20
h(x) o1 + 2H.R (20)
3.1 Dimensionless equations
Now define the following dimensionless variables [7]:
_ X .y __u__ pH® _ u
= s =—,uU=— = s = ,
SN T T T N L,
- 0-0p -~ _  hX)
0 - 61_ 903 h( ) H[)

The dimensionless form of governing equations after
ignoring the bar (-) sign are as follows:

L)
A dul, g duf du_dp 22)
dy|" dy dy| dy dx
%0 du |’ du)*
Qv du L — 23
a7 + YW o + 20w o 0 )
The constants n and w are given by
Y3 LA Y S SO
o Ho )’ kK(01-6) k61 -6y) (24)
= PrEc,

where w is the Brinkman number, that represents the ratio
of viscous to inertial forces in a fluid flow system. It is
defined as the product of Prandtl number Pr and Eckert
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number Ec, and the dimensionless boundary conditions [7]
for the above system are

at y=h(x),u=10=1,
du do
aty—O,@—O,E—

(25)

The volumetric flow rate in dimensionless form, Q per
unit width, may be defined as
h(x)

I udy,
0

0= (26)

where the dimensional flow rate Q, per unit width, can be
related by Q =

2UH, "

4 Solution of the problem

In this section, velocity profiles and temperature distribu-
tions are computed by using regular perturbation theory.
The regular perturbation method is a critical tool for
approximating solutions to differential equations, particu-
larly valuable when the exact solutions cannot be explicitly
stated or are tough to compute. It is a commonly used
analytical approach in mathematics and engineering. The
perturbation technique assumes a small parameter, often
denoted as ¢, that perturbs a system from a state where the
solution is known. The solution is then expanded as a
power series in terms of €. Each term in the series is an
order of magnitude smaller than the preceding term, com-
prising of the “unperturbed” solution and successive “cor-
rections.” After substituting the power series into the dif-
ferential equation, one matches the powers of ¢ to derive
an associated sequence of simpler equations. The desired
approximated solution is then acquired by solving these
equations recursively. The method considerably simplifies
the analytical solving process, making it a valuable tool for
solving complex differential equations. We can obtain
approximate solutions by selecting n = ey and M = em,
where ¢ is the perturbation parameter, i.e., a small quan-
tity. The approximate velocity profile, pressure gradient,
flow rate, and temperature distribution can be taken as

U= uy+ e + 0(ed), 27
dp _dp, dp )
s of | R 6 § (28)
A ax T TOED

0 = 0, + €0, + O(£2), (29)

A=A + el + O(e2). (30)
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Viscosity and its derivative from Eq. (8) lead approxi-
mately as follows

a0
dy’

(3D

- du
u=1-emb, d

Substituting Eqs. (27)-(31) in Egs. (22) and (23), one can
yield the system of differential equations, as shown in Sec-
tions 4.1 and 4.2.

4.1 System of order £° and their solution
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2 2
&6y _ —w dug , (33)
dy? dy
subject to boundary conditions
at y=h(x),up=1,600=1,
Lo duo o d6 (9
aty—O,dy ’dy_o'

Solving for the first order, we obtain the following
solutions that satisfy the boundary conditions

d
Uy =1+ %%@2 - ), (35)
The zero-order boundary value problem [7] is
_ 2 _ 2
du,  dp, apy _ 3% = X9 36)
W = T (32) dx h
16 ~3
_\\ a(x=0) \ b (x=0.25)
e=0.
14 ~ =07 13 .
E— \ L : ~ AN &=0.7
u(y) \\ e=0.1 e=0.4
13 E— £=000] uy) __\\ .
| RN e A N T
\\\ "N \Q\ =0.00]
12 \ \\\
AN
1.1
3.1
10 y 10
"o 02 04 06 08 1 &8 B W s 0F 1
.
y )
1.16 — 10
e = =09 ol (x=0.5) | d (x=0.75)
\ e=0.7
1.12 >
—] =03
1.10 — e=G-1 09 A A
108 o /
‘l("l‘)og N u6) //? e=09
1.04 _—— N 08 T A |e=07
o N‘ -
Lo \\ Pl =04
{ =0.1
1.00 - —— oo
098 — ] 01 f——2
0 02 04 06 08 1 12 0 05 1 15

Figure 2: Effect of perturbation parameter on velocity distribution at four different positions of calendaring process at
m=15 y=15 w=15 A, =04751 (a)x =0, (b) x = 0.25, (c) x = 0.5, and (d) x = 0.75.
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h3
Q=h- 3 37

Py
dx B

-2
-l

3w(A¢ - x2)? 4

e +1. (38)

60=

The pressure at the separation point may be found by

the first integration of Eq. (36), using (x = —») we get

x*(1-30%) - 1-52¢

= — - 2 -1
Py 3 1+ 20 yx+(1 3y (tan"1x
39
3/1 +1
- tan™12 + LI
an™ o) 1+ /10 ] ol

The most basic dynamic model of the separation region
stems from the declaration that the fluid divides at the point

where uy = 0 and Py = 0 subsequently. In light of this, the

above equation transposes to a transcendental equation in
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a (x=0)
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E&8EE

u(y)

1.11

10

0.9991
0.9981
09971

0.9961
uy)
09

0.9941
0.9931
0.9921
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the A, variable. A solution for this could be approximated
using a numerical technique known as the modified Regula
falsi method. The estimated value for the zero-order detach-
ment point came out to be A, = 0.4751, which has been
obtained by setting a predefined accuracy of 107°.

4.2 System of order £! and their solution

The first-order system with appropriate boundary condi-

tions is
dzul [duol Id uo]
(40)

dy? m dy

duo

dug d90
dy dy

b (x=0.25)

1.151
uy)
1.101

10
d(x=0.75)
0.9+
u(y) /
=9 /
0.8
=7
®=5
®=3
on=1
0.71 1 1
0 05 1 15

.‘.

Figure 3: Effect of Brinkman number on velocity distribution at four different positions of calendaring process at
m=15 y=15 &=01, A, = 04751 (a) x =0, (b) x = 0.25, (c) x = 0.5, and (d) x = 0.75.
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%0 du) . duodu duo )" }
Ezl - 9()[ dyo] + 20 d_yod_yl + Zyw[d—yo] = 0, (41) 91())) 4h12 (AO - X2)4 {(3)’ - 3h4)(3y - 11h4)}
3wm
at y=h(x),u; = 0,6, = - hs)] " e Ag - xD2y* -y (44
diy do, 42) w dP
aty=0,—=0,—=0. Badihnlt WO RS AVAY SN ¥
y dy dy + B dx (A9 = xH* - b,
Solving the above system of order !, we finally obtain _3 o1 702 oo
the following solutions Q= h° (o =X 3mh ¥ 7wmh (4o = x9 )
3
W = m(}loz - x2)|2h%m(h? - y?)
d
D0 2)[ mh + ZamiiGg - X}y
m 46
w_(ye + zhe) (43) 5 /'{2 242 6A0A1 ( )
+(/\(%—X2)2 _?Vh( 0 ) .
- Ewh‘*my2 - 18y(h* - y*)
_1dp o,
5 dx (h* = %),
S ax=0) =R b (x=0.25)
14 \s i \Q
1 3- \ x A =0 _\\\ m=9
’ N 12 \ k Tm=7
u(y) \ mf.;'
12 u(y) m:
A m=1
1.1
1.1
e 10
S 0 02 04 06 08 1
106F— ( 0 5)Jl 10
c(xF0.5)) m=0
1os == =7
1.04 =N mo
. N m=3
103 L SN m=s 09
uy) N \
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Figure 4: Effect of viscosity variation parameter on velocity distribution at four different positions of calendering process at

£=01,y=15w=1521 = 04751 (a) x= 0, (b) x = 0.25, (c) x = 0.5, and (d) x = 0.75.
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After using zero-order and first-order solutions in Egs.
(27)—(31), the series solution in terms of small parameter &
can be obtained. The graphical representation of these
graphs are shown in Figures 2-8.

5 Operating parameters

When the velocity, pressure gradient, and pressure distri-
bution are formed, then we can calculate all other engi-
neering quantities. The emerging variables that are under
consideration from the engineering point of view are com-
puted as follows.

\:\ a(x=0)
N\
13 \
AN
) i \
’;.‘2 VS \ ‘\\
7 N
‘)"9 \
N
1.1 R
10
0 02 04 06 08 1
.
1
c(x=0.5) 2
099 .
77
098 /'/';/
0974——
u(y) // w1
095 4 1=
4 =7
0944+—— // v=2
093
0 02 04 06 08 1 12

-‘ !

Figure 5: Effect of third-grade parameter on velocity distribution at four
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5.1 Roll-separating force

By making use of the dimensionless parameters as defined
in Eq. (14), the total force involved to separate the fluid in
dimensionless form after dropping the bar sign becomes

2
F
- - 47
= J'p(x)dx. @7
5.2 Power
Using non-dimensional variables, ie., Py = %}I:;VUZ and

= _ Hoiy . . .
Ty = 0 for power, the dimensionless form (on dropping

bar sign), and putting y = h, we obtain

s :‘\ b(+=023)
120 \\Ni\\
u(y) i \
1sf oy \&\\
=3 \\\\
110 }:5 \ \\
- N
=9V
1.05
1'00() 02 04 06 08 1
10
09
u(y)
08
07 j
-—/

o

different positions of calendering process at

=01 m=15 w=15 A, = 04751 (a) x =0, (b) x = 0.25, (c) x = 0.5, and (d) x = 0.75.
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Figure 6: Influence of emerging parameters on pressure-gradient distribution.

A
P=Iq¢mth 48)

where 7, is the dimensionless stress tensor defined by

ou ¥
* ﬁ[@] |

_u

= 49)
oy

Ty

6 Results and discussion

The presented study discusses an interpretation of the
calendering process for an incompressible viscoelastic mate-
rial. The numerical exploration of varied engineering para-
meters concerning the viscoelastic material in the course of
the calendering process is delineated in Tables 1-4. Figures 2-8
graphically illustrate the impact of emerging parameters on

aspects such as velocity distribution, pressure gradient dis-
tribution, pressure distribution, and temperature. Table 1
presents the ramifications of the perturbation parameter &
on various factors, including the detachment point A, the
thickness of the sheet, the force separating the roll, and
the power input. It has been noted that with an increase in
the perturbation parameter, there is an elevation in the detach-
ment, sheet thickness, and roll-separating force, whereas power
input from the roll to the material witnesses a decrease.
The results found by Middleman [7] when £ — 0 have been
affirmed in this study. In Table 2, the effects of the viscosity
parameter “m” are explored. It can be observed that with an
upsurge in the coefficient of the viscosity parameter, the detach-
ment point and sheet thickness experience an increase, while
on the contrary, there is a decrease in both the power input and
the roll-separating force. The outcomes of this research resonate
with the findings of Siddiqui [16] when “m = 0” is considered as
an extreme case of the study.



DE GRUYTER
(a)
031
024e=0.00 \ e=0.001
- £=0.1 \ \ e=0.1
P(x)1e=0.4 \ \ e=0.4
e=0.7 e=0.7
014522 \\ e=0.9
0 E v .
-5 0 5 10
=
031
021
P(x)
0.11
0 v ' E ' v
-4 -2 2 4

Figure 7: Influence of emerging parameters on pressure distribution.

This study presents numerical outcomes corresponding
to several engineering parameters concerning the Brinkman
number, as documented in Table 3. The Brinkman number,
commonly employed in polymer processing, is associated
with heat conduction transitioning from the roller wall to
the material in flow. A surge in the Brinkman number cau-
sally relates to an increase in both the detachment point and
sheet thickness, conversely observing a decrease in power
input and roll-separating force. Of note is the fact that the
detachment points approach 0.4751 as the Brinkman number
continues to increase (w — ).

Table 4 elucidates the variations occurring in the third-
grade parameter and investigates its influence on various
engineering parameters. Analyzing the collected data reveals
that an escalation in the third-grade parameter corresponds

Variable viscosity influence on existing sheet thickness in calendering process
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to a decrease in both the detachment point and the sheet
thickness. This outcome can be attributed to the fact that
the rigidity of the material increases in proportion to the
increase in the third-grade parameter. Notably, the third-
grade parameter serves as a controlling parameter for all
engineering quantities, with an emphasis on the sheet thick-
ness. Additionally, fluctuating the third-grade parameter indi-
cates an increment in the power input from the rolls, whereas
there appears to be a decline in the roll-separating forces.
Figures 2-5 illustrate velocity at various stages in the
calendering process, factoring in four distinct parameters.
Figure 2 demonstrates explicitly how altering the per-
turbed parameter impacts the velocity distribution across
various stages of the calendering recess. Fascinatingly, the
figure shows that when the perturbed parameter increases,
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Figure 8: Influence of emerging parameters on temperature distribution.

Table 1: Influence of perturbation parameter on engineering quantities ~ Table 2: Influence of viscosity variation parameter on engineering

atw=15 m=15 y=15 A = 04751, A = 0.1854 quantities at w = 15, y =15, €= 01, Ao = 0.4751

£ 2 H/H, Py F m M 2 HIH, R, F
0.001 0.4752 1.2258 1.6248 06061 1 0.0511 0.4802 1.2305 15139 0.6069
0.004 0.4758 1.2263 1.6188 06062 2 0.2980 0.5049 1.2549 13411 0.6088
0.007 0.4763 1.2268 1.6129 06063 3 0.4465 0.5197 1.2700 1.2029 0.6062
0.01 0.4769 12274 1.6069 06063 4 0.5440 0.5295 1.2803 1.0831 0.5980
0.04 0.4825 1.2328 1.5467 06070 5 0.6165 0.5367 1.2880 0.9724 0.5832
0.07 0.4880 12381 1.4856 06078 6 0.6736 0.5424 12941 0.8674 0.5619
01 0.4936 1.2436 1.4237 06085 7 0.7203 0.5471 1.2993 0.7663 0.5345
0.4 0.5492 13016 0.7674 06163 8 0.7594 0.5510 13036 0.6679 0.5014
0.7 0.6048 1.3657 0.0588 06253 9 0.7926 0.5543 13072 0.5719 0.4631
0.9 0.6419 1.4120 -0.4393 06319 10 0.8213 0.5572 13104 0.4775 0.4197
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Table 3: Influence of Brinkman number on engineering quantities
ate =01, Ao =04751, m=15 y=15

w M A H/H, j F
1 01817 0.4932 12432 1.4672 0.6085
2 0.1890 0.4940 1.2440 1.3804 0.6085
3 0.1961 0.4947 1.2447 1.2937 0.6085
4 0.2030 0.4954 1.2454 1.2073 0.6084
5 0.2097 0.4960 1.2460 1.1209 0.6084
6 0.2162 0.4967 12467 1.0347 0.6083
7 0.2225 0.4973 12473 0.9486 0.6083
8 0.2287 0.4979 12479 0.8626 0.6082
9 0.2346 0.4985 1.2485 0.7767 0.6082
10 0.2405 0.4991 1.2491 0.6909 0.6081

the velocity distribution rises. This outcome thus leads to the
inference that it is possible to manipulate the material’s
speed at different stages in the shaping process by adjusting
this specific parameter.

Figure 3 displays the influence of the Brinkman number
on velocity distribution at different positions. In this case, an
enhancement in the Brinkman number coincides with an
increase in velocity distribution, the effect of which is most
apparent at x = 0.5 position. Since, the Brinkman number
characterizes the ratio of viscous forces to inertial forces,
with the increase in the Brinkman number, the contribution
of viscous forces becomes more dominant relative to inertial
forces. This increased dominance of viscous forces results in
more excellent resistance to fluid flow, leading to higher
velocity. Therefore, as the Brinkman number increases,
the velocity distribution of fluid flow also increases. Next
the impact of changes in the viscosity variation parameter is
demonstrated in Figure 4. Here it becomes evident that an
increase in this parameter also triggers a rise in velocity
distribution. Physically, it means that viscosity is often

Table 4: Influence of third-grade parameter y on engineering quantities
ate =01, A =04751, m=15 w=15

y A A H/H, B, F

1 0.2386 0.4989 1.2489 1.4110 0.6078
2 0.1181 0.4869 1.2370 1.4414 0.6085
3 -0.0232 0.4727 1.2234 1.4785 0.6053
4 -0.1218 0.4629 1.2142 1.5001 0.6012
5 -0.1910 0.4560 1.2079 1.5110 0.5980
6 -0.2452 0.4505 1.2029 1.5167 0.5952
7 -0.2910 0.4460 1.1989 1.5193 0.5927
8 -0.3322 0.4418 1.1951 1.5203 0.5900
9 -0.3706 0.4380 1.1918 1.5202 0.5870
10 -0.4079 0.4343 1.188 1.5198 0.5835
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temperature-dependent, especially for non-Newtonian
fluids used in this analysis of calendering processes. By
increasing the temperature of the fluid, its viscosity
decreases, making it flow more easily. So, this decrease in
viscosity makes it easier for the fluid to flow, resulting in
higher velocity.

Finally, Figure 5 illustrates how velocity distribution fluc-
tuates concerning modifications in the third-grade parameter.
Upon investigation, we discovered that velocity distribution
decreases when the third-grade parameter increases during
the calendering process. This outcome hints that the fluid
becomes more viscous as the third-grade parameter increases.
It is important to note that the increased viscosity of the
material as it propelled toward the detachment point can
aid in swiftly forming the sheet.

Figure 6 provides an intriguing perspective on the pres-
sure gradient as a function of x. It highlights its growth and
peak just before the nip region, followed by a steady decline
across different numerical values of emerging parameters.
More specifically, it showcases that an escalation in these
emerging parameters corresponds with a decrease in the
pressure gradient distribution. For an even deeper under-
standing of this process, one can turn to Figure 7. This graph
provides significant insights into the highest and lowest
points of pressure distribution throughout the calendering
gap. It also offers clear visualizations of the attachment and
detachment points, a crucial feature for understanding the
mechanics of the process.

Furthermore, this figure compares how pressure distri-
bution reacts to individual parameter changes. Increases in
both the perturbation and third-grade parameters result in
an upswing in pressure distribution. Contrarily, the pres-
sure distribution displays a contrasting behavior when
changes proceed in the other two emerging parameters,
demonstrating a decrease in value, as shown in Figure 7.

Figure 8 presents a thorough analysis of the impact
produced by various emerging parameters on temperature
distribution when both rolls undergo a heat process. The
graphical representation of the said parameters clearly
illustrates this relationship. In Figure 8a and b, the findings
indicate a reduction in temperature distribution upon increasing
the values of the perturbation parameter and the Brinkman
number, respectively. As the Brinkman number increases, the
dominance of viscous effects over inertial effects can lead to
increased internal friction and reduced convective heat transfer
within the fluid, ultimately decreasing temperature. These
findings manifest the nuanced interactions within the system.
However, the analysis portrays a more complex pattern for the
viscosity variation parameter and, similarly, for the third-grade
parameter. Figure 8c and d illustrates a mixed-type behavior.
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This signals the presence of a non-linear interaction and possibly
a more complex relationship between these specific parameters
and the temperature distribution. These variations underline the
multi-faceted nature of the system under examination.

7 Conclusion

In conclusion, this comprehensive study delved into the
intricate aspects of heat transfer flow involving third-grade
materials passing between two heated rolls with distinct
temperature gradients. This research has unveiled critical
insights by incorporating temperature-dependent viscosity
using Reynold’s model and the application of the LAT to
simplify mass, momentum, and energy balance equations.
The investigation focused on essential parameters gov-
erning the calendering process, presenting results through
graphical representations and tabular summaries. The study
has uncovered several crucial insights regarding the pro-
cess. Notably, the impact of parameters such as the pertur-
bation parameter, viscosity parameter, Brinkman number,
and third-grade parameters on detachment point, sheet
thickness, roll-separating force, and power input has been
thoroughly investigated. We saw that as the perturbation
parameter along with the detachment point, sheet thickness,
and roll-separating force all increased while the power input
decreased. Similarly, a higher viscosity parameter increases
detachment point and sheet thickness but decreases power input
and roll-separating force. Increasing the Brinkman number also
raises the detachment point and sheet thickness but lowers
power input and roll-separating force. Conversely, a rise in the
third-grade parameter results in decreased detachment point
and sheet thickness due to increased material rigidity. The study
also looked at how perturbation, Brinkman number, and visc-
osity variation parameters affect the pressure gradient changes
when emerging parameters change, with a focus on the points of
attachment and detachment.

The findings from this study can be applied to optimize
the calendering process in industries dealing with viscoelastic
materials, such as polymer processing, textile manufacturing,
and paper production. Understanding the influence of vari-
able viscosity on sheet thickness, detachment points, and
power input can lead to improved process efficiency and
product quality.

The insights gained from quantifying engineering para-
meters can inform the design of calendering systems, helping
engineers and researchers tailor process parameters to achieve
desired material properties and performance characteristics.
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