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Abstract: Periodic behaviour analysis of nano/microelectro-
mechanical systems (N/MEMYS) is an important area due to
its numerous prospective applications in micro instruments.
The intriguing and unique qualities of these systems, notably
their tiny size, batch manufacturing, low power consumption,
and great dependability have piqued the attention of aca-
demics and enterprises in using these structures to manufac-
ture various microdevices. This article presents the para-
meter expansion method (PEM) to obtain the approximate
solutions of N/MEMS. The present approach, as well as its
speed and simplicity in providing analytical solutions that
converge quickly to the exact numerical ones, distinguishes
this study. The PEM has the benefit of immediately providing
analytical solutions to nonlinear differential equations while
avoiding costly calculations. Furthermore, in terms of estab-
lishing numerous terms of semi-analytic solutions, this approach
is very faster and superior to other established analytical tech-
niques in the literature.

Keywords: nanoelectro-mechanical resonators, nonlinear
vibration, analytical method, cantilever beam, numerical
solution

1 Introduction

The scientific phenomena frequently take the form of non-
linear types. Nonlinear differential equations (NDEs) are
used in various fields to express numerous problems
related to mathematics, biology, engineering, and physics.
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In particular, most of the branches can be modelled by
using derivatives in NDEs [1-4]. The nano/microelectro-
mechanical system (N/MEMS) has sparked global interest,
and its applications have transformed technologies in a
wide range of sophisticated industries, including wearable
sensors, 5G communication technology, aircraft, and energy
harvesting. When the applied force is sufficiently strong,
however, the pull-in instability occurs, and dependable
functioning is prohibited. MEMS are of significant attention
and have been the topic of various studies.

MEMS are widely used in a variety of disciplines,
including medicine, industry, robotics, aerospace, automotive,
and many others [5-8]. MEMS are also widely employed in
many engineering domains, including optical and bio-medical
engineering, and are widely used in many applications, such
as micro-pumps, accelerometers, micro-switches, and so on
[8]. MEMS is a technology that integrates computers with
small mechanical devices contained in semiconductor chips
such as gears and actuators. These systems can detect, control,
and trigger mechanical processes on the microscale, and they
can work alone or in groups to produce effects on the macro-
scale. MEMS devices, which need minimal mechanical com-
ponents and low-voltage levels for actuation, are rapidly
expanding in current technology [9-11]. Numerous researches
works in the literature deal with nonlinear differential equa-
tions in diverse sectors of science and engineering, therefore
emphasizing the relevance of mathematical calculations was
critical. Many nonlinear differential equations can be statisti-
cally studied, but only a handful can be directly solved.
Numerous approximation strategies have been employed in
the literature to determine the interaction between frequency
and amplitude. The perturbation technique, which was com-
monly used to obtain approximate analytic solutions to non-
linear differential equations, was the most versatile tool in
evaluating nonlinear engineering issues. The determination
of periodic solutions of nonlinear oscillators is an important
subject in physical nonlinear research. Traditional analytical
approaches were utilized to address nonlinear differential
equations, which are often employed to solve nonlinear oscil-
lators with modest parameters. There are several powerful
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analytical and approximate methods have been studied to
solve a large number of NDEs with various assumptions
such as variational iteration method [12,13], modified multi-
stage decomposition method [14], homotopy perturbation
method [15-19], He’s frequency formulation [20,21], general-
ized residual power series method [22], harmonic balance
method [23,24], Exp-function method [25], Laplace varia-
tional iteration method [26], reduced differential transform
method [27], variational iteration method Padé technique
[28], energy balance method (EBM) [29,30], global residue
harmonic balance method (GRHBM) [31,32], Gamma function
method [33,34], global error minimization method [35], Leven-
berg-Marquardt backpropagation neural networks [36], Hamil-
tonian approach [37], parameter expanding method (PEM)
[38-42], and finite element method [43-45]. Recently, refs.
[46,47] proposed a variational principle for a fractal N/MEMS,
where the new variational theory opens a new direction in
fractal in these systems, it provides an excellent physical knowl-
edge of the iteration approach, and variational numerical tech-
niques always have a conservation scheme with a fast rate of
convergence. Many analytical methods compatible with non-
linear fractional differential equations can be constructed, and
the results simulated using other existing numerical and analy-
tical techniques in the literature. The current work provides
considerable insight and critical analysis of the dynamic fea-
tures of nano-scaled structures, as well as the essential guide-
lines for assessing the dynamic response of nano-components
in advanced MEMS/NEMS. The advantage of the PEM is that it
provides direct analytical solutions to nonlinear differential
equations without requiring costly computations. Further-
more, this technique is faster and superior to other analy-
tical approaches in the literature in developing a variety of
analytic solutions.

The goal of this study is to find an analytical approx-
imation solution to the free vibration equation that arises
in MEMS. To show the efficiency and accuracy of the cur-
rent technique, the acquired findings are compared with
the EBM [30], GRHBM [32], and numerical solutions. The
current technique produces more dependable findings for
the current situation. Finally, it is demonstrated that the
PEM has significant promise and that it might be applied to
other substantially nonlinear situations.

2 Basic concept of the PEM

Consider the following differential equation:
ii+au+ Bf(u, t) =0, (Y]

where a and f are the coefficients of u and the nonlinear
function f(u, t) and will be defined in Egs. (3) and (4).
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According to PEM [48,49], the solution and coefficients
of Eq. (1) are expanded in a similar way:

u(t) = up(t) + pw(t) + pPun(t) + ..., )
a=w?+ pw + pPwy + ..., 3
B = pay + p*ay + ... @

Inserting Eqs. (2)-(4) into Eq. (1) and then equating the
terms in powers of p, we obtain

P’ g + Wil =0, )
pl: i + Wiy + wg + a f(ug, t) = 0. 6)
The solutions of Eq. (5) is
Uy = A cos(wt). 7
By substituting Eq. (7) into Eq. (6), we obtain

pt: Uy + Wiy + A cos(wt) + aif(A cos(wt), t)
=0.

()]

We utilize the Fourier expansion series to achieve the
secular term as follows:

(A cos(wt), t) = Zb2k+1 cos((2k + Dwt). 9)
k=0
Inserting (9) into (8) yields:
Pl i+ Wiy + (WA + apby) cos(wt) = 0. (10)

We examine the following to avoid using secular
terms:

wiA + a;by = 0. 1

Putting p = 1 in Eqs. (3) and (4), we have:
w=a- w 12)
@ = p. 13)

By inserting Eqs. (12) and (13) into Eq. (11), we shall
attain the oscillator’s first-order approximation frequency
(D. It is worth noting that, according to Eqgs. (4) and (13), we
can discover thata; # 0 for alli =1, 2, 3, 4,...

3 Mathematical model

In this section, we show a severely nonlinear issue with
enormous motion amplitudes and physical parameters by
considering a nano resonator made up of a moving elec-
trode and two stationary substrates. The mobile electrode
might be thought of as a clamped-clamped or cantilever
beam with a rectangular cross section that is implanted
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between two fixed substrates [30,32]. Figure 1 depicts a
schematic for a clamped-clamped resonator.

(ay - 4a4u2 + 6616114 - 4(13116 + alous)u’ + Ku + K2u3

(14)
+ Ku® + Kqu' + Ksu® + Kgul! = 0,

u(0) = A,

The coefficients of K; -
are listed in the Appendix.

To normalize Eq. (14), the following nondimensional
parameters are used

W‘E X“E T=t i a—s[&]
g} l) pphl4) h’

u0) =0 5

Kg, ag — a9, by — bs, and ¢ - ¢s

o abl* 0 = m’hebl* 16)
YW englEl T 240g3ET
_ ubha? gob VL4 NI
I3 , V= 6 - B L 35 ==
2g3E1 * " EI

According to Fu et al. [50], assuming w(¢, 7) = ¢(&)u(r)
where ¢(¢) is the first eigen mode of the clamped-clamped
beam, which can be written as ¢(§) = 16£2(1 - £2), and u(7)
constricts the time-dependent part of the solution.

Rewrite Eq. (14) in the following form:

K 4a 6a 4a a
L'i+[a +1[ a4 ulii + a6u4u— a8u5u+ alougii
2 2 2 2 2 (17)
+ﬁu+&u3+&u5+ ﬁum,ﬁe) K6u11 =0.
a ay a ay a a;
Assume that the solution is a power series in p:
U= uy+ puy + p’uy + (18)
let
Klay = w* + pwy + p*w; + (19
1= pby + p?by + (20)

Figure 1: Electrostatically actuated microbeam geometry.
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Substituting Egs. (18)-(20) into Eq. (17) and the coeffi-
cient of p should be zero, then a set of linear differential
equations was created.

g + wug = 0, Q1)
iy + W u1+ bleuO3 + b1K3u05 + b1I:’4u07 + bﬂz(sué) i bZI:suOll
(22)
4ashr_ 9. 6agh1 4. 4agh 6. aphy . 8. _
- Uytip + p” Uglip — \ u0u0+a—zu0u0—0.

We achieved the following conclusions by solving Egs.
(21) and (22) using the initial conditions stated in Eq. (15),
and we obtain

Uy = A cos(wt), (23)

A4b1Ks
64a,

21a10A9b1w2
64a,

21A7h1Ky
64a,

1 | 1654"b1Ks
W= 52| st

21asA’byw?
16a;

a4A3b1w2
a

bk _ Bahbhw?  Abiky
16a, 8a, 4ay

9A9D1K;s
64{12

x cos(3tw) +

1 |16541b.Kg
240?| 1024a,

9, 9 2
amA blw +
64a;

7A7h
1Ky +
64a;

7 7 2
asA’byw +
16a,

AbiK;
16a,

9A%b1K;s (29)
256a;

3agA°hyw?

1 | 554"biK
- —] x cos(5tw) + 1

48w%| 1024a,

8ay

9a;0A° by w? A"b1Ky agA’biw?
_ X
560, T 6w | 16a cos(7tw)

Ab1Ks
256a,

1 [11A11b1K5

Ll1[)Ag b1(4)2
800%| 10244z ] cos(9tw)

256a,

1
120w%

A'b1Ks
1024a,

] cos(11tw).

with the nonlinear frequency—amplitude relationship:

wy = (M + 4y)/4, (25)

where

A = —A2(231a,AK; -
+ 280a,ALKy),
Ay = —A%(-1,920a¢4%K; + 320a,A%K; + 1, 536a4K;
+ 384a:K,),
As = 4ay(63a;0A® — 280asA® + 480acA*

252a10A5 K + 252a,A5K; + 1120a3A* K

- 384a,A% + 128ay).

Finally, we obtain the first-order approximation pro-
vided by putting Eqgs. (23) and (24) into Eq. (18):

4 Results and discussion

To examine the accuracy of the parameter-expansion method,
we plot the analytical approximate solutions with the numer-
ical solutions and those in the literature, for example, the EBM
[30] and the GRHBM [32]. The calculations are plotted for the
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Figure 2: Comparison of the present analytical solution, EBM [30], GRHBM [32], and the numerical solution. (a) A= 0.1, 8 =25, aygw =0, aca =0, (b) A =
0.3,8=25,ayqw=0,0ac2=0, (c)A=0.1, =100, aygw = 0, ac, = 0, (d) A= 0.3, =100, ayqw = 0, aca = 0, () A= 0.1, B = 25, ayqw = 100, ac, = 0, () A= 0.1, B =
25, aygw = 25, aca = 25, (g) A= 0.2, B = 25, ayqw = 100, ac, = 0, (h) A= 0.4, B = 25, aygqw = 0, ac, = 0, (i) A= 0.4, B = 25, ayqw = 25, ac, = 25, (j)A= 0.5, B = 25,

QAugw = 25, aca = 25.
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values of Van der Waals parameter a,qw by choosing the given
values of parameters § = 0 and y = 0 in the first four figures
while § = 0.65 and y = 0.65 at the last six figures, respectively,
and for different values of ayqw, Qca, B, and A, where the
values N =10 and a = 24 in the all cases for a clamped-
clamped beam. The comparison results are shown in Figure 2.
Figure 2 shows that the numerical findings from the fourth-
order Runge—Kutta technique correspond quite well with the
analytical approximation, demonstrating the high precision of
the solutions utilizing the suggested technique. The analytical
solutions show that the second term in series expansions is
enough to obtain a very accurate solution to the current model.
Figure 2 shows a comparison of different beginning frequencies
of micro-heams estimated using different approaches, revealing
that the PEM results correspond quite well with the numerical
and experimental results reported in the literature. Also, the
PEM performance implies that it might be used for more sophis-
ticated nonlinear differential equations. We may therefore infer
that the current technique is a more powerful computational
methodology for analysing nonlinear problems than other
known methods currently in use.

5 Conclusion

In this article, the PEM was employed to obtain the approx-
imate solution of a nanoelectro mechanical resonator system.
The frequency—amplitude relationships are achieved in the
closed forms. The high accuracy of the PEM is presented by
comparing the current solutions with the EBM [30], GRHBM
[32], and the numerical solutions. The results show that the
PEM is very useful in analysing nonlinear oscillations. Finally,
we can conclude that the PEM can produce the approximate
analytic solution and the corresponding quite accurate fre-
quency with the first-order approximation. The suggested
approach in this study is superior to the traditional perturba-
tion method since it does not rely on small parameter
assumptions. The new solution’s correctness is validated by
comparing the acquired findings to previously published
results in the literature, as well as the numerical solution.
Excellent agreement was found between the present and
numerical solution, while better results have been obtained
as compared to other techniques available in the literature.
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Appendix

The coefficients of K; — Kg, ag — @10, b1 — bs and ¢ — ¢5 in o 1 _ 1 ‘
Eq. (14) are as follows: b= [y, by =[x, bs =[x,
0 0 0
K = (1+ 6D~ xy,Na = 8acatz ~ 6avawz ~ 4pa; 1 1
by = [076®dx, bs = [$96™adx,
- 2y : {¢ ¢ ; {¢ ¢

K, = -41+ 6)by + 4)(tych2 aqag — 8acydy

~ Xgp

+ 4aygwas + 8fay + 6yPay, q

1 1 1
[oo'ax, a=[e'ax, o= [o% ax,
0 0 0

K; = 6(1+68)bs - 6XthNC3 + 4)(typaczao + 2ayqwas — 4Pag . .

- 6yBas, a = [oeax, o= e
Ky, = -4(1 + 8)by + 4)(tych4 - GXtypaC(;a() + 2yfas, 0 0

Ks = (1+8)bs — fypNCs + 4x;ppacaa,

Ky = ~Xiyp AC50-

1 1

1 1
a = [¢?dx, a=[pdx, @=[¢"dx, a=[plx,
0 0 0 0
1

a = j¢4dx, as=j¢5dX, as=j¢6dx, o= [¢rax,
0 0 0 0

1 1
ag = j¢8dx; Qg = J“Png, Qip = _[¢10dx-
0 0 0
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