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Abstract: The combined heat and mass transfer phenom-
enon is a significant aspect of engineering and industrial
processes. This phenomenon finds applications in various
areas such as air conditioning, cooling and heating control
of electronic devices, reactors, chemical systems, and emis-
sion processes. This research model focuses on the analysis
of mixed convection flow of a viscous fluid with heat and
mass transfer on an inclined surface with porous medium
characteristics. The study also considers external heat transfer
effects, radiation, Soret influence, and chemical reactions. A
perturbation solution is derived in closed form, and the
impact of various parameters on the thermal behavior is
investigated. A comparative analysis of the heating and
cooling regimes in plate flow is conducted, revealing a
reduction in velocity in the heated plate regime with
changes in the permeability parameter and an increase
in concentration phase due to the Soret number.

Keywords: mixed convection flow, porous medium, Soret
effects, thermal radiation, perturbation solution

Nomenclature

B0 magnetic field strength
′C fluid concentration

Cp specific heat
′∞C ambient concentration

D mass diffusivity
E Eckert number
F radiation parameter
Gr Grashof number
g gravity
K permeability parameter
k thermal conductivity
KC reaction coefficient
KP permeability of porous space
K0 chemical reaction parameter
M magnetic parameter
Pr Prandtl number
Q heat sink
Q

1
external heat source

′q
r

radiative heat flux
S0 Soret parameter
Sc Schmidt number

′T fluid temperature
′∞T ambient temperature

( )′ ′u v, velocity components
ϑ kinematic viscosity
α inclined angle
σ electric conductivity
ρ density

1 Introduction

The magneto-hydro-dynamics (MHD) phenomenon is sig-
nificant in plasma physics, with various applications in
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industrial and engineering processes. In cases of electri-
cally conducting flow, MHD characteristics arise when
magnetic forces act on the fluid flow. Important applications
of MHD flows include cooling nuclear reactors, enhancing
geothermal reservoirs, providing thermal protection, aiding
in oil recovery, and facilitating packed-bed catalytic pro-
cesses. Chamkha [1] studied MHD effects in accelerating
flow with a heated source. Pal and Mondal [2] presented
visualizations of convective phenomena influenced by
dynamic MHD effects. Obulesu et al. [3] investigated dif-
ferent slip effects in MHD flow. Mahmoud [4] discussed
vertically fluctuating surface flow under MHD influence.
Turkyilmazoglu [5] analyzed MHD effects on a permeable
moving surface with mixed convective transport. Nan-
dalur [6] examined infinite surface flow with MHD phe-
nomena. Khan et al. [7] visualized Carreau fluid flow with
magnetized impact. Mansour et al. [8] examined the
impact of MHD on bio-convection in a cavity with a
moving surface flow. Kumar et al. [9] studied rotating
MHD flow using Noumerov’s scheme. Lou et al. [10] ana-
lyzed rotating flow considering the effects of Lorentz
force and Coriolis contribution. Ashraf et al. [11] discussed
tangent hyperbolic flow in nanofluids with MHD applica-
tions. Ma et al. [12] investigated the flow in micro-tubes
with MHD characteristics. Prabhakar Reddy and Jefta
Sunzu [13] conducted a thermos-diffusion analysis of
MHD-driven flow.

Heat and mass transport play a crucial role in a variety
of industrial processes and engineering systems. The signif-
icance of understanding heat and mass transport patterns is
evident in manufacturing processes, polymer solutions,
rolling phenomena, metal casting, cooling processes, and
heat transfer, among others. The study of heat transport is
particularly important in chemical engineering and other
engineering processes. Rashidi et al. [14] conducted an ana-
lysis of changes in mass and heat transfer influenced by
buoyancy-driven flow. Shankar Goud and Dharmendar
Reddy [15] investigated the Soret and Dufour effects in
infinite plate flow, considering different mass and heat
transfer characteristics. Seid et al. [16] studied heat and
mass transfer in magnetized flow. Rauf et al. [17] examined
the thermal transport phenomena in hybrid nanofluid
flow. Siddique et al. [18] reported similar findings for vis-
coelastic fluids. Additionally, recent developments in fluid
flow under various flow assumptions have been discussed
in previous studies [19–23]. Previous literature [24–27]
discuss various physical applications of highly dispersed
transition metal oxide nanoclusters in mesoporous silica,
pressure oscillation in low-velocity steam jet condensation,
global sensitivity approaches that take into account model
and parameter uncertainty, and closed-loop geothermal

systems based on net present value. In a study by Bhatti
et al. [28], the convective flow of Maxwell fluid was deduced
using Lie transform analysis.

The current study explores the significance of mixed
convection and thermos-diffusion phenomena in viscous
fluid flow on an inclined surface. The investigation focuses
on the permeability of porous media and the influence
of inclined magnetic forces. Additionally, the impact of
external heating sources and radiation on thermal trans-
port processes is considered. The study also examines the
effects of Soret diffusion and chemical reactions. The ana-
lysis involves varying parameters for both the cooler and
heated plate, with perturbation simulations conducted to
develop a highly accurate model. Physical analysis is pre-
sented graphically. Li et al. [29–32] recently studied fluid
flow behavior under multi-flow assumptions with different
boundary conditions and geometries. Yu et al. [33], Yang
et al. [34], and Zhu et al. [35] explored hybrid empirical
numerical techniques for tubing threaded connections,
heat flow in 3D thermal metamaterials, and generalized
micro-fluid rectifiers with anisotropic hollow channels.
Sun et al. [36] and Kong et al. [37] investigated the shear-
thickening materials and the use of hybrid CaAl12O19:Mn4+

doped with Ga3+ for plant growth lighting.

2 Mathematical formulation

The study is focused on the flow of a viscous fluid over an
inclined surface. The fluid is assumed to be incompressible.
The flow is induced by the motion of the inclined surface.
Figure 1 depicts the schematic flow diagram with coordi-
nate axes. The effects of magnetic force and permeability
of the porous medium are taken into account. Let B0 be the
magnetic force strength. Assume ′u is the velocity compo-
nent, ′T is the temperature while ′C is the concentration.
The surface endorsed temperature is Tw, while Cw denotes
the plate surface concentration. Furthermore, the ambient
concentration and temperature are expressed with ∞C and

∞T , respectively. In energy equation, the external heating
relations and radiative applications are contributed. With
such assumptions, the governing equations lead to [3].
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Simplifying Eq. (1) gives that ( )′ = − ′ ′ >v v v 00 0 , where
′v0 is constant. Defining the radiative flux [13]
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The following non-dimensional quantities are introduced:
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In view of the above suggested quantities, the devel-
oped system is

″ + ′ = − − +u u αθ αϕ M uGr cos Gm cos ,1 (9)

(″ + ′ − + ) =− −θ θ F Q θ u M γuPr Pr Pr sin ,1 2 2
2 (10)

″ + ′ − = − ″ϕ ϕ K ϕ S θSc Sc Sc ,0 0 (11)

where = +M M γ Ksin 1/1
2 .

The transformed boundary conditions are:

= = = =
→ → → → ∞
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0, 1, 1 at 0,

0, 0, 0 as .
(12)

3 Solution of the problem

The perturbation method is imposed for solving the pro-
blem via analytical way. The motivations for implementa-
tion of perturbation procedure is due to fine accuracy. The
initial expansion is
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Zeroth order system is
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Figure 1: Geometry of the flow model.
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The requested solution is
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Defining the surface skin force [3]
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The Nusselt number is expressed as [3]
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Defining the Sherwood number [3]
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4 Results and discussion

The physical significance of parameters for velocity profile
u, temperature θ, and concentration ϕ is visualized in this
section. The results and observations are supported with
graphs. Figure 2(a)–(c) pronounced the variation in

velocity u subject to variation in permeability parameter
K , magnetic parameter M , and inclined angle γ. The ana-
lysis is subject to two regimes of plate like cooler and
heated surface. Figure 2(a) shows the assessment of u for
permeability parameter K . A boosted effect in determina-
tion of u is noticed for K . Such effects are physically justified
due to permeability of porous regime. Figure 2(b) addresses
the onset of magnetic parameter M onu. More slower rate of
velocity has been exhibited for M in both heated and cooler
surface. Such decrement appearing in u is due to Lorentz
force which exclusively presents resistivity in motion.
Figure 2(c) justified the fluctuated pattern in the behavior
of u against inclination angle γ. A control of the changing u

due to γ is observed for both surface constraints. Figure 3(a)
and (b) addresses the prediction foru due to Grashof number
(Gr) and Mass Grashof number (Gm). Both parameters are
physically involved in the role of buoyancy forces. An incre-
ment is presented in change of u for both parameters.

Figure 4(a) and (b) is prepared in order to justify the
aim of Prandtl number Pr on temperature profile θ. The
decreasing analysis in the rate of θ is predicted for Pr.
Physically, the slower rate of heat transfer is pronounced
for less thermal diffusivity. Figure 5(a) and (b) expresses
the contribution of γ on θ. The decreasing change is exhib-
ited in θ for increasing γ. The decreasing change is more
progressive for cooler surface. The analysis for observing
fluctuation in θ due to heat absorption parameter Q is
shown in Figure 6(a) and (b). The slower heat fluctuation
is inspected when heat absorption phenomenon appears.
The removal of heat transfer results in a slower tempera-
ture profile of both cooler and heated plates. Figure 7(a)
and (b) shows the change in concentration field ϕ due to
Soret number S0. An improvement in concentration is
noticed for S0. Figure 8(a) and (b) shows the contribution
of reaction parameter K0 in the field of ϕ. Decreasing out-
comes are observed for ϕ due to K0.

Table 1 presents the variation in wall shear force due
to different parameters like Gm, M , and K . The analysis is
subject to various values of Prandtl number. Note that
these values are associated with different liquids like mer-
cury, electrolytic solution, air, and water. A peak variation
in wall shear force is noted when Gm is maximum. The
increasing change is more reflective for mercury. Similar
effects are noted for K . Tables 2 and 3 present the variation
in involved parameters for Nusselt number and Sherwood
number, respectively. The analysis is subject to prediction
of decomposition of mercury, electrolytic solution, air, and
water.
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Figure 2: Velocity profile for (a) K , (b) M , and (c) γ.
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Figure 3: Velocity profile for (a) Gr and (b) Gm.

Figure 4: Variation in temperature profile due to Pr: (a) flow on cooled plate and (b) flow on heated plate.
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Figure 5: Variation in temperature profile due to γ: (a) flow on cooled plate and (b) flow on heated plate.

Figure 6: Variation in temperature profile due to Q: (a) flow on cooled plate and (b) flow on heated plate.
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Figure 8: Variation in concentration profile due to K0: (a) flow on cooled plate and (b) flow on heated plate.

Figure 7: Variation in concentration profile due to S0: (a) flow on cooled plate and (b) flow on heated plate.
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5 Conclusion

The study investigates the heat and mass transfer in mixed
convection flow over a porous inclined plate. A perturba-
tion solution is derived in a closed form. The analysis
reveals that the velocity profile is influenced by the Grashof
number, leading to an increase in velocity. Changes in the
inclined angle result in a decrease in the velocity magnitude.
Heat transfer is found to decrease with the Prandtl number,
with a more pronounced effect on the heated surface. Slower
heat transfer is observed due to heat absorption. The concen-
tration field is affected by the Soret number, with a greater
impact on the cooler surface. A decrease in the concentration
profile is noted. The skin friction coefficient increases with
the Grashof number for mercury, electrolytic solution, air,
and water decomposition.
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