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Abstract: Transformer is extensively employed in natural
language processing, and computer vision (CV), with the
self-attention structure. Due to its outstanding long-range
dependency modeling and parallel computing capability,
some leading researchers have recently attempted to apply
Transformer to intelligent fault diagnosis tasks for mechan-
ical equipment, and have achieved remarkable results.
Physical phenomena such as changes in vibration, sound,
and heat play a crucial role in the research of mechanical
equipment fault diagnosis, which directly reflects the opera-
tional status and potential faults of mechanical equipment.
Currently, intelligent fault diagnosis of mechanical equip-
ment based on monitoring signals such as vibration, sound,
and temperature using Transformer-based models remains
a popular research topic. While some review literature has
explored the related principles and application scenarios of
Transformer, there is still a lack of research on its applica-
tion in intelligent fault diagnosis tasks for mechanical equip-
ment. Therefore, this work begins by examining the current
research status of fault diagnosis methods for mechanical
equipment. This study first provides a brief overview of the
development history of Transformer, outlines its basic struc-
ture and principles, and analyzes the characteristics and
advantages of its model structure. Next it focuses on three
model variants of Transformer that have generated a signi-
ficant impact in the field of CV. Following that, the research
progress and current challenges of Transformer-based intel-
ligent fault diagnosis methods for mechanical equipment
are discussed. Finally, the future development direction of
Transformer in the field of mechanical equipment fault
diagnosis is proposed.
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1 Introduction

With the continuous development of modern technology,
the level of systematization, automation, and intelligence
of mechanical equipment in industrial applications has been
further improved. The functional structure has become
increasingly diverse and complex, and is widely used in
industries such as aerospace, transportation, power genera-
tion, automotive manufacturing, and machining, including
specific applications such as aircraft engines, wind turbines,
industrial gearboxes, high-speed trains, and construction
machinery [1], etc. Due to the increasing demands for speed,
load, and automation level of mechanical equipment in
modern industrial production, equipment faults can easily
lead to downtime, resulting in significant economic losses
and even casualties. Statistics show that major accidents and
economic losses caused by mechanical equipment faults
account for approximately 38% of industrial production
[2]. Therefore, real-time monitoring and fault diagnosis of
mechanical equipment to ensure its normal operation and
prevent serious accidents have become urgent issues in
related industries. Meanwhile, the operation of mechanical
equipment is often accompanied by complex physical phe-
nomena, such as mechanical vibration, sound radiation,
heat conduction, etc. These physical phenomena usually
contain important information about the state of mechan-
ical equipment, which is of great value to the research
of intelligent fault diagnosis. Especially vibration signals,
which usually contain dynamic response information inside
mechanical equipment, can detect weak early faults. Accord-
ingly, mechanical equipment fault diagnosis has become a
critical part of system design and maintenance, with signifi-
cant implications for improving economic efficiency. How-
ever, in industrial practice, modern mechanical equipment
exhibits characteristics such as coupling, delay, and hierarchy
in faults [3], thus requiring further exploration of fault diag-
nosis methods for mechanical equipment.
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Fault diagnosis is the process of analyzing and deter-
mining the type and location of equipment faults. The general
process of mechanical equipment fault diagnosis involves
three steps: signal acquisition, feature extraction, and pattern
recognition [4]. Traditional methods of mechanical equip-
ment fault diagnosis primarily involve visualizing sensor
data and establishing basic thresholds (such as temperature,
vibration, and speed) to monitor the equipment’s health
status. However, these methods are unable to accurately
and promptly identify early equipment failures. In recent
years, the rapid advancement of artificial intelligence (AI)
has led to increased attention and research from experts
and scholars on intelligent fault diagnosis methods. These
methods are based on traditional machine learning (ML),
particularly deep learning (DL) [5]. Compared to traditional
ML methods, DL networks have more complex structures and
can automatically extract deep-level features from data, effec-
tively distinguishing interference information and elimi-
nating the influence of human factors. In the field of
mechanical equipment fault diagnosis, DL models such as
convolutional neural network (CNN) [6-8] and recurrent
neural network (RNN) [9,10] have been extensively researched
and applied, yielding fruitful results.

In engineering practice, CNN and RNN are commonly
used to process image or sequence data. Fault diagnosis
models based on CNN employ convolutional Kkernels to
automatically extract fault features from the data, without
being influenced by human factors. While CNN has strong
image feature extraction capabilities, they tend to priori-
tize and depend on local feature information within the
signal, often lacking explicit memory when processing
sequence data. This results in an inability to effectively
extract contextual features from sequence data, which in
turn affects the accuracy of fault diagnosis.

Currently, mechanical equipment fault diagnosis that
takes into account the time-related features of signals is
primarily accomplished through the application of RNN
and its enhanced variations. RNN can capture temporal
information in sequential data and extract long-term depen-
dencies due to their recurrent structure. They store infor-
mation in their internal state and possess a certain memory
capacity. However, RNN also has some limitations that
require improvement, including high consumption of com-
puting and storage resources, challenges in preserving infor-
mation over long time intervals in sequences, inability to
perform parallel computing, convergence difficulties, and
gradient vanishing. Long short-term memory (LSTM) net-
work is an enhanced version of RNN that tackles these issues
by incorporating gate mechanisms and memory units, enabling
it to effectively learn and retain long-term dependencies in
sequential data. However, LSTM has a large number of model
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parameters, long training times, and requires a specific
sequence for computation, which makes it unable to per-
form parallel computing. Additionally, it still has limitations
in modeling large datasets.

In recent years, a network framework known as Trans-
former, which is based on the self-attention mechanism,
has garnered significant attention from researchers [11].
Self-attention can encode and model the relationships
between different positions in sequential data or images,
enabling the model to efficiently extract key feature infor-
mation from large data segments [12]. Transformer employs
an internal self-attention mechanism to encode and model
the positions within the sequence. It calculates results based
on the similarity between different positions to obtain global
contextual information, which is then input into the encoder
and decoder layers for processing. This approach enables
global feature extraction and long-range feature modeling.
At the same time, Transformer eliminates all convolutional
and recursive structures in the model, enabling efficient
parallel computation of sequences. This makes it more effec-
tive in handling long-term, long-range dependencies and
greatly improves the training efficiency of the model.
Research works have shown that the performance of Trans-
former in tasks, such as natural language processing (NLP),
computer vision (CV), and fault diagnosis, is comparable to
or even surpasses that of various models based on CNN or
RNN. It can be seen that, compared to commonly used DL
methods, Transformer has the following four distinct advan-
tages of global receptive field, modeling long-range depen-
dencies, parallel computing capability, and big data proces-
sing capabilities. The comparison of the receptive fields of
Transformer and CNN is depicted in Figure 1.

Figure 1 shows a comparison of the effective receptive
fields between Transformer and CNN in the semantic seg-
mentation task. SegFormer [13] and DeepLabv3+ [14] are
typical models used for semantic segmentation tasks, with
SegFormer being a Transformer-based model and Dee-
pLabv3+ being a CNN-based model. These models demon-
strate significant differences in the range and variation of
effective receptive fields. The receptive field of a CNN is
constructed through local connections and requires contin-
uous iterations to gradually expand. In contrast, the effec-
tive receptive field of Transformer has the advantage of
rapidly expanding its scope through global interaction
mechanisms [15].

In summary, while some traditional ML and DL methods
can effectively accomplish mechanical equipment fault diag-
nosis, there are still greater demands for accuracy and stabi-
lity in fault diagnosis methods in real industrial settings. This
is to minimize downtime losses and safety hazards resulting
from mechanical equipment faults. In recent years, due to the
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Figure 1: Comparison of effective receptive fields between Transformer and CNN in semantic segmentation tasks [13].

outstanding performance demonstrated by Transformer, an
increasing number of studies have begun to incorporate
Transformers into intelligent fault diagnosis for mechanical
equipment to enhance the accuracy and robustness of fault
diagnosis work.

At present, some research results have been achieved
in Transformer-based intelligent fault diagnosis methods
for mechanical equipment, but these studies are scattered
in different literatures and lack systematic organization
and generalization. Therefore, a comprehensive and sys-
tematic review of this emerging technology can help to
understand the current status and development trend of
its application in mechanical equipment fault diagnosis,
promote the understanding and attention of academia
and industry to this research field, and is of great signifi-
cance in promoting the development and application of
Transformer-based intelligent fault diagnosis methods for
mechanical equipment.

The remaining part of this study is organized as fol-
lows: Section 2 reviews and analyzes the current research
status and limitations of existing methods for diagnosing
faults of mechanical equipment. In Section 3, the develop-
ment history, basic structure, and principles of Trans-
former are first introduced. Then, three significantly effec-
tive model variants of Transformer in CV and commonly
used public datasets for validating fault diagnosis methods
are summarized. Finally, the research progress and appli-
cation status of Transformer-based intelligent fault diag-
nosis methods for mechanical equipment are focused on
and explored in detail. Section 4 provides a summary and
outlook on the future development direction of Trans-
former models in the field of intelligent fault diagnosis
for mechanical equipment. In Section 5, the study con-
cludes with a summary of the entire content.

2 Progress and limitations of
existing mechanical equipment
fault diagnosis methods

Mechanical equipment fault diagnosis involves analyzing
the equipment’s performance to identify specific fault
types. Common methods for mechanical equipment fault
diagnosis typically include those based on physical models
[16] and AI models [17]. The physical model-based method
examines the evolution and alterations in fault mechan-
isms, such as wear, cracks, and fatigue. However, con-
structing the model necessitates expertise in fault mechan-
isms, professional domain knowledge, and a series of
essential assumptions, making it challenging to accurately
establish fault diagnosis models for complex systems. In
recent years, the rapid advancement of computer tech-
nology and data science has led to increased attention on
fault diagnosis methods based on AI models in the field of
mechanical equipment failure diagnosis. These methods
are gaining popularity due to their broad applicability, sim-
plicity, and independence from the need to establish precise
mathematical models like physical models. Al models employ
a range of intelligent algorithms to analyze sensor data,
extract feature information that accurately represents the
equipment’s state from extensive data, and subsequently
identify the fault patterns of mechanical equipment [18].
Most Al models are typically designed and implemented
using traditional ML methods. The latest generation of Al
technologies, such as DL, has demonstrated significant advan-
tages in feature extraction, knowledge acquisition, and intel-
ligence. This has opened up new avenues for effective fault
diagnosis of mechanical equipment, making it a popular
research topic both domestically and internationally. This
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study summarizes and analyzes the current research status of
the three steps involved in the application of Al models for
mechanical equipment fault diagnosis: signal acquisition, fea-
ture extraction, and pattern recognition.

In signal acquisition and feature extraction, the under-
standing and application of related physical principles,
phenomena and models are very important. First, physical
principles provide a theoretical basis for signal analysis
and processing. For example, the wave and resonance
principle can be used to analyze the frequency spectrum
and time-frequency of vibration signals and extract the char-
acteristic information related to faults. Second, the physical
phenomenon is the direct manifestation of the mechanical
equipment failure. Different fault types often correspond to
different vibration phenomena, such as amplitude change,
frequency deviation, and so on. Through the capture and
analysis of these phenomena, it can provide a strong basis
for fault diagnosis. Finally, physical models play a bridging
role in intelligent fault diagnosis. By abstracting the actual
mechanical device into a physical model, its operating state
and fault process can be simulated, providing training data
and verification criteria for DL models.

2.1 Signal acquisition

At present, in the process of mechanical equipment signal
acquisition, the commonly employed signals are mainly
vibration signals [19-21], sound signals [22], temperature
signals [23], as well as oil analyzers [24], infrared thermo-
graphy [25,26], etc. The sensitivity of each method in the
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process of mechanical equipment fault diagnosis and the
corresponding maintenance costs [27] are shown in Figure 2.

As illustrated in Figure 2, it is evident that a high
sensor sensitivity allows for the detection of certain equip-
ment anomalies through signal analysis. However, it may
not facilitate precise fault localization and elimination in
practical mechanical equipment applications. As a result,
the fault diagnosis accuracy is low, leading to increased
maintenance costs. As sensor technology becomes more
sensitive, it becomes easier to identify faulty parts and
fault patterns in equipment, leading to reduced mainte-
nance costs. However, the likelihood of equipment fault
also increases. The process of acquiring and analyzing sig-
nals forms the basis for identifying subsequent fault pat-
terns. Various sensor technologies can be compared and
analyzed based on their advantages and disadvantages, as
illustrated in Table 1.

Among the aforementioned sensor technologies, vibra-
tion signals are most widely applied in mechanical equip-
ment fault diagnosis due to their ease of measurement and
the fact that they contain important dynamic information
about the mechanical equipment, such as the reciprocating
motion of piston-connecting-rod assemblies, crankshafts,
gear rotations, and so on [28].

2.2 Feature extraction

Feature extraction is a crucial step in the fault diagnosis
process, which helps to identify patterns and structures in
the data and provide better inputs for outputting fault
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Figure 2: Sensitivity and corresponding maintenance cost of different sensor technologies in mechanical fault diagnosis.
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types. The quality of feature extraction directly impacts the
effectiveness of fault diagnosis. Therefore, in terms of
signal feature extraction, a large number of theoretical
studies and application have been explored. At present,
the commonly employed feature extraction methods are
mainly as follows:

1) Time domain features. Time domain features refer to
the characteristics and statistics of a signal in the time
domain. They describe the instantaneous changes and
temporal information of the signal, effectively charac-
terizing the distribution and concentration trend of the
data. Common time domain features include mean [29],
peak [30], root mean square (RMS) [31], entropy [32],
and others.

2) Frequency domain features. Frequency domain fea-
tures refer to the properties of a signal in the frequency
domain, which are used to characterize the frequency
content and distribution of the signal. This process
yields the frequency domain signal, from which statis-
tical features can be extracted. Commonly deployed fre-
quency domain statistical feature parameters include the
center of the frequency [33], frequency variance [34], and
RMS frequency [35], among others. Other commonly applied
frequency domain analysis methods include power spec-
trum [36], cepstrum [37], and other analysis techniques,
which have yielded some results in the field of fault
diagnosis.

3) Time-frequency domain analysis. The vibration signals
and sound signals of mechanical equipment typically
exhibit non-smoothness and nonlinearity. This charac-
teristic makes it unsatisfactory to rely solely on statistical
parameters in the time and frequency domains for fault
diagnosis. Therefore, the feature extraction method based
on time-frequency domain analysis is introduced into
mechanical equipment fault diagnosis. Commonly
employed methods for time-frequency domain analysis
include the short-time Fourier transform (STFT) [38],
wavelet transform (WT) [39], instantaneous frequency
(IF) [40], and Hilbert-Huang transform [41].

These methods can decompose a one-dimensional
signal into different components in the time and frequency
domains, creating two-dimensional time-frequency maps,
and extracting the corresponding features for pattern
recognition. In time-frequency domain analysis, the com-
monly used feature parameters include energy features,
spectral features, phase features, modulation features,
and IF features. Furthermore, DL methods can be
employed to automatically extract the high-level abstract
features from the time-frequency diagram. These fea-
tures can then be directly input into the pattern recogni-
tion module for fault diagnosis.

Transformer-based intelligent fault diagnosis methods of mechanical equipment
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4) Image features. With the rapid development of CV tech-
nology, mechanical equipment fault diagnosis methods
based on image processing have been emphasized by
more and more scholars [4]. The commonly used methods
for extracting image features mainly fall into the following
four types:

Color feature extraction, including color histogram,
color moments, color mean-variance, etc.; texture feature
extraction, including grayscale covariance matrix, local
binary pattern, Gabor filter, etc.; shape feature extrac-
tion, including edge detection, contour extraction, shape
descriptor etc.; DL-based image feature extraction, which
mainly employs deep neural network models to learn
advanced feature representations from images, including
CNN, RNN, stacked auto-encoder (SAE), deep belief net-
work, and so on.

5) Text features. Text features are some meaningful infor-
mation extracted from the text to represent the charac-
teristics and content of the text. The following are some
common text features and their extraction methods:

Text length: the number of characters or words in the
text is regarded as a feature; Syntactic features: features
based on syntactic structure, such as dependency relation-
ships, syntactic trees, etc.; Topic models: used to identify
the main themes or topics in the text, common methods
include latent Dirichlet allocation [42] and non-negative
matrix factorization [43]; Text sentiment features: used to
determine the emotional tendencies of the text, such as
emotional vocabulary, emoticons, etc.; DL features: for
text data, first, bag-of-words (BoW), TF-IDF, Word2Vec,
and GloVe, and other word vector models are employed
to convert the text into vector representation [44-47], then
more abstract and advanced representations are extracted
by some DL models.

2.3 Pattern recognition

After signal acquisition and feature extraction, it is finally
necessary to carry out fault pattern recognition and output
fault diagnosis results. Fault pattern recognition is com-
monly known as fault classification, which presents the
fault diagnosis results in the most intuitive form to man-
agement decision makers. Different pattern recognition
methods are suitable for different types of data and have
different classification capabilities. Therefore, for the pattern
recognition problem in mechanical equipment fault diag-
nosis, the majority of researchers have made a lot of attempts
and explored different pattern recognition methods, which
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Table 1: Summary and analysis of commonly used sensor technologies
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Sensor types Advantages Disadvantages
Vibration signal 1) Easy to operate and measure 1) Contact detection requires mechanical equipment to be
sensor 2) The signal contains important dynamic shut down when arranging sensors, resulting in certain
information of mechanical equipment shutdown losses
2) Some mechanical equipment works in complex and poor
environments, such as high temperature and high
pressure, which can easily lead to sensor measurement
distortion or even damage
Sound signal sensor 1) Non-contact and non-destructive testing 1) During the signal acquisition process, there will be
2) Easy to operate, flexible installation position complex noise pollution, making it difficult to separate and
extract fault signals
2) The transmission path is complex, and the representation
of signal features lacks a unified standard, which is not
conducive to improving detection accuracy
3) Unable to work in a vacuum environment
Temperature signal 1) Wide temperature measurement range, simple 1) Local measurement cannot fully characterize the state
sensor structure, and signal transmission over long changes of mechanical equipment
distances 2) For moving objects, small targets, or objects with very
2) Small size, good long-term stability, and high small thermal capacity, significant measurement errors
accuracy may occur
Oil analyzer 1) Stable and reliable, with high analysis accuracy, 1) More engineering practical experience and professional
capable of monitoring early wear related faults in knowledge are required, and the fault standards of
equipment mechanical equipment are difficult to define
2) It can directly detect the performance indicators 2) The application is relatively limited, and if the fault of
and pollution status of lubricating oil and grease mechanical equipment is not caused by wear and tear, it is
often difficult to determine its health status
Infrared thermal 1) Non-contact and non-destructive testing 1) The parameter settings are relatively complex, and it is
camera 2) Flexible installation position, capable of remote difficult to accurately measure the surface emissivity of

monitoring over a wide range

3) Wide temperature measurement range,
visualized equipment status, and easy to
understand

mechanical equipment
2) Industrial grade infrared thermal camera is expensive and
has high signal acquisition costs

are mainly divided into two categories: traditional ML methods
and DL methods, as shown in Table 2.

2.4 Limitation analysis

To summarize, different pattern recognition methods have
different characteristics, and in practical applications, it is
necessary to choose appropriate pattern recognition methods
according to different environments and data types. In
Section 2.3, the advantages and disadvantages of commonly
employed traditional ML methods and DL methods and
their applicable environments are summarized, and the fol-
lowing conclusions can be drawn:

1) Traditional ML methods require manual selection and
extraction of features, a process that usually requires
domain knowledge and experience. The selection of
features may affect the performance of the model,

2)

3)

4)

and extracting features manually requires a lot of
time and effort;

Traditional ML methods face challenges when dealing
with high-dimensional data; as the dimensionality of the
features increases, the computational complexity and
storage requirements of the model increase, and it is
also prone to the dimensionality catastrophe problem;
Traditional ML methods usually assume that there is a
linear or near-linear relationship between features and
labels, which may not fit the model well for data with a
nonlinear structure or where there are complex rela-
tionships between features, leading to performance
degradation;

DL methods such as CNN have problems such as limited
convolutional kernel sensing field, difficulty in cap-
turing image global information and gradient disap-
pearance with the increase in network layers; RNN
has limitations such as inability to compute in parallel
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Table 2: Summary and analysis of commonly used pattern recognition methods

Methods Advantages Disadvantages
K-nearest neighbor 1) The principle of KNN is simple and easy to understand 1) KNN requires the calculation of the distance from each
(KNN) [48,49] and implement sample point to the sample to be classified, so the
2) KNN is a parameter-free learning algorithm, which amount of calculation is large and is not applicable to
does not require an explicit training process, and only large-scale datasets
needs to save the training data, and can directly use 2) Requiring storage of all sample data, high space
the sample data for classification or regression complexity, and larger storage space
prediction 3) Only applicable to the case where the data type is
3) KNN does not need to make any premise assumptions numerical or categorical, not applicable to other types
about the distribution of the data, has a wide range of of data, such as text, images, etc
applications, and works well for multi-categorization
problems
Decision tree 1) The results of DT can be presented graphically, which 1) DT is prone to overfitting on training sets, leading to
(DT) [50-52] is easy to understand poor performance on new data
2) DT can automatically select the most important 2) DT is insensitive to feature correlation and may fail to
features without the need for manual feature capture complex data relationships
selection, and performs well when dealing with high 3) DT can only handle classification problems with one
dimensional data output variable, cannot solve multi-output problems,
3) Relative to other algorithms, DT requires less and is not applicable to large-scale datasets
preprocessing of data and can handle data containing
missing values or discrete features
Random forest 1) RFis an integrated learning method that consists of 1) RF needs to generate multiple DTs, and each DT needs
(RF) [53-55] multiple DTs, and the results are obtained by voting or to perform feature selection and node division, so it
averaging, which can effectively reduce the risk of requires high computational resources
overfitting of individual DT and improve the accuracy 2) RFis less interpretable, and it can provide the ranking
of the model of feature importance, but cannot provide the specific
2) RF has good robustness to missing data and outliers relationship between features
and can handle various types of data 3) RFis not suitable for processing datasets with
3) DT in RF can be generated in parallel, which can fully imbalanced categories, because each DT is constructed
utilize the computational resources and improve the based on independent random samples without regard
training speed to category imbalance
Hidden Markov 1) HMM can effectively deal with time series data, such as 1) The core assumption of HMM is the Markov property
model speech recognition and NLP that the current state depends only on the previous
(HMM) [56,57] 2) HMM can capture potential patterns and hidden states state, an assumption that may not hold in some real-
in data, thus enabling modeling and analysis of world scenarios, resulting in a limited model fitting
complex systems ability
3) The parameters of HMM include state transfer 2) HMM assumes that observation sequences are
probabilities, observation probabilities, etc., which are generated from potential states, and thus there is
highly interpretable some randomness in the prediction process
3) HMM is sensitive to the size of the state space, and
when the state space is large, the parameter estimation
and computational complexity increase significantly
Support vector 1) SVM can effectively deal with high-dimensional feature 1) SVM requires a great deal of experimentation and
machine space and nonlinear problems by introducing kernel experience in tuning various parameters, such as
(SVM) [58,59] function to map input data to high-dimensional kernel functions, penalty parameters, and
feature space regularization parameters
2) SVM uses only a small number of support vectors to 2) SVM has limited ability to process large-scale datasets
determine the decision boundary, does not rely on the and may encounter problems of insufficient memory
whole dataset, which reduces the computational and long computation time
complexity and is suitable for few-shot datasets 3) SVM was originally designed for binary classification
3) SVM has a solid mathematical theoretical foundation problems and is not effective in dealing with multi-
and is highly interpretable categorization problems
Naive Bayes 1) For large-scale datasets, due to the simple probability- 1) NB assumes that features are independent of each
(NB) [60] based model, the NB algorithm has high other, which is often untenable in practical problems
computational efficiency and may lead to degraded classification performance
2) Due to its probability-based model, the results of NB

have good interpretability

(Continued)
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Table 2: Continued
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Methods Advantages

Disadvantages

3) NB has better robustness to missing data

DL [61-68] 1)

datasets

2) DL can learn higher-level feature representations
through complex nonlinear transformations between
layers, capturing more abstract and complex features 3)

in the data

3) DLis highly scalable and can improve performance by
adding more neural network layers and parameters

DL can perform feature selection and extraction
automatically without human involvement, which
allows it to handle very complex tasks and large-scale

2) NB needs to determine the prior probability, so
unreasonable assumptions about the prior model can
lead to poor classification performance

3) NBis not flexible enough for the selection of input
features to deal with situations where there are
complex relationships between features

1) DL typically requires large amounts of labeled data for
training and has high requirements on the quality and
diversity of the data

2) DL requires a large amount of computational resource

for training and inference, especially when dealing with

large datasets and complex models

The decision-making process of DL is usually black-box

and it is difficult to explain how a model arrives at a

certain prediction, limiting the use of DL in certain

domains, such as healthcare and law, where
explanatory applications are required

and difficulty in capturing dependencies in sequences
at long distances; SAE has deficiencies such as difficulty
in training, lack of theoretical support, etc.; DBN has
deficiencies such as susceptibility to local optimal solu-
tions, difficulty in parameter tuning, and risk of over-
fitting; and the above problems have greatly affected
the effectiveness of the DL methods in fault diagnosis.

3 Application of Transformer in
mechanical equipment fault
diagnosis

Transformer [11] was first applied to machine translation
tasks in NLP with remarkable results. In recent years, with
the advancement of research, Transformer has also been

BERT

Pre-trained Transformers are
beginning to play a
dominant role in the field of

Transformer DETR

Completely based on the
self-attention ~ mechanism,
excellent performance in the

field of NLP NLP.
20182 2020.5 2020.10
2017.6 2018.10 2020.5
Image Transformer |GPT-3

Transformer is applied to | With 175 billion parameters,
CV field for the first time. it has greatly promoted the
development of NLP.

Figure 3: The evolution and key models of Transformer.

detection for the first time.

ViT

Pure Transformer for image
classification task with good
results.

innovatively introduced into the CV field, such as image
enhancement, image generation, image classification, object
detection, and image segmentation tasks [69-73], which cre-
ated a new milestone in the CV field, and the development
history of Transformer and the key model are shown in
Figure 3.

By analyzing Figure 3, it can be seen that in June 2017,
Vaswani et al. [11] proposed a Transformer framework
based only on the self-attention mechanism for the first
time, which demonstrated excellent performance in the
field of NLP. In February 2018, Parmar et al. [74] proposed
the Image Transformer model, which was an application of
Transformer to the CV domain the first time. Since then,
the visual Transformer model has been rapidly developed
and many landmark results have emerged. For example, in
May 2020, Carion et al. [72] constructed Detection Trans-
former (DETR), a new end-to-end object detection frame-
work, and for the first time, Transformer was used for

|DeiT ChatGPT

Transformer is used to solve | A new image classification |A large-scale NLP model
the task of image

object |algorithm, making the most |that represents an epochal

of limited data. advance in AL

20213 20233
2021.1 2022.11

2

Swin Transformer GPT-4
Transformer structure based | One of the most advanced NLP

on hierarchical structure and | )0 dels at present.

local attention.
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solving the image object detection task. In October 2020,
Dosovitskiy et al. [75] proposed an image classification
model, namely, Vision Transformer (ViT), based on the
Transformer framework. By introducing a self-attention
mechanism, ViT completely abandons the traditional con-
volutional operation. In January 2021, Facebook Al and the
Sorbonne University [76] jointly developed a new efficient
image classification algorithm Data-efficient image Trans-
formers (DeiT). DeiT can perform adaptive feature extrac-
tion for each sample and thus is not affected by differences
in the number of samples. This enables DeiT to perform
well in small-sample learning tasks and to efficiently utilize
limited data for classification. In practice, Transformer-
based image classification models are complex in struc-
ture, have many parameters, and are computationally
expensive; therefore, in March 2021, Liu et al. [77] proposed
a new image classification model, Swin Transformer. It
was inspired by the success of CNN in the image domain
in its design, and prior knowledge from CNN was applied to
the Transformer, including localization, multi-scale, and
hierarchical design, and achieved optimal results on several
image classification and object detection tasks, which was
awarded as the best paper of ICCV2021, showing the great
potential of Transformer.

3.1 Network structure and fundamentals of
Transformer

Transformer is a sequence-to-sequence DL model based on
the self-attention mechanism. Before Transformer was
proposed, RNN was the most widely used model in the field
of NLP [78], and its structure is illustrated in Figure 4.

As indicated in Figure 4, RNN is trained sequentially,
and its structure contains loop units, and the output at a
certain moment comes from the memory of the previous
generations of loops (hidden state) and the current input
state, i.e., the loop units can memorize the previous infor-
mation and input it into the next loop unit, so RNN is able

Yy
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to extract correlations between contextual features. How-

ever, there are three obvious flaws in the design of RNN:

1) RNN can only perform computation sequentially in
order, which weakens the parallel computing ability
of the model.

2) Long-term memory in the hidden state tends to weaken
or even be lost with iterations, so it is difficult for RNN to
establish long-term dependencies between distant fea-
tures (e.g., words from different parts of an utterance).

3) The training time of the model increases as the length of
the input sequence becomes longer. This is because
during training, the model needs to process each input
token sequentially and use the information from the pre-
vious token when generating the next one. Therefore,
longer input sequences require more computation and
time to process.

Meanwhile, Transformer solves the above problems
by introducing a self-attention mechanism. Transformer
consists of three main modules such as encoder, decoder,
and positional encoding [11]. As shown in Figure 5, the
encoder generates the input encoding and the decoder
receives all the encodings and uses them to merge the
contextual information to generate the output sequence.
Each module of Transformer is described in detail here.

3.1.1 Encoder-decoder

Transformer employs an encoder-decoder model architec-
ture that avoids loops, as shown in Figure 6. The first part is
the encoder, which consists of six identical encoder layers
stacked together. Each encoder layer consists of two sub-
layers, namely, the multi-head self-attention (MSA) and the
feed-forward neural network (FFN). MSA can focus on different
positions in the input sequence, capturing global contextual
information. FFN is used to perform nonlinear transformations
on the features at each position. The entire encoder gradually
extracts abstract representations of the input sequence through
the stacking of multiple encoder layers.

\\Y) k\@

Figure 4: The conventional framework RNN.
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Figure 5: The original structure of Transformer [11].

Next is the decoder. After the input data are processed
by the encoder layers, they are passed to each layer of the
decoder to compute attention scores. The decoder also con-
sists of six identical decoder layers, each of which comprises
three sub-layers: MSA, masked multi-head attention (MMSA),
and FFN. MSA retrieves information about the input sequence
from the output of encoders, helping the decoder generate the
correct output sequence. MMSA is primarily employed to
mask or hide information at certain positions to prevent the
model from overly relying on previous tokens during genera-
tion, thus improving the model’s generalization ability and
suppressing information leakage.

3.1.2 Feed-forward network

FEN is a fully connected feed-forward neural network that
is added after the self-attention layer of each encoder and
decoder. It receives the output of the self-attention layer as
input and then outputs a new representation vector con-
taining higher level semantic information. The computa-
tional procedure of FEN is as follows:

FEN(X) = Wio(WiX), @
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Figure 6: The structure of encoder-decoder.

where W; and W, are the linear transformation matrices
of the first and second fully connected layers, respectively, o
denotes the nonlinear activation function, and the dimen-
sion of the hidden layer is dj = 2,048.

In FFN, a two-layer fully connected structure is used
and a ReLU activation function is employed between the
two layers. Specifically, in each FFN, the input representa-
tion vector is first linearly transformed through one fully
connected layer, then nonlinearly transformed through a
ReLU activation function, and finally linearly transformed
through another fully connected layer to obtain the output.
The advantage of FEN is that they can extract higher-level
semantic features of the inputs through the nonlinear
transformations of the multiple layers, which improves
the expressive power of the models. In addition, since the
computation of FFN is performed independently, the
training process of the model can be accelerated by
parallelization.

3.1.3 Position encoding

Since Transformer does not contain any recursive and con-
volutional structures to capture the positional information
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of different words in the text, some relative or absolute
positional information about the tokens in the sequence
has to be added in order for the model to be able to record
the sequential relationships between the sequence data. To
this end, position encoding is added to the bottom of the
stack of the encoder and decoder, numbering the position
of each word in the text, with each number corresponding
to a word vector, respectively, and by combining the posi-
tion vectors and the word vectors, certain positional infor-
mation is added to each word. Compared with the sequen-
tial input method of RNN, Transformer can input data in
parallel and retain the positional relationship between the
data, which improves the computation speed and reduces
the storage space requirement. Moreover, the dimensions
of the position encoding and the input sequence embed-
ding vectors are the same, so both can be summed up.
Currently, there are various methods for position encoding
[79], Transformer is realized by using sine and cosine func-
tions with different frequencies [11], which can preserve
the relative relationship of position information, and the
specific operation can be expressed as follows:

PE(pos2i) = sin(pos/10,0002/4m), ()
PE (pos,2i+1) = €OS(P0s/10,0002/4m), (3)

where pos denotes the position of the word in the text each
time, i represents the dimension, d,, is the dimension of the
position encoding, 2i is the even dimension of the position
encoding, and 2i + 1 represents the odd dimension of the
position encoding (i.e.2i <d,2i +1<d). It follows that
each dimension of the position encoding corresponds to
a sinusoidal wave with a geometric progression of wave-
lengths from 27 to 10,000-27t.

3.1.4 Self-attention

Attention mechanism [80] can be traced back to research in
the field of neuroscience. Through the attention mechanism,
the human brain is able to selectively focus on specific infor-
mation and filter out irrelevant information when faced with
a complex external environment. This mechanism allows us
to better process and understand the information we receive.
In the field of Al the attention mechanism is introduced into
DL models to improve the performance of the models. By
introducing the attention mechanism, the model can dynami-
cally assign different attention weights according to different
parts of the input data and selectively process the important
information. This mechanism can help the model better
understand the input data and extract the key information
in it. In recent years, the attention mechanism has been
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widely employed in speech recognition [81], machine transla-

tion [82], and image processing [83].

Self-attention [84] improves the attention mechanism
in some details:

1) Objects of attention: the self-attention mechanism focuses
on the correlation between different parts within the input
information, while the attention mechanism mainly
focuses on the correlation between the elements within
the input utterance.

2) Information processing method: the information pro-
cessing method of the self-attention mechanism does
not rely on external information, but mainly on the
characteristics of the input information itself. The
attention mechanism, on the other hand, can utilize
external information, such as contextual information,
in its processing.

3) Performance: the self-attention mechanism can better
capture the internal relevance of the input information,
which is especially suitable for solving the long-distance
dependency problem, whereas the traditional attention
mechanism may encounter difficulties in dealing with
this kind of problem.

By introducing the self-attention mechanism, Transformer
completely abandons convolutional and recursive opera-
tions in its structure and relies only on the self-attention
mechanism for global feature information extraction. The
original Transformer proposes the scaled dot-product atten-
tion (SDPA) [11]. The basic structure of SDPA is depicted in
Figure 7.

As is shown in Figure 7, Let Y € R™dn be a sequence
(Vy5Y55Y5, - Y,) containing n elements, where dp, is the
dimension of the element m. In the self-attention mechanism,
three trainable weight matrices are defined as query matrix
W € R4, key matrix WX € R™%, and value matrix
WY € R™%, Each element of the input sequence Y € R™n
is linearly projected to each of the three weight matrices to
generate three new vectors: the query vector (Query, Q), the
key vector (Key, K), and the value vector (Value, V), which are
computed as follows:

Q =YWC K=YWK V=YW, 4

SDPA, on the other hand, computes the dot product of
the query vector Q and the key vector K with scaling, then
performs Softmax normalization, and finally multiplies it
with the value vector V to obtain the output matrix. The
specific calculation formula is as follows:

T

Attention (Q, K, V) = softmax Q

7T

v, (5)
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where dj represents the dimensions of the vectors Q and K,
and \/dy is the scale factor (square root of the dimension of
the key vector K).

Each word in the self-attention mechanism computes
an attention score (weight) that reflects the word’s rele-
vance to the other words in the sequence, thus capturing
global information about the sequence and preserving
information about long-term dependencies between dif-
ferent words.

MSA is an extension of self-attention and consists of mul-
tiple independent self-attention layers (heads), each of which
has independently trainable weight matrices WiQ, WK, and
W/ . The basic structure of MSA is shown in Figure 8.

The essence of MSA is to obtain multiple sets of
queries, keys, and values by mapping the input sequences
into different subspaces by linear transformations while
ensuring that the number of parameters is overall con-
stant. The specific calculation process is as follows:

Q. = YWZ, K; = YWX, V; = YW/, ®)
Z; = Attention(Q, K;, V}), i=1,2,3,.,H, 0
MultiHead(Q, K, V) = Concat(Zy, Z, Zs,..., Zg)W®, (8)

where h is the number of heads of MSA, Z; represents the
output vector of each self-attention head, W” denotes the
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Figure 8: The basic structure of MSA.

linear transformation matrix of the output vector of each
self-attention head. Q;, K;, and V; can be considered as
multiple splits of Q, K, and V in the self-attention per-
formed in different subspaces.

3.2 Transformer-based image classification
models

In the CV field, the original Transformer is not commonly
used, because the original Transformer is mainly applied
for sequential data processing tasks. With the deepening of
the research, researchers have continuously improved the
Transformer and gradually applied it to image processing
tasks, with good results. According to the different design
focuses and application areas of the model, this study sum-
marizes the classical models of Transformer in the field
of image processing and their applications, as shown in
Table 3.

The Transformer model has demonstrated strong ability
in processing sequence data (such as texts), and image data
can also be regarded as a kind of sequence data, only that
this sequence is two-dimensional. Inspired by this, some
researchers have gradually applied the Transformer model
to the field of image processing and developed many visual
Transformer models with excellent performance. Among
them, image classification is one of the most common appli-
cations of visual Transformer models. Image classification is
the process of distinguishing images belonging to different
categories and determining the category labels according to
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Table 3: Summary and analysis of Transformer’s classical models in image processing field

Task type Classical models

Design focus

Image classification VIiT [75]

DeiT [76]

Swin Transformer [77]
TNT [85]

PVT [86]
T2T-ViT [87]
DeepViT [88]
CaiT [89]
CrossViT [90]
DETR [72]

TSP [91]

ACT [92]

FPT [93]

SETR [94]
Segmenter [95]
SegFormer [13]

Object detection

Image segmentation

Image chunking, embedding, and serialization

Knowledge distillation, self-supervised learning

Nested structures, local attention

Pyramidal layer-by-layer feature extraction

Nested structures, local attention

Pyramidal layer-by-layer feature extraction

Local prior, tokens-to-token mechanism

Convolutional mapping, re-attention mechanism

Multi-scale feature fusion and cross-attention mechanism

New positional coding methods, teacher-student strategy
Ensemble-based global objective function, dichotomous matching
Pure encoder architecture, match distillation

Adaptive feature clustering, locally sensitive hashing

Multi-scale feature fusion, up-sampling strategy

Point-by-point linear decoder, adaptation to different resolutions
Hierarchical feature representation, lightweight full MLP decoder

the meaning and contextual information embedded in the
images, which is an important fundamental work for other
image processing tasks such as object detection and image
segmentation.

To improve the processing efficiency of the visual
Transformer model, researchers have made a series of
improvements on the basis of the original Transformer,
and in this study, some of the visual Transformer models
with excellent performance are selected to be briefly intro-
duced and analyzed. At present, typical Transformer-based
image classification models mainly include ViT and its

Vision Transformer (ViT)

MLP
Head

Step 3: Model and output.

variants. This study focuses on introducing and summar-
izing the research progress of ViT and its variants.

3.2.1 Vision Transformer

ViT is the first successful application of Transformer in the
field of image classification, which exceeded the state-of-
the-art CNN models ResNet [96] and EfficientNet [97] at that
time in terms of image classification performance, and the
model architecture is shown in Figure 9.

Transformer Encoder
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and global feature vector 0.
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Multi-Head
Attention

* Extra learnable
[class] embedding

)
puch rotion £ 3

Linear Projection of Flattened Patches ]

SHE
i‘%? i G
s s

Figure 9: The model structure of ViT [75].
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The key to applying ViT for image classification is to
convert the image into sequential data. ViT segments the
input image into a series of patches, each containing a portion
of the image information. Each patch is then transformed into
a vector representation, which is called embedding.

3.2.2 Data-efficient image Transformers

Based on knowledge distillation and self-supervised learning,
DeiT needs less data and arithmetic power to achieve image
classification results on the ImageNet dataset that are com-
parable to top CNN models. The model structure of DeiT is
shown in Figure 10.

As shown in Figure 10, the overall training process of
DeiT consists of four stages: data preparation, model archi-
tecture, self-supervised pre-training, and supervised fine-
tuning. Compared with the traditional ViT, DeiT can achieve
better results with fewer samples or even no samples.

L CE ‘Cteacher

$ $
(OoooOoOoooo)

t

FFN
| Self-attention |

}
ogoooooool
T ottttrrss

class patch distillation
token tokens token

Figure 10: The model structure of DeiT [76].
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3.2.3 Swin Transformer

Traditional ViT models usually need to divide the whole
image into multiple fixed-size image patches and then per-
form global attention computation. However, this approach
tends to destroy the local information of the image. Swin
Transformer introduces a hierarchical Transformer struc-
ture, as shown in Figure 11, which realizes multi-scale fea-
ture extraction by dividing the input image into a series of
non-overlapping windows, and then the local self-attention
computation within the windows is performed.

As illustrated in Figure 11, the computational complexity of
Swin Transformer varies linearly with the size of the input
image, whereas the computational complexity of the ViT model
varies as a square multiple of the size of the input image [98].

3.2.4 Tokens-to-token vision Transformer (T2T-ViT)

The core idea of T2T-ViT is to progressively refine image fea-
tures through a recursive token transformation mechanism to
improve the classification performance. The model structure of
T2T-ViT is shown in Figure 12.

T2T-ViT improves the traditional ViT model by intro-
ducing a recursive token conversion mechanism and a
deep narrow network structure, which improves the per-
formance and efficiency of image classification.

3.2.5 Cross-attention multi-scale vision Transformer
(CrossViT)

CrossViT improves the traditional ViT by combining multi-
scale feature fusion and cross-attention mechanism. The
model structure of CrossViT is shown in Figure 13.

Segmentation

Detection ... Classification

Classification

(@) (b)

Figure 11: The hierarchical structure of Swin Transformer [77]. (a) Swin
Transformer. (b) ViT.
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As shown in Figure 13, CrossViT introduces a two-
branch ViT structure, where each branch handles image
features at different scales. This mechanism allows informa-
tion to be exchanged between two branches, thus enabling
feature fusion. CrossViT can make full use of both local and
global information of an image to improve the classification
performance.
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3.2.6 Pyramid vision Transformer (PVT)

PVT combines the pyramid structure in CNN and the
Transformer’s self-attention mechanism. The core idea of
PVT is to construct a feature pyramid structure with dif-
ferent resolutions in the Transformer. The model structure
of PVT is shown in Figure 14.

As demonstrated in Figure 14, PVT employs a down-
sampling operation similar to that in CNN to gradually
reduce the resolution of the feature maps, thus constructing
feature pyramids with different resolutions.

3.3 Transformer-based intelligent fault
diagnosis methods of mechanical
equipment

The original Transformer model is not directly applicable
to processing image data, as it was originally designed for
NLP tasks where the input to the model is a set of word
vector matrices. However, in recent years researchers
have proposed a number of improvements and extensions
to the Transformer model that make it usable for visual
tasks such as image recognition.

By summarizing the relevant literature, it can be
found that there are usually two processing ideas when
using Transformer-based methods for fault diagnosis of
mechanical equipment. One is to pre-process the input
one-dimensional fault signals (vibration, sound, etc.) to
convert the original one-dimensional signals into a form
suitable for Transformer input, which is convenient for
feature extraction. Since the vibration, sound, and other
signals of mechanical equipment are generated by the
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Figure 14: The model structure of PVT [86].

motion and dynamics characteristics of mechanical equip-
ment, and their features include frequency, amplitude,
phase, waveform, etc., they can be analyzed and processed
by sensors and mathematical methods; whereas, natural
language involves vocabulary, sentence structure, gram-
matical rules, and contexts, etc., and its understanding
and generation need to rely on the cognitive and linguistic
capabilities of the human, so the original Transformer
cannot directly carry out mechanical equipment fault diag-
nosis by processing vibration, sound, and other signals.
Second, the original one-dimensional signal is converted
into a two-dimensional image by employing the relevant
time-frequency conversion method, and then the two-
dimensional image data are input into visual Transformer
models such as ViT and Swin Transformer for training and
fault pattern recognition.

3.3.1 Verification of fault diagnosis methods

Currently, the datasets used in the validation session of
Transformer-based mechanical equipment fault diagnosis
methods mainly include four kinds of public datasets, such
as the Case Western Reserve University (CWRU) bearing
dataset [99], XJTU-SY rolling bearing accelerated life test
dataset [100], University of Connecticut (UICONN) gearbox
fault dataset [101], and Harbin Institute of Technology
(HIT) aero-engine inter-shaft bearing fault dataset [102],
which contain a variety of bearing fault patterns, rolling
bearing full-life cycle vibration data, multiple gearbox fault

data, and the vibration signal of rotors and casings, respec-
tively. The arrangement of the data acquisition equipment
corresponding to the above four datasets is shown in
Figure 15.

The CWRU bearing dataset contains a total of ten pre-
fabricated faults of rolling bearings, which contain the
normal condition as a special fault pattern, and has been
widely applied in fault diagnosis research for rotating
machinery. The XJTU-SY dataset is a widely employed rolling
bearing accelerated life test dataset, which is collected and
compiled by a team from Xi’an Jiaotong University in coop-
eration with Zhejiang Changxing Shengyang Science and
Technology Co. Different from the CWRU bearing dataset,
this dataset records the full life cycle vibration data of
15 rolling bearings under three operating conditions. The
UCONN dataset is a gearbox dataset collected and arranged
by the University of Connecticut from a two-stage gear box.
The UCONN dataset contains 936 samples and 9 failure
modes, which are normal condition, missing teeth, root frac-
ture, contact surface spalling, and five kinds of tooth tip
defects in different degrees. The HIT dataset, including three
states of inter-shaft bearings, is proposed based on a real
aero-engine by replacing the inter-shaft bearing with artifi-
cial fault, driven by motors and equipped with a lubricating
system.

Through in-depth analysis, it can be concluded that the
above public datasets reveal the following physical phe-
nomena and physical principles:

1) Physical phenomena. In the normal operation of mechan-
ical equipment, due to the periodic movement of rotating
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Figure 15: Data acquisition equipment: (a) CWRU dataset; (b) XJTU-SY dataset; (c) UCONN dataset; and (d) HIT dataset.

2)

parts (such as bearings, gears, etc.), periodic vibration sig-
nals will be generated. These signals usually appear as dis-
tinct peaks on the spectrogram, related to the speed of the
mechanical equipment and the natural frequencies of the
components. When a component in the mechanical equip-
ment fails (such as bearing damage, gear teeth broken, etc.),
a transient impact component is generated in the vibration
signal. These impact components often have a wide fre-
quency band and high energy, which is an important basis
for fault diagnosis. With the deterioration of mechanical
equipment performance and the development of faults,
the amplitude and frequency components of vibration sig-
nals tend to change. For example, the amplitude may gra-
dually increase, while certain frequency components may
disappear or new frequency components may appear.

Physical principles. When the vibration frequency of a
mechanical device is close to the natural frequency of a
component, a resonance phenomenon will occur, resulting
in a significant increase in vibration amplitude. This phe-
nomenon is of great significance in fault diagnosis because
the resonance frequency is often related to the type of
fault. In the vibration process of mechanical equipment,
energy is transferred and converted between the various
components. When a component fails, it will lead to
abnormal energy transmission and conversion, which

reflects the fault information in the vibration signal. The
vibration signal of mechanical equipment can be regarded
as the propagation of mechanical waves in the medium.
The wave principle can be used to explain the attenuation,
scattering, and interference of vibration signals in the pro-
cess of propagation, and provide theoretical support for
fault diagnosis.

The performance of different methods on these four
public datasets are summarized in Table 4.

Analysis of Table 4 shows that the fault diagnosis accu-
racy of the HIT dataset is significantly lower than that of
the other three datasets, which is due to the fact that the
HIT dataset is closer to the actual fault diagnosis situation
of mechanical equipment, which is more challenging com-
pared to the dataset obtained under laboratory conditions,
and the dataset provides a new benchmark for the valida-
tion of mechanical equipment fault diagnosis methods.

3.3.2 Related literature review of Transformer-based
intelligent fault diagnosis methods

Driven by the first Transformer-based intelligent fault diag-
nosis research idea of mechanical equipment, Jin et al. [106]
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Table 4: Performance of different methods on these 4 public datasets

Methods Classification accuracy (%)

CWRU dataset

BPNN [103] 81.35
DBN [104] 88.20
1DCNN [105] 97.32
TST [106] 98.63
Diagnosisformer [107] 99.85
SiT [108] 99.46
TAR [109] 99.90
SVIT [110] 97.56
XJTU-SY dataset

NKH-KELM [111] 95.56
DCN [112] 99.31
AlexNet [113] 99.58
LSTM [113] 98.65
CWT-2DCNN [114] 99.40
TST [106] 99.78
UCONN dataset

AE [113] 95.13
DAE [113] 93.76
BPNN [113] 95.13
LSTM [113] 88.74
ResNet18 [113] 85.84
TST [106] 99.51
HIT dataset

CNN [106] 83.13
LSTM [106] 85.41
TST [106] 71.07

proposed a fault diagnosis method for rotating machinery
based on time series Transformer (TST) to solve the problem
of long-term dependence of traditional CNN and RNN-based
fault diagnosis models. The overall model architecture of
TST is shown in Figure 16.

As shown in Figure 16, a new time series tagger is first
designed for one-dimensional data processing, and then
TST is proposed on this basis in conjunction with the Trans-
former model. Finally, the CWRU dataset, XJTU-SY dataset,
and UCONN dataset were used to verify the validity of the
model. Experimental results show that TST achieves 98.63%
(ten categories), 99.72% (four categories), 99.78%, and 99.51%
fault diagnosis accuracy for the above three datasets, respec-
tively, which are higher than the traditional CNN and RNN
models. Meanwhile, the results after feature visualization
using t-SNE also proved that the feature vectors extracted
by TST have the best intra-class closeness and inter-class
separability, further proving the effectiveness of the method.

Hou et al [109] proposed a bearing fault diagnosis
method based on joint feature extraction of Transformer
and ResNet (TAR) for the problems of difficult data acquisi-
tion, unbalanced category distribution, and noise interfer-
ence that often exist in DL models for bearing fault diagnosis

DE GRUYTER

driven by big data. The overall model architecture of TAR is
shown in Figure 17.

As indicated in Figure 17, feature separation and word
embedding were first performed on the original one-
dimensional signals through a one-dimensional convolu-
tional layer, which were transmitted to the Transformer
encoder and ResNet framework for feature extraction,
respectively, and the diagnostic accuracy was better than
that of the traditional DL network. In addition, the migration
learning strategy employing model fine-tuning reduced the
training difficulty of the method in new tasks. Finally, the
CWRU dataset was used to verify the validity of the model.
The experimental results show that TAR achieves up
to 99.90% fault diagnosis accuracy for the CWRU dataset
without adding noise, and when adding noise with dif-
ferent signal-to-noise ratios, TAR’s average fault diagnosis
accuracy is higher than that of the comparison methods.

Fang et al [115] explored a lightweight Transformer
based on convolutional embedding and linear self-atten-
tion, named CLFormer, for fault diagnosis of rotating
machinery. The overall model architecture of CLFormer
is shown in Figure 18.

To begin with, the input original one-dimensional
signal was normalized in [-1,1], the convolutional embed-
ding module is constructed to replace the original embed-
ding module, to reduce the complexity of the model, the
linear self-attention was used to replace the original self-
attention, which makes the CLFormer satisfy the demand
of lightweight. Finally, the effectiveness of the proposed
method was evaluated on a laboratory-measured rotating
machinery dataset. The experimental results show that
compared with Transformer, the number of parameters
of CLFormer decreases from 35.22 to 4.88 K, and the accu-
racy of fault diagnosis increases from 82.68 to 90.53%,
which is of practical application value.

Aiming at the problems of low accuracy and poor
robustness of traditional rolling bearing fault diagnosis
based on DL, Hou et al. [107] designed a multi-feature par-
allel fusion rolling bearing fault diagnosis method with
Transformer as the basic network, named Diagnosisformer.
The overall model architecture of Diagnosisformer is shown
in Figure 19.

The fast Fourier transform is primarily used to extract
the frequency-domain features of the original one-dimen-
sional vibration data, and then the model inputs are sub-
jected to normalization operations and embedded into the
network. Then, the multi-feature parallel fusion encoder is
used to extract the local and global features of the bearing
data, and the corresponding features are passed to the
cross-flipped decoder and classified by the classification
head for fault classification. Finally, self-made rotating
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machinery fault diagnosis data and the CWRU dataset were
used to verify the validity of the model. The experimental
results show that Diagnosisformer achieves an average
diagnosis accuracy of 99.84 and 99.85% for the above two
datasets, respectively. Accuracy and robustness are signif-
icantly better than CNN, CNN-LSTM, RNN, LSTM, GRU, and
other methods.

Yang et al. [108] proposed a signaling Transformer
(SiT) on the basis of the attention mechanism and applied
it to a study of bearing fault diagnosis. The overall model
architecture of SiT is shown in Figure 20.

As demonstrated in Figure 20, the original one-dimen-
sional vibration time series was first segmented, then the
segmented subsequence was linearly encoded and posi-
tionally encoded, and finally the encoded subsequence
was input into the Transformer for feature extraction to
realize the fault pattern recognition of bearings. The effec-
tiveness of the method was finally verified using the CWRU
bearing dataset and the self-made centrifugal pump bearing
dataset. The experimental results show that SiT achieves an
average diagnostic accuracy of 99.46 and 99.53% for the
above two datasets, respectively, which verifies the effec-
tiveness of the proposed method.

Aiming at the problem that the self-attention mechanism
in the current Transformer model can only focus on the cor-
relation information within the sequence and cannot under-
stand the information gap between the samples, Li et al. [116]
proposed a Twins Transformer model based on two-branch
Twins attention for bearing fault diagnosis. The overall model
architecture of Twins Transformer is shown in Figure 21.

The proposed Twins Transformer uses cross-attention for
the first time to compute correlation information between
samples. In addition to retaining the correlation information
within the sequence data obtained by computing the self-
attention, the cross attention is also utilized to learn the cor-
relation information between the samples. Finally, the per-
formance of the model is validated on four commonly used
bearing datasets, the CWRU dataset, UPB dataset [117], MFPT
dataset [118], and JUN dataset [119]. The average accuracy of
each dataset is improved by 1.73-99.42% compared to the
original Transformer.

In terms of visual Transformer applications, Ding et al
[120] processed the original one-dimensional vibration signal
of rolling bearings via synchronous compression WT to
obtain a multi-channel time-frequency representation, which
was then input into a new time-frequency Transformer (TFT)
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to extract discriminative hidden features and accurately clas-
sify fault types. The overall model architecture of TFT is
shown in Figure 22.

Finally, a self-made bearing experiment dataset was
used to verify the validity of the model. Compared with
other DL models, this method had higher diagnostic accu-
racy and faster training speed. Thus, the superiority of the
method is demonstrated.

Tang et al. [121] explored an integrated ViT model based
on WT and soft voting for bearing fault diagnosis. The overall
model architecture of the integrated ViT is shown in Figure 23.

First, the original one-dimensional vibration signal was
decomposed into sub signals of different frequency bands
via discrete wavelet transform, and then these sub signals
were transformed into wavelet time-frequency maps using
CWT. Second, the wavelet time-frequency maps were input
into ViT for preliminary diagnostic analysis. Finally, the soft
voting method was employed to fuse all preliminary diag-
nostic results and obtain the final diagnostic decision result.
The CWRU dataset was used to verify the validity of the
model. The experimental results show that the integrated
ViT has the highest fault diagnosis accuracy on all the three
datasets, which are 100, 99.67, and 99.83%, respectively,
which is better than the integrated CNN and ViT and other
comparison methods.
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Fan et al [122] proposed a ViT-based fault diagnosis
method of rolling bearings to improve the accuracy of
rolling bearing fault diagnosis. The overall ViT model
architecture is shown in Figure 24.

As illustrated in Figure 24, the original one-dimen-
sional vibration signal was transformed into a grayscale
texture image through local binarization, segmented into
predetermined sized small blocks, and then transformed
into a sequence through linear mapping. The global infor-
mation of the image was extracted through self-attention
mechanism to achieve bearing fault diagnosis. To improve
the image recognition performance of ViT, pooling layers
were introduced, and the accuracy of the new pooling ViT
was improved by 3.3% compared to the original ViT.

Cui et al. [123] conducted research on fault diagnosis of
waterborne diesel engines under various internal and
external excitations, and a fault diagnosis method based
on the complementary ensemble EMD of adaptive noise,
signal-to-image conversion, and Swin Transformer was
proposed. The overall Swin Transformer model architec-
ture is shown in Figure 25.

As is shown in Figure 25, the original one-dimensional
vibration signals were first decomposed to obtain a time-
frequency matrix. Second, the time-frequency matrix was
converted into a two-dimensional color image through
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signal-to-image conversion and pseudocolor encoding. Finally,
the two-dimensional image was input into Swin Transformer
to fully extract feature information for fault diagnosis. The self-
made marine diesel engine dataset was used to verify the
effectiveness of the method, and the experimental results
proved that the method can effectively extract the fault feature
information, and the average fault diagnosis accuracy can
reach 98.3%, and has a certain degree of anti-noise interference
ability.

Jin et al. [124], aiming at the reality that traditional
bearing fault diagnosis methods rely on a large amount
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of manually labeled data, proposed a bearing intelligent
fault diagnosis method based on WT and self-supervised
learning, which effectively solves the problem of insuffi-
cient fault training samples. The overall model architec-
ture is shown in Figure 26.

First, WT and cubic spline difference methods are used
to convert the original one-dimensional vibration data into
two-dimensional wavelet time-frequency maps, which are
then input into the ViT network for feature extraction,
KNN is used for fault classification, while the label-free
self-distillation algorithm is utilized to solve the problem
of self-supervised learning for both finite-labeled data and
sufficiently unlabeled data. Finally, the CWRU dataset and
XJTU dataset are employed to validate the model. The
experimental results show that the method can obtain
more than 90% average fault diagnosis accuracy in both
datasets with only 1% labeled data, and the comparison
results with other self-supervised learning methods also
prove the effectiveness and superiority of the method.

He et al [110] proposed a bearing fault diagnosis
method Siamese vision Transformer by fusing Siamese net-
work and ViT under the conditions of limited labeled
training data and complex working conditions, and the
overall model architecture is shown in Figure 27.

Firstly, the STFT is used to convert the one-dimen-
sional vibration signal of the bearing into a two-dimen-
sional time-frequency map, and the feature vectors of the
input samples are efficiently extracted in the high-order
space to accomplish the fault diagnosis. In the training
process of the model, the loss function combining the KL
dispersion in both directions and a new random masking
strategy are proposed and designed. Finally, the CWRU
dataset and Paderborn dataset are used to validate the
model. The experimental results show that the proposed
method achieves 97.56 and 98.11% average fault diagnosis
accuracies, respectively, with limited data, demonstrating
the generalization and effectiveness of the method.
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3.3.3 Summary of research status

The current research status demonstrates that although
some achievements have been made in the research of
Transformer-based intelligent fault diagnosis of mechanical
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equipment, Transformer has attracted the attention of some
scholars due to its advantages such as self-attention mechanism,
parallel computing, multi-task learning, and flexible and scal-
able structure. Transformer has gained rapid and wide disse-
mination in the 6 years since it was proposed, and has made
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impressive achievements in many tasks such as NLP, speech

recognition, image processing, recommender systems, etc.

However, so far, the research and applications related to

mechanical equipment fault diagnosis using Transformer

and its variants are still very limited and have the following
problems:

1) The structure of Transformer is relatively complex and
contains a large number of parameters, which requires
large-scale training samples when pre-training the model
and consumes a large number of computational resources
and time, increasing the risk of overfitting. For some small
datasets or domain-specific fault diagnosis tasks, Trans-
former may not be able to fully learn the fault features,
which leads to poor fault diagnosis results.

2) Currently, most of the Transformer-based mechanical
equipment fault diagnosis studies collect mechanical
equipment state information under stable operating
conditions with fixed operating parameters, environ-
mental variables, etc., and many of the studies only
analyze single fault patterns. However, the state of
mechanical equipment in the actual operation process
is mostly a complex fault pattern that occurs across
working conditions such as compound speed or multiple
faults. Therefore, only the study of stable working condi-
tions or a single fault pattern for fault diagnosis of
mechanical equipment does not meet the actual situation.

3) The application of Transformer in the field of mechan-
ical equipment intelligent fault diagnosis is common in
rolling bearings, rotor systems, and other common
rotating machinery, and there is a great lack of
research on typical reciprocating machinery such as
diesel engines, and the method validation is mostly
based on the public dataset, and there are fewer stu-
dies based on the data collected from actual indus-
trial equipment.

4) Research on intelligent fault diagnosis of mechanical
equipment based on Transformer has achieved a series
of remarkable results. These results not only validate
the effectiveness and accuracy of Transformer methods,
but also reveal the close relationship between relevant
findings and physical phenomena. For example, some
studies have found that certain vibration signals of spe-
cific frequencies are highly correlated with certain types
of mechanical equipment faults. This discovery not only
provides a new characteristic index for fault diagnosis,
but also provides valuable reference information for the
maintenance and management of mechanical equip-
ment. In addition, it has been found that Transformer
models can automatically learn some feature representa-
tions related to physical phenomena when processing
vibration signals. These feature representations not only
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help to improve the accuracy of fault diagnosis, but
also provide a new perspective for understanding the
operation mechanism and fault process of mechanical
equipment.

4 Research prospects

With the continuous development and improvement of
mechanical equipment fault diagnosis methods and tech-
niques, Transformer-based intelligent fault diagnosis of
mechanical equipment has become an emerging popular
research direction. In recent years, Transformer has been
widely applied in various fields of Al, and has become a
mainstream method in the fields of CV, NLP, and multimod-
ality. In the future, with the advancement in DL technology,
Transformer-based intelligent fault diagnosis methods will
be more widely employed. According to the current pro-
blems and challenges faced by Transformer-based intelli-
gent fault diagnosis methods of mechanical equipment,
this study summarizes and looks forward to its future devel-
opment direction.

1) Adaptability to multiple data types. Currently, Transformer-
based intelligent fault diagnosis methods of mechanical
equipment are mainly applied to fault diagnosis of
rotating machinery such as rolling bearings and rotor
systems, and the collected data types are mainly vibra-
tion signals and sound signals. In the future, with the
development of the industrial Internet, there will be
more mechanical equipment operation data, such as
temperature, pressure, flow, etc., which can be applied
for mechanical equipment fault diagnosis, and the scope
of application will be further extended to the field of
reciprocating machinery such as engines, to further
enrich the types and sources of fault diagnosis data,
and to improve the reliability of diagnostic results.

2) Few-shot learning. Transformer-based diagnostic models
usually require massive data samples for training, and
then the model is fine-tuned for specific task types to
ensure the accuracy and generalization performance of
the model. However, it is not realistic to obtain a large
amount of labeled data for certain scenarios of mechan-
ical equipment fault diagnosis, because mechanical equip-
ment faults occur randomly, and the sample data are also
more complex and difficult to collect and label. Few-shot
learning technology can be employed to infer and predict
unknown samples from the knowledge learned from a
small number of samples by means of algorithm optimi-
zation and model improvement, thus solving the problem
that Transformer performs well on large datasets but is
ineffective in the face of few-shot datasets.
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3) Lightweight research on Transformer. Transformer
model shows excellent performance in mechanical equip-
ment fault diagnosis tasks, due to its high model com-
plexity and large number of parameters, it requires a
large amount of computational resource and storage
space for training and reasoning, which brings certain
challenges to the deployment and application of the model,
especially in resource-limited or real-time demanding sce-
narios, such as mobile devices or embedded systems.
Therefore, the lightweight research of Transformer has
become an important research direction. Lightweight tech-
nology can reduce the complexity of the model by pruning,
compressing, and optimizing the model, so as to improve
the inference and response speed of the model and reduce
the memory occupation of the model, which is of great
significance for many real-time and low-latency applica-
tion scenarios, such as speech recognition, image classi-
fication, and real-time fault diagnosis of mechanical
equipment.

4) The fusion development of Transformer and CNN.
Transformer has advantages in processing long sequence
data and can effectively capture long-term dependencies.
However, it requires a large amount of computing
resource and time for training, and its processing per-
formance for short sequence data is not as good as
CNN. Meanwhile, CNN performs well in processing
local features, especially for data such as images and
text, which can effectively capture local features, but it
cannot effectively capture global features. Integrating
these two models can enable the model to have both
global and local feature learning capabilities, thereby
improving the representational ability and generaliza-
tion ability of the model. The fusion development of
Transformer and CNN can complement advantages of
each other to maximize performance, thus better adapting
to different data and tasks.

5 Conclusion

Mechanical equipment fault diagnosis is an important link
in modern industrial production, which can effectively pre-
vent catastrophic accidents and reduce economic losses. At
present, Transformer and its variants have developed into an
effective intelligent fault diagnosis technology for mechanical
equipment. This study first reviews the current research
status of mechanical equipment fault diagnosis and analyzes
the limitations of existing fault diagnosis methods. With the
in-depth analysis of four well-known public vibration signal
datasets for mechanical equipment faults, the study reveals
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the intrinsic connection between mechanical equipment fault
modes and these physical phenomena, providing a solid phy-
sical foundation for intelligent fault diagnosis. On this basis,
the network structure and basic principles of Transformer
are introduced. Inspired by the successful application of
Transformer in the field of NLP, researchers have gradually
introduced Transformer into the field of image processing,
where image classification is one of the most common appli-
cations of the Transformer. Taking this as a starting point,
three commonly employed visual Transformer models for
image classification are summarized, and a detailed analysis
of the research and application of Transformer and their
variants in the field of mechanical equipment fault diagnosis
are conducted. Finally, the effectiveness and superiority of
Transformer and its variants in the field of mechanical equip-
ment intelligent fault diagnosis are further demonstrated
through literature comparison, and their future development
directions are explored and discussed.
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