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Abstract: This study investigates the complex dynamics of
a viscoelasticfluid subjected tomagneto-hydrodynamics over a
stretching sheet, incorporating the Cattaneo–Christov heat flux
model. This model is especially advantageous for explaining
heat transfer in materials possessing significant thermal con-
ductivity, where the conventional Fourier’s law might not be
precise. The investigation revolves around evaluating how the
thermal relaxation time affects the boundary layer and how
both thermal radiation and viscous dissipation influence the
thermal field. The significance of this research lies in its con-
tribution to understanding the intricate behavior of such fluids
in the presence of magnetic fields and non-Fourier heat con-
duction. The primary objective is to analyze the impact of
viscoelasticity, magnetohydrodynamics, and Cattaneo–
Christov heat flux on the flow and heat transfer character-
istics over the stretching sheet. The research methodology
involves the application of mathematical models and
numerical techniques, particularly the use of the shifted
Chebyshev polynomials of the sixth-order approximation
and spectral collocation technique. The major conclusion
of the study underscores the significant influence of viscoe-
lasticity, magnetic field, and Cattaneo–Christov heat flux on
the transport properties of the fluid, providing valuable
insights for applications in various engineering and indus-
trial contexts. Certain notable results arising from the cur-

rent issue indicate that heat transfer is more pronounced for
the viscoelastic factor and magnetic parameter, whereas the
thermal relaxation parameter exhibits the opposite trend.
In addition, the inclusion of the Cattaneo–Christov term
enhances our comprehension of thermal behavior.

Keywords: viscoelastic fluid, thermal radiation, Cattaneo–
Christov model, viscous dissipation, spectral collocation
method, Chebyshev polynomials, optimization technique

Nomenclature

a constant ( −
s

1)
B0 strength of magnetic field (T )
cp specific heat ( J

kg K

)
Cfx coefficient of skin friction
Ec coefficient of viscous dissipa-

tion (Eckert number)
f nondimensional stream

function
k0 elastic parameter (m2)
k* absorption coefficient ( −

m
1)

M magnetic parameter
Nux coefficient of heat transfer
Pr Prandtl number
q

r
radiative heat flux ( −

W s
2)

R radiation parameter
Re the local Reynolds number
T temperature of the viscoe-

lastic fluid (K)
∞T viscoelastic temperature

away the sheet (K)
Tw temperature of the viscoe-

lastic fluid beside the
sheet (K)

Uw velocity of fluid due to
stretching processes ( −

m s
1)

u the x-component of the velo-
city vector ( −

m s
1)
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v the y-component of the velo-
city vector ( −

m s
1)

x y, Cartesian coordinates (m)
Greek symbols
μ viscosity of viscoelastic

fluid ( − −
kg m s

1 1)
η similarity coefficient
ρ density of viscoelastic

fluid ( −
kg m

3)
κ thermal conductivity of vis-

coelastic fluid ( − −
W K m

1 1)
λ the duration required for the

heat flux to attain a state of
equilibrium (s)

ν kinematic viscosity (m

s

2

)
σ electrical conductivity ( −

s m
1)

σ* Stefan-Boltzmann con-
stant ( − − −

J s m K
1 2 4)

Λ viscoelastic parameter
γ thermal relaxation

parameter
θ nondimensional temperature
Superscripts
w condition along the sheet
′ differentiation with respect

to η

∞ condition at the ambient

1 Introduction

In contemporary times, non-Newtonian fluids have become
notably important in various industrial applications. Many
synthetic fluids, as well as certain naturally occurring ones,
display complex rheological properties, with viscoelasticity
emerging as a significant fluid attribute. Over the last six
decades, computational rheology, utilizing computational
fluid dynamics to study fluids with non-Newtonian rheology,
has matured into a well-established field. This area of study
not only enhances our understanding of various physical
phenomena but also provides valuable insights for engi-
neering design purposes. Computational rheology involves
conducting flow simulations using fluids characterized by
non-Newtonian models, which are more intricate than the
broadly defined Newtonian fluids. Given the complex nature
of the constitutive equations, specialized techniques are
necessary to tackle the inherent numerical challenges, even
when the simulations are focused on fluid mechanics aspects
[1]. Viscoelastic fluids represent a specific instance of the
model proposed by Rivlin and Ericksen [2]. It possesses a
diverse array of practical applications in various real-world

contexts, encompassing fields such as computing, medicine,
the polymer industry, engineering, and the automotive sector.
Distinct from typical Newtonian fluids, these specialized sub-
stances referred to as viscoelastic fluids showcase an extra
property of elasticity alongside their viscosity, enabling them
to both retain and release shear energy. The previous studies
[3–6] encompass a handful of studies concerning models for
viscoelastic fluids with non-Newtonian behavior.

Heat transfer entails the exchange of thermal energy
between two or more objects or systems. The process of
heat transfer takes place when there is a temperature dis-
parity either between different bodies or within distinct
sections of a single body. This mechanism finds extensive
use in technological and industrial contexts, such as cooling
electronic devices, managing nuclear reactor temperatures,
power generation, and various other applications [7]. Heat
transfer occurs through various distinct mechanisms. The
highly successful heat conduction model introduced by
Fourier [8] and the mass diffusion model put forth by Fick
[9] have garnered considerable interest due to their inter-
changeable characteristics and the omission of inconsisten-
cies that arise in different scenarios within these theories.
However, a significant drawback of thesemodels is that they
result in a parabolic energy equation, implying that any
initial disturbance would be immediately felt by the system
being analyzed. This phenomenon is commonly mentioned
in the literature as the paradox of heat conduction. To
address this constraint, Cattaneo [10] amended this principle
by introducing an additional term involving relaxation time.
Subsequently, Christov [11] enhanced the Cattaneo model
by substituting the conventional derivative with Oldroyd’s
upper-convected derivative. He formulated a unified energy
equation for the governing issue, leading to the creation of
the Cattaneo–Christov heat flux model. The importance of
the Cattaneo–Christov heat flux model played a pivotal role
in instigating more fundamental researches within this par-
ticular field of study [12,13].

Extensive research has been conducted on ordinary
and partial differential equations (ODEs and PDEs, respec-
tively) due to their extensive applicability across various
domains, including fluid mechanics, viscoelasticity, biology,
physics, and engineering. Because of the prevalence of ODEs
and PDEs in these fields, a substantial amount of research has
been dedicated to comprehending their properties, devel-
oping efficient solution methods, and unraveling their impli-
cations for diverse phenomena and systems. Consequently,
considerable focus has been directed toward obtaining solu-
tions for physically significant ODEs [14]. The utilization of the
spectral collocation method (SCM) employing sixth-kind
shifted Chebyshev polynomials ( sCP6 ) [15] was applied to
quantitatively address the nonlinear ODEs governing the
physical scenario. This research stands out as the pioneering
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instance of numerically solving the provided model using
the proposed novel numerical approach.

Building upon previous investigations, many researchers
have effectively employed diverse numerical methodologies
in this specific field. One such technique is the SCM, which
stands as a versatile approximate analytical approach for
deriving approximate solutions to differential equations.
The SCM presents several merits in tackling such issues, as
the Chebyshev coefficients of the solution can be easily com-
puted using any accessible numerical software, resulting in
superior computational efficiency. Chebyshev polynomials,
recognized orthogonal polynomials defined within the
interval [ ]−1, 1 , are commonly utilized due to their advan-
tageous characteristics in approximating functions.
Furthermore, this approach is distinguished by its remark-
able precision, rendering it a dependable numerical method.
With its capacity to ensure precise calculations and depend-
able results, the technique guarantees swift convergence
rates and straightforward application in a variety of problem
contexts, spanning finite and infinite domains, as demon-
strated in previous works [16–19]. It exhibits rapid conver-
gence, enabling accurate solutions to be attained with
minimal terms, effectively conserving computational
resources and time. Furthermore, its numerical stability miti-
gates the risk of errors, even when grappling with intricate or
demanding issues. In addition, the method’s flexibility per-
mits its utilization not only in differential equations but also
in optimization problems, establishing its value across a wide
array of domains. This method has been extensively utilized
in different problems [20–23] and has played a significant role
in conducting crucial research owing to these benefits.

The thermal radiation, viscous dissipation, and mag-
netic field have garnered considerable interest within the
realm of thermal non-Newtonian fluids. Researchers and
scholars have focused their attention on these phenomena,
recognizing their importance in understanding the com-
plex behavior of such fluids. The aim of incorporating

these innovative aspects into the study of viscoelastic fluids
is to enhance the precision in representing the transport
properties of the fluid. The inclusion of the Cattaneo and
Christov heat flux phenomenon becomes crucial in this con-
text, especially when dealing with a surface that is subject to
linear stretching. These considerations contribute to a more
comprehensive understanding of the intricate thermal
characteristics of viscoelastic fluids, thereby improving
the accuracy of models used to describe their behavior.
Furthermore, the application of the sixth-order shifted
Chebyshev polynomials approximation and the utilization of
the spectral collocation technique represent innovative ele-
ments in this investigation as an effective numerical approach.
This numerical technique is utilized to visually demonstrate
the influence of these characteristics using table and graphs.

2 Problem modeling

We examine the consistent two-dimensional movements of
non-Newtonian viscoelastic fluids over a linearly extending
surface. The Cartesian coordinate system is utilized in a
manner where the x-axis aligns with the stretching surface,
while the y-axis is perpendicular to it (Figure 1).

We are examining flow models that pertain to both
second-grade fluids and elastico-viscous fluids. Let ( )u v,

denote the components of velocity in the ( )x y, directions,
respectively. Let’s represent the linear velocity along the
x -direction as ( ) =U x axw , where the constant a signifies
the stretching velocity of the surface. The analysis incorpo-
rates the phenomenon of viscous dissipation, which holds
considerable importance in fluid dynamics, thermal sciences,
and various engineering domains. The significance of viscous
dissipation lies in its ability to enhance precise and compre-
hensive assessments, thereby contributing to improved design,
optimization, and innovation in diverse applications. In

Figure 1: Description of the proposed viscoelastic model.
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addition, the study delves into heat transfer mechanisms,
exploring thermal radiation and employing the
Cattaneo–Christov theory for heat flux. Given these assump-
tions, the governing equations relevant to the boundary layer
can be articulated as follows [24]:
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where =ν
μ

ρ
represents the kinematic viscosity, μ stands

for dynamic viscosity, ρ denotes the density of the viscoe-
lastic fluid, cp represents specific heat, and k0 is the elastic
parameter. In this context, a positive value of k0 indicates
an elastico-viscous fluid, while a negative k0 corresponds to
a second-grade fluid. A k0 value of zero is associated with a
Newtonian fluid. T is the viscoelastic temperature, κ is the
thermal conductivity coefficient, and λ stands for the time
it takes for the heat flux to reach a state of relaxation. In
addition, it is important to note that when λ equals zero,
Eq. (3) simplifies to the conventional Fourier’s law of heat
conduction. B0 is the strength of the proposed magnetic
field, and σ is the electric conductivity. Moreover, q

r
repre-

sents the radiative heat flux, and its magnitude depends on
the temperature as described by the subsequent relation-
ship [25]:

= −
∂
∂

q

σ

k

T

y

4 *

3 *

.
r

4

(4)

Clearly that the formula for q
r
involves constants: the

Stefan-Boltzmann constant (symbolized as σ*) and the
absorption coefficient (denoted as k*). These attributes

hold considerable influence over the radiative heat
flux and its interactions with the system. In addition,
we make the assumption that the temperature disparity
within the flow of the viscoelastic fluid enables us to
express the term T

4 through a linear combination of
temperatures. By employing Taylor’s series and focusing
solely on terms of minimal order, we reach the subse-
quent formulation [26]:
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The boundary conditions under consideration are as
follows:

( )= = = = =u U x ax v T T y, 0, , at 0,w w (6)

→
∂
∂

→ → → ∞∞u

u

y

T T y0, 0, , as , (7)

where Tw is the sheet temperature and ∞T is the ambient
temperature. In this context, it is necessary to validate that
the movement is solely a result of the wall being stretched
and the absence of any velocity in the free stream, as indi-
cated by the condition →u 0 as → ∞y . The utilization of
the following similarity transformations, expressed in rela-
tion to the functions f and θ, along with the introduction of
the similarity variable η is expounded upon in the subse-
quent manner to solve the governing equations [27]:
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It is evident that the expressions foru and v as presented in
Eq. (8) fulfill the conditions set forth in Eq. (1). Now, Eqs. (2)
and (3) are converted into the subsequent formats by using
Eq. (8):
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Likewise, the adjusted boundary conditions can be detailed
in the following manner:

( ) ( ) ( )= ′ = =f f θ0 0, 0 1, 0 1, (11)

′ → ″ → → → ∞f f θ η0, 0, 0, as . (12)

It is evident that our physical system is entirely controlled
by the viscoelastic parameter =Λ

ak ρ

μ
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0

2
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2
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= ∞
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κk

16
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*

*

3

and the Prandtl number =Pr

μc

κ

p . Once more, the
prior framework adequately captures the actions of the non-
Newtonian viscoelastic fluid Λ, defined by the existence of
the viscoelastic parameter. Moreover, the omission of this
parameter ( =Λ 0) allows us to streamline our proposed
system into a Newtonian model.

3 Industrial and engineering
measures

The crucial role of the local skin-friction coefficient Cf Re
x

x

1

2

and the local Nusselt number Nu Rex x

1

2 lies in their ability
to forecast fluid flow patterns and heat transfer rates,
rendering them essential in diverse engineering and
industrial contexts. Hence, it is crucial to finalize our inves-
tigation by examining how the governing parameters
affect both of these measures. These measures can be pre-
sented in a dimensionless format in the subsequent
manner:
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U x

ν

w is the local Reynolds number.

4 Procedure of solution using SCM

4.1 Some properties of the CP6s and
approximate the solution

In this subsection, we are going to present some of the
main definitions and properties of the shifted Chebyshev
polynomials of the sixth kind (CP6s) to suit their use
in solving the problem presented here for study in the
domain [ ]0, ℏ .

The CP6s, ( )T zk are orthogonal polynomials on [ ]−1, 1

under the following formula [28,29]:
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The polynomials ( )T zk can be generated by using the fol-
lowing recurrence relation:
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The shifted CP6s on [ ]0, ℏ , >ℏ 0 can be defined with the
help of the linear transformation ( )= ∕ −z η2 ℏ 1 as � ( ) =ηk
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the following orthogonality relation:
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The function ( ) [ ]∈ψ η L 0, ℏ2 may be defined as an infinite
series sum as follows:

�( ) ( )
ℓ

ℓ ℓ∑=
=

∞

ψ η ζ η .

0

(15)

We take the first ( )+m 1 -terms of (15) to obtain the fol-
lowing approximation form:

Sixth-kind Chebyshev polynomials technique  5
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The approximate formula of the derivative for the approxi-
mated function ( )ψ η

m
may be defined as in the following

theorem.

Theorem 1. Let ( )ψ η be approximated by CP6 s as (16) >n 0,

then:
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Proof. Since the differentiation is a linear operation, we
have:
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A combination of Eqs. (19)–(21) leads to the desired result. □

The following theorem is devoted to investigating
some details about the error of the approximation by using
the CP6s.

Theorem 2. Consider the approximation ( )ψ η
m

of the func-
tion ( )ψ η , which is defined in (21). Then the truncation error

∣ ( ) ( )∣= −ε ψ η ψ ηm m
is estimated as follows:
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ε 2 .m
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Proof. For the proof, one can be referred to [21]. □

4.2 Approximate the solution with a
numerical scheme

We will implement the SCM to solve the systems (9) and
(10) numerically. We approximate ( )f η and ( )θ η by ( )f η
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By using Eqs. (9), (10), and (22) and the formula (17), we can
obtain:
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The previous Eqs. (23) and (24) will be collocated at m of
nodes η

p
as follows:
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− − − =

f η f η f η f η

f η f η

f η f η f η Mf η

Λ 2

0,

m p m p m p m p

m p m p

m p m p m p m p

3 1 2 2

1 3

2 4 1

(25)

( ) ( ) ( )

( ( ) ( ) ( ) ( ( )) ( ))

( )[( ( )) ( )

( ) ( )]

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

⎛
⎝

+ ⎞
⎠ +

− +

+ −

+ =

R

θ η f η θ η

γ f η f η θ η f η θ η

f η f η f η

f η f η

1

Pr

Ec 1 3Λ

Λ 0.

m p m p m p

m p m p m p m p m p

m p m p m p

m p m p

2 1

1 1 2 2

2 1 2

2

(26)

In addition, the boundary conditions (11) and (12) can be
expressed by substituting from Eq. (22) in Eqs. (11) and (12)
to find the following equations:

�

( )

( )

( )

ℓ

ℓ
ℓ

ℓ

ℓ ℓ

ℓ

ℓ
ℓ

∑

∑

∑

− =

′ =

− =

=

=

=

a

a

b

2 1 0,

0 1,

2 1 1,

m

m

m

0

0

0

(27)

�

�

( )

( )

ℓ

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

∑

∑

∑

′ =

″ =

=

=
∞

=
∞

=

a η

a η

b

0,

0,

2 0.

m

m

m

0

0

0

(28)

Eqs. (25)–(28) construct a system of ( )+m2 1 algebraic
equations. With the help of the following cost functions,
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the previous system defined can be expressed as a con-
strained optimization problem as follows:

∣ ( ) ( ( ))

( ) ( ) ( ( ) ( )

( ( )) ( ) ( )) ( )∣

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

∑= −

+ −

− − −

=
f η f η

f η f η f η f η

f η f η f η Mf η

CF1

Λ 2

,

p

m

m p m p

m p m p m p m p

m p m p m p m p

0

3 1 2

2 1 3

2 4 1

(29)

( ) ( ) ( )

( ( ) ( ) ( ) ( ( )) ( ))

( )[( ( )) ( )

( ) ( )]

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

∑= ⎛
⎝

+ ⎞
⎠ +

− +

+ −

+

=

R

θ η f η θ η

γ f η f η θ η f η θ η

f η f η f η

f η f η

CF2

1

Pr

Ec 1 3Λ

Λ ,

p

m

m p m p m p

m p m p m p m p m p

m p m p m p

m p m p

0

2 1

1 1 2 2

2 1 2

2

(30)

with the constraints (Cons):

�

�

�

( ) ( )

( ) ( )

( )

ℓ

ℓ
ℓ

ℓ

ℓ ℓ

ℓ

ℓ
ℓ

ℓ

ℓ ℓ

ℓ

ℓ ℓ
ℓ

ℓ

∑ ∑

∑ ∑

∑ ∑

= − + ′ −

+ − − + ′

+ ″ +

= =

= =
∞

=
∞

=

a a

b a η

a η b

Cons 2 1 0 1

2 1 1

2 .

m m

m m

m m

0 0

0 0

0 0

(31)

The constrained optimization problem (29)–(31) can be
solved by using the Penalty Leap Frog procedure [32] for
the coefficients ℓℓ ℓ =a b m, , 0, 1,…, . This in turn leads us to
formulate the approximate solution by substitution in the
form (22).

Here, to achieve a complete numerical study with
simulation, we define the following residual error func-
tions ( )ηREFf and ( )ηREFθ , for ( )f η and ( )θ η , respectively,
as follows:

( ) ( ) ( ( )) ( ) ( )

( ( ) ( ) ( ( ))

( ) ( )) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

= − +

− −

− −

m η f η f η f η f η

f η f η f η

f η f η Mf η

REF ,

Λ 2

,

f
m m m m

m m m

m m m

3 1 2 2

1 3 2

4 1

(32)

( ) ( ) ( ) ( )

( ( ) ( ) ( )

( ( )) ( ))

( )[( ( )) ( )

( ) ( )]

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

= ⎛
⎝

+ ⎞
⎠ +

−

+

+ −

+

m η

R

θ η f η θ η

γ f η f η θ η

f η θ η

f η f η f η

f η f η

REF ,

1

Pr

Ec 1 3Λ

Λ .

θ m m m

m m m

m m

m m m

m m

2 1

1 1

2 2

2 1 2

2

(33)

5 Discussion on results

Here, we discuss the results of the Eqs. (9) and (10) of a
system of coupled nonlinear ODEs were computed numeri-
cally using the given method with the help of the Mathe-
matica software version 11. This section pertains to the
changes observed in velocity and temperature profiles as
specific values of significant parameters are chosen. These
parameters encompass the viscoelastic parameter Λ, mag-
netic number M , thermal relaxation parameter γ, thermal
radiation parameter R, Eckert number Ec, and Prandtl
number Pr. In this context, we are examining fluids with
positive values of the elastico-viscous parameter ( >Λ 0).
This objective is fulfilled by means of Figures 2–5. Figure 2
illustrates how the velocity ( )′f η and temperature ( )θ η

fields are influenced by changes in the viscoelastic para-
meter Λ. Raising the viscoelastic parameter leads to heigh-
tened interfacial forces exerted on the fluid. Consequently,
the fluid’s velocity profile might be impacted, potentially

Figure 2: (a) ( )f η′ for various Λ and (b) ( )θ η for various Λ .
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Figure 3: (a) ( )f η′ for various M and (b) ( )θ η for various M .

Figure 4: (a) ( )θ η for various R and (b) ( )θ η for various γ.

Figure 5: (a) ( )θ η for various Ec and (b) ( )θ η for various Pr.
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resulting in a decline as the viscoelastic parameter values
increase. Furthermore, the temperature distribution and
the thickness of the thermal boundary layer experience
augmentation as this parameter is increased. The decrease
in velocity as the viscoelastic parameter increases can be
physically explained by the intensified intermolecular
interactions and elevated internal friction within the fluid.
These factors contribute to an enhanced resistance to the
flow of the fluid.

Figure 3 demonstrates the influence of the magnetic
parameter on both ( )′f η and ( )θ η , which can potentially
cause a decrease in the velocity profile, particularly near
the magnetic source. This occurs because the magnetic
field has the ability to impede fluid movement, diminishing
its kinetic energy and subsequently leading to a decline in
the velocity field. Furthermore, the temperature profile
displays an escalated trend as the magnetic parameter
values increase. In a physical sense, when the magnetic
parameter increases, the strength of the magnetic field
becomes stronger, which in turn creates more opposition
to the fluid’s movement. This heightened resistance contri-
butes to a greater dissipation of energy as heat, ultimately
leading to elevated temperatures within the fluid. More-
over, an in-depth understanding of the influence of the mag-
netic field on the heat transfermechanism can be substantiated
by comprehensively reviewing relevant research studies in this
domain [33–37].

Figure 4(a) investigates the influence of variations in
the thermal radiation parameter R on the temperature
profile ( )θ η of a viscoelastic fluid. This figure demonstrates
that as the thermal radiation parameter increases, the tem-
perature experiences a swift rise, causing the curve to
become more pronounced. Consequently, due to this par-
ticular behavior of the thermal radiation parameter, the
thermal boundary layer thickness expands. Figure 4(b)
depicts the impact of the thermal relaxation parameter γ.
A higher thermal relaxation parameter indicates that the
fluid’s response to temperature changes is gradual. Conse-
quently, as the thermal relaxation parameter increases,
there is a decrease in the temperature profile. This effect
also leads to a reduction in the thickness of the thermal
boundary layer. It is important to note that when the
thermal relaxation parameter γ equals zero, it results in
the simplification of the heat flux expression to the conven-
tional Fourier’s law. Physically, the reduction in temperature
with an elevation in the thermal relaxation parameter can
be ascribed to the extended duration required for the mate-
rial to achieve thermal equilibrium. With an increase in the
thermal relaxation parameter, the material demonstrates a
sluggish response to temperature changes, resulting in an
overall decrease in temperature.

Conversely, Figure 5(a) examines the impact of the
Eckert number Ec on temperature expansion ( )θ η . The
observable trend is that the temperature profile rises
with an increase in Eckert number values. This phenom-
enon arises from the conversion of the fluid’s kinetic
energy into thermal energy through viscous dissipation,
resulting in a steeper temperature gradient. In the exam-
ination of heat transfer, the Prandtl number holds signifi-
cant importance, especially within the realm of convective
heat transfer. Fluids with elevated Prandtl numbers, like
honey or oil, possess greater momentum diffusivity com-
pared to thermal diffusivity. This characteristic implies
that these fluids are more resistant to the transfer of
heat than to the transfer of momentum. Consequently, in
Figure 5(b), the temperature profile ( )θ η experiences a
decrease as the Prandtl number Pr values increase. The
physical explanation for the decrease in temperature with
an increase in the Prandtl number lies in the intensified
thermal diffusion relative to momentum diffusion. As the
Prandtl number increases, heat is conducted more effi-
ciently compared to the momentum transfer, leading to a
decrease in overall temperature.

Table 1 presents a visual representation of how the
skin friction coefficient and the local Nusselt number alter
in response to changes in the governing parameters. This
table showcases the relationship between these coefficients
and the factors that exert control over them, providing

Table 1: Values of Re Nux x

1

2 and CfRex
x

1

2 for various values of M R γΛ, , , ,
Ec, and Pr

Λ M R γ Ec Pr
CfRex x

1

2
Re Nux x

1

2

0.0 0.5 0.5 0.2 0.2 3.0 1.22475 0.693361
0.2 0.5 0.5 0.2 0.2 3.0 0.40374 0.829815
0.4 0.5 0.5 0.2 0.2 3.0 0.16850 0.930349
0.2 0.0 0.5 0.2 0.2 3.0 0.32087 0.906245
0.2 0.5 0.5 0.2 0.2 3.0 0.40374 0.829815
0.2 1.0 0.5 0.2 0.2 3.0 0.47407 0.76485
0.2 0.5 0.0 0.2 0.2 3.0 0.40374 1.05559
0.2 0.5 0.5 0.2 0.2 3.0 0.40374 0.82982
0.2 0.5 1.0 0.2 0.2 3.0 0.40374 0.69331
0.2 0.5 0.5 0.0 0.2 3.0 0.40374 0.79748
0.2 0.5 0.5 0.2 0.2 3.0 0.40374 0.82982
0.2 0.5 0.5 0.5 0.2 3.0 0.40374 0.88328
0.2 0.5 0.5 0.2 0.0 3.0 0.40374 0.93427
0.2 0.5 0.5 0.2 0.5 3.0 0.40374 0.67315
0.2 0.5 0.5 0.2 1.0 3.0 0.40374 0.41203
0.2 0.5 0.5 0.2 0.2 1.0 0.40374 0.40193
0.2 0.5 0.5 0.2 0.2 3.0 0.40374 0.82982
0.2 0.5 0.5 0.2 0.2 7.0 0.40374 1.35334
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a comprehensive overview of their variations. This table
demonstrates that as the magnetic parameter values are
heightened, they wield an influence over the fluid dynamics
in the vicinity of the stretching sheet. Consequently, this
alteration inmagnetic parameter values leads to a reduction
in the local Nusselt number, accompanied by an elevation in
the skin friction coefficient. Furthermore, the augmentation
of viscoelastic parameter values has a discernible impact on
the behavior of the viscoelastic fluid adjacent to the sheet’s
surface. This outcome manifests in a reduction of the skin
friction coefficient and a concurrent escalation in the coeffi-
cient governing the rate of heat transport. Similarly, the
tabulated data illustrates that the local Nusselt number exhi-
bits higher values when considering the Prandtl number
and the thermal relaxation parameter, whereas contrasting
trends are observed for the thermal radiation parameter
and the Eckert number.

6 Concluding remarks

To sum up, the investigation of viscoelastic fluids consid-
ering factors like viscous dissipation and the magnetohy-
drodynamics effects with the inclusion of Cattaneo and
Christov heat flux presents a intricate and demanding chal-
lenge within the field of fluid mechanics. The Cattaneo and
Christov heat flux model addresses the nonlocal nature of
heat transfer, which becomes significant at diminutive
length scales and elevated thermal gradients.
Incorporating the effect of viscous dissipation into the
heat equation allows for the conversion of mechanical
energy into heat caused by the viscosity of the fluid.
Frequently, viscous dissipation can manifest as a signifi-
cant source of heat generation and may play a crucial role
in the overall heat transfer process. The key findings from
this research are outlined as follows:
1) The presence of magnetic fields can bring about

increased organization in the fluid near the surface,
resulting in a more streamlined flow pattern and a
higher skin friction coefficient.

2) Enhancing the thermal relaxation parameter and the
Prandtl number results in decreased temperature dis-
tribution and thinner thermal boundary layers. In con-
trast, raising the thermal radiation parameter and the
Eckert number leads to increased temperature distribu-
tion and thicker thermal boundary layers.

3) Elevating both the Eckert number and the thermal
radiation parameter can also result in a reduction of
the heat transfer rate.

4) Raising the viscoelastic parameter value can lead to a
higher fluid property density, resulting in a consequent
decrease in the skin friction coefficient.

5) Potential future research directions emerging from this
study could include the investigation of hybrid viscoe-
lastic nanofluids under diverse thermal property condi-
tions, representing a significant focal point. Also, we
will try to present a more study of convergence of the
proposed method, as well as control the efficiency and
accuracy. Finally, the stochastic numerical computing
approaches will use as promising alternative for solving
such problems.
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