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Abstract: The thermo-diffusion applications of nanofluid
subject to variable thermal sources have been presented.
The significance of Darcy–Forchheimer effects is attrib-
uted. The flow comprises the mixed convection and viscous
dissipation effects. Furthermore, the variable influence of
viscosity, thermal conductivity, and mass diffusivity is
treated to analyze the flow. The analysis of problem is
referred to convective mass and thermal constraints. The
analytical simulations are proceeded with homotopy ana-
lysis method. The convergence region is highlighted. Novel
physical contribution of parameters is visualized and
treated graphically. It is noted that larger Brinkman number
leads to improvement in heat transfer. The concentration
pattern boosted due to Soret number. The wall shear force
enhances with Hartmann number and variable thermal
conductivity coefficient.

Keywords: Darcy–Forchheimer model, Soret and Dufour
phenomenon, convective temperature and concentration
constraints, variable transport characteristics

1 Introduction

The nanomaterials are treated as an improved source of
energy as a liquid in different industrial processes. The
decomposition of nanofluids preserves peak thermal con-
cavity and other features. Various applications of nanoma-
terials are observed in energy systems, chemical reactions,
nuclear systems, high-energy physics, radiative phenomenon,
etc. Different studies are performed by many researchers for
nanofluids. Wang et al. [1] observed the graphene nanopar-
ticles to boost the performances of engine oil with additional
melting phenomenon. The ciliated wavy surface flow com-
prising the nanofluid endorsing the physiological properties
was observed by Fuzhang et al. [2]. Imtiaz et al. [3] developed
the understanding of magnetic dipole for nanofluid problem
with diverse thermal properties. Wang et al. [4] presented the
reflection of solar energy performances with nanoparticle
applications. Jayadevamurthy et al. [5] emphasized toward
the bioconvective phenomenon due to hybrid nanofluid in
rotating systems. Wang et al. [6] observed the natural con-
vective nanofluid flow under the role of chemotaxis phenom-
enon. Li et al. [7–10] explored the fluid flow behavior in the
presence of various boundary constraints.

Thermo-diffusion, also known as the Soret effect, is a
process where solutes are transported in a medium due to
a thermal gradient. Most solutes have positive coefficients,
indicating that they will diffuse down the thermal gradient,
away from the heat source. However, some solutes have
negative coefficients and may move up the gradient. The
Soret coefficients for various solutes can be found in the
study by de Marsily et al. [11]. The importance of thermo-
diffusion in the disposal of heat-emitting waste in pelagic
silts has been investigated by Thornton and Seyfried [12]. It
was noted that the thermo-diffusion plays a significant role
in this process. Idowu and Falodun [13] claimed the vertical
flow due to thermo-diffusion transport under the Newtonian
heating. Javed et al. [14] evaluated the Dufour consequences
for numerically treated viscoelastic fluid. Li et al. [15]
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highlighted the Soret and Dufour appliances for opti-
mized flow. Suchana et al. [16] visualized the multi wall
carbon nanotubes-H2O decomposition in an L-shaped
configuration. The Carreau nanofluid with Soret interac-
tion was determined by Salahuddin et al. [17]. Mng'ang'a
and Richard Onyango [18] examined the Couette flow due
to Jeffrey fluid via inclined channel. Yang et al. [19] and
Sun et al. [20] investigated heat flow via 3D-printed
thermal meta-materials and shear-thickening fluids based
on carbon fiber and silica nanocomposite, respectively.

The study of fluid flow through porous saturated spaces
is crucial in various fields such as geophysics, petroleum
engineering, industrial geophysics, geothermal operations,
soil sciences, packed filters, and ion-exchange columns.
Porous media consist of tiny pores through which fluids
can be absorbed or injected. These media find applications
in energy storage, oil filtration, and thermal receivers. The
Darcy law is associated with the applications of porous
media in the absence of inertial forces [21–25]. However,
this law has limitations in validating low velocity ranges
and small porosity spaces. To address this issue, the non-
Darcian porous medium, known as the Darcy–Forchheimer
law, provides a generalized approach to studying porous spaces,
even at low porosity levels. This law successfully describes iner-
tial features, variable porous effects, and boundary impacts. In
recent studies, researchers have been exploring the applica-
tion of the Darcy–Forchheimer model to porous medium
flow problems. Ullah et al. [26] investigated the influence
of lip on rotating disk flow with nanoparticles using this
model. Siddiqui et al. [27] numerically focused on the Casson
particles and optimized the determination using the Darcy–
Forchheimer model. Saini et al. [28] discussed the modified
Darcy contribution for the Jeffrey fluid in porous space with
cylindrical particles. Alzahrani and Khan [29] investigated
the impact of activation energy on three-dimensional Darcy–
Forchheimer flow patterns. Li et al. [40] examined that the
unsteady fluid flow and heat transport subject to generalized
lie similarity transformations and thermal radiation.

The objective of present continuation is to analyze the
thermo-diffusion mixed convection flow of nanofluid com-
prising the variable thermal sources. The novel features of
current work are:
• A mixed convection flow of nanofluid with variable visc-
osity endorsing by moving stretched surface is analyzed,

• The flow is subject to significance of Darcy–Forchheimer
phenomenon,

• The viscous dissipated impact is utilized,
• The Soret and Dufour features are contributed,
• The dealing of heat transfer is preserved under the
assumptions of variable thermal conductivity,

• The objective of nanofluid concentration is attained with
chemical reaction outcomes,

• Both mass and heat fluctuated assessment are inspected
with convective transport constraints,

• Computational results for modeled problem were com-
puted via homotopy analysis method (HAM) [30–32].

It is remarked that different studies are recently sum-
marized for studying various aspects of nanomaterials.
However, analysis for Darcy–Forchheimer flow of nano-
fluid with variable thermal features and thermo-diffusion
effects has not been focused yet. Current model aims to
fulfill this research gap. A physical attribution of problem
is observed.

2 Formulation of problem

In this study, we investigate the two-dimensional, incom-
pressible, steady mixed convective flow of a viscous fluid
over a movable surface in the presence of Soret and Dufour
effects. The flow takes place in a Darcy–Forchheimer porous
medium with variable transport characteristics, including
thermal conductivity, viscosity, and diffusivity. The tempera-
ture and concentration distributions are determined, consid-
ering the effects of thermophoresis and Brownian diffusion.
Additionally, convective boundary conditions for tempera-
ture and concentration are applied at the surface boundary.
The surface is stretched having velocity ( ( ) =u x axw ) with

>a 0. A constant magnetic is applied with constant strength
(B0). The physical representation of the flow is shown in
Figure 1.

Governing equations are as follows [33–36]:
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Here, (u v, ) signify the velocity components, Db

Brownian motion coefficient, Tm mean fluid temperature,
μ

f
dynamic viscosity, Tw wall temperature, σf electrical con-

ductivity, ∗
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wall concentration, and ∞C ambient concentration. Here,
variable fluid behaviors are defined as [37,38]:
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Figure 1: Flow sketch.
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Now in Eqs. (27)–(30) derivative with respect to “ξ” and

the terms having ∂
∂

p

ξ
, ∂

∂ ∂
p

ξ η

2

, ∂
∂ ∂

p

ξ η

3

2 ,
∂
∂

q

ξ
, ∂

∂ ∂
q

ξ η

2

, ∂
∂

g

ξ
, ∂

∂ ∂
g

ξ η

2

are van-

ished and ( )∂ ⋅
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5 HAM

The assessment of problem is presented with the imple-
mentation of optimal HAM. HAM scheme is implemented
in wide range to different nonlinear problems in era of
engineering, biology, sciences, and industrial processes.
The motivations for utilizing HAM technique preserve

less residual error. The excellent convergence criteria are
associated with this method. Defining the initial guesses
and linear operators as follows:
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[ ] [ ]

[ ]

+ + = + =
+ =

⎫
⎬
⎭

− −

−
L c c e c e L c e c e

L c e c e

0, 0,

0
.

η η

θ

η η

ϕ

η η

f 0 1 2 3 4

5 6

(37)

Here, ( )=c i 0, 1, 2, ... , 6i represents the arbitrary constants.

6 Convergence analysis

The auxiliary parameters ℏf , ℏθ, and ℏϕ play a significant role
in controlling the convergence of solutions. The ℏ-curves are
shown in Figure 2. The ranges for meaningful values are
− ≤ ≤ −1.4 ℏ 0.1f , − ≤ −1.3ℏ 0.3θ , and − ≤ ≤ −1.3 ℏ 0.2φ . Var-
ious orders of approximation for flow variables are high-
lighted in Table 1.

7 Validation of results

Table 2 has been meticulously crafted to provide a solid
foundation for validating our current findings by

Figure 2: ℏ-curves.
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juxtaposing them with previously published results in the
existing body of literature. In this analysis, we have focused
on comparing the heat transport rate against higher estima-
tions of the Prandtl number, while holding all other para-
meters constant, and we have specifically referenced the
work of Khan et al. [39]. Remarkably, our results exhibit a
remarkable concurrence with Wang’s findings, strength-
ening the credibility of this study.

8 Analysis of results

Physical analysis for observing the profiles of velocity, con-
centration, and thermal distribution is interpreted. Graphical
description of skin friction, solutal transport rate, and Nusselt
number for secondary variables is explored.

8.1 Velocity profile

The phenomenon of velocity profile ( )′f η via variable visc-
osity parameter ∈1 is portrayed in Figure 3. An increment
in velocity is detected versus higher variable viscosity
parameter. The flow Hartmann constant M is sketched in
Figure 4. An increment in resistive force is witnessed with
variation in magnetic field, which leads to decays velocity.
Such results are physically attributed to the role of Lorentz

force, which resists the fluid movement. The performance
of ( )′f η against porosity constant λ is illustrated in Figure 5.
An enhancement in λ leads to upsurges viscous force and so
fluid motion decays. Physically, this retarded behavior is
due to the permeability of porous medium. The variation
of Darcy–Forchheimer constant Fr on ( )′f η is displayed in
Figure 6. An enhancing function for velocity change due to
Fr is claimed. Physical aspects for this change are the appli-
cations of inertial forces.

8.2 Temperature profile

The feature of temperature profile ( )θ η via thermal Biot
number β

1
is shown in Figure 7. In fact, higher β

1

Table 1: Various order of approximation for various flow parameters

Order of
approximation

‒f″ (0) θ′ ϕ′ (0)

1 1.172 0.9845 0.9845
8 1.180 0.9119 0.9119
12 1.180 0.8562 0.8354
18 1.180 0.8562 0.8354
22 1.180 0.8562 0.8354
24 1.180 0.8409 0.8264
28 1.180 0.8362 0.8153
30 1.180 0.8362 0.8153

Table 2: Comparative analysis of heat transport rate with Khan et al. [39]

Pr Khan et al. [40] Recent results

0.07 0.065609 0.065612
0.20 0.169115 0.169121
0.70 0.453920 0.453931
2.00 0.911435 0.911439

Figure 3: ( )f η′ vs ∈1.

Figure 4: ( )f η′ vs M .
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corresponds to generate an additional heat in system that
upgrades thermal field. The improvement in profile of ( )θ η

is due to the fact that β
1
is physically attributed to the

enhancement in heat transfer coefficient. Figure 8 shows
the impact of variable thermal conductivity parameter ∈2

on ( )θ η . The assumptions of variable thermal conductivity
are more effective to increase the heat transfer rate. The
variation of thermophoresis parameter Nt and Brownian
constant Nb on temperature is shown in Figures 9 and 10,
respectively. Improvement in ( )θ η is observed due to both
Nt and Nb. Physically, Nt involves the thermophoresis phe-
nomenon, which leads to the movement of fluid liquids in
cold surface. Such migration confirmed the improvement
in heat transfer. Furthermore, increasing change in ( )θ η

regarding the variation of Nb involves the Brownian move-
ment. In Figure 11, the temperature distribution ( )θ η is
enhanced via the Brinkman number Br. Physically boosting
in Br implies a lower distribution to the thermal conduction
caused by viscous dissipation, which enlarges the tempera-
ture. Figure 12 depicts the magnification of ( )θ η against the
Dufour number Du. Larger approximation of Dufour con-
stant Du corresponds to intensify the thermal distribution.
Physically, increasing change in Du leads to enhanced
thermal diffusivity because ( )θ η gets boosted.

8.3 Concentration profile

Figures 13 and 14 are sketched to show the fluctuation in
( )ϕ η against Nt and Nb. An improvement in ( )ϕ η is claimed

for Nt, while the reverse change is addressed for Nb.

Figure 5: ( )f η′ vs λ.

Figure 6: ( )f η′ vs Fr.

Figure 7: ( )θ η vs β
1
.

Figure 8: ( )θ η vs ∈2.
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Figure 9: ( )θ η vs Nt.

Figure 10: ( )θ η vs Nb.

Figure 11: ( )θ η vs Br.

Figure 12: ( )θ η vs Du.

Figure 13: ( )ϕ η vs Nt.

Figure 14: ( )ϕ η vs Nb.
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Improvement in ( )ϕ η is due to thermophoresis phenom-
enon. Figure 15 demonstrates the impact of variable mass
diffusivity coefficient ∈3 on ( )ϕ η . An increment in ∈3 leads
to an enlargement in ( )ϕ η . The influence of β

2
on ( )ϕ η is

illustrated in Figure 16. An improvement in concentration
distribution via higher β

2
is noted. Concentration trend for

the found Soret Sr number is displayed in Figure 17.
Clearly, larger values of Soret number Sr lead to enhance-
ment in molar mass diffusivity. Consequently, concentra-
tion is increased.

Figure 15: ( )ϕ η vs ∈3.

Figure 16: ( )ϕ η vs β
2
.

Figure 17: ( )ϕ η vs Sr.

Figure 18: Cfx vs M and ∈1.

Figure 19: Nux vs β
1
and ∈2.
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8.4 Physical quantities

Graphical description of drag force Cfx , solutal transport
rate Shx , and Nusselt number Nux via secondary variables
is interpreted in Figures 18–21. The influence of Cfx against
M and variable viscosity ∈1 variables is deployed in Figure
18. It is noted that drag force has an increasing trend for M

and ∈1. Figure 19 is sketched to show the Nux variation
versus the thermal Biot number β

1
and variable conduc-

tivity factor ∈2. The heat transport rate has an increasing
effect due to β

1
and ∈2. The profile of Sherwood number

Shx has a similar trend for the random variation of Nb and

thermophoresis constant Nt and visualized via Figure 20.
Figure 21 claims that an increment in solutal transport rate
is obtained for β

2
and ∈3.

9 Closing remarks

Mixed convective Darcy–Forchheimer flow of nanofluid is
studied in the presence of viscous dissipation effects. The for-
mulated problem is solved with optimal homotopy asymptotic
method technique. Solution is validated with excellent accu-
racy. Major results are summarized as:
• An improvement in velocity profile is noted for Darcy–
Forchheimer parameter and variable viscosity coefficient,

• The boosted change is observed in variable thermal con-
ductivity parameter and the Brinkman number,

• With the Dufour number and the Biot constant, the heat
transfer is sufficiently boosted,

• Larger solutal Biot number and variable mass diffusivity
lead to an improvement in concentration field,

• The variation of wall shear force against the Hartmann
number is enhanced for variable viscosity parameter,

• An increasing fluctuation of Sherwood number with the
Brownian constant shows an increasing function with
thermophoresis parameter,

• Such results can be further updated by incorporating the
entropy generation phenomenon, artificial neural net-
work, and sensitivity analysis.
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