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Abstract: This article proposes a model that accounts for
damping of a quantum oscillator (QO) during pulsed exci-
tation. Our model is based on the Schwinger formula,
which calculates oscillator’s excitation probability through
the energy of an associated classical damped oscillator. We
utilize this model to describe the influence of damping on
temporal and spectral dependences of QO excitation, induced
by electromagnetic pulses with exponential and double expo-
nential envelopes. The oscillator excitation is analyzed in
terms of transition probability between stationary states after
pulse termination. Here, we present an analytical descrip-
tion of these dependences, along with numerical results.
Specifically, we derive analytical expressions that depict
the saturation effect during pulsed excitation, taking into
account the damping of a QO. The evolution of the temporal
dependence of the excitation probability with a change in
the damping constant is numerically traced. We demon-
strate that the number of maxima in this dependence is
determined by the values of pulse parameters and the
damping constant.
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1 Introduction

The development of the ultrashort laser pulses (USP) gen-
eration technique (Nobel Prize 2023 [1]) necessitates a more
detailed exploration of the theory of USP–matter interac-
tion. In particular, it is interesting to examine how this

interaction depends on USP parameters such as duration,
amplitude, carrier frequency, and envelope. One of the
most important models of a quantum system interacting
with an electromagnetic (EM) pulse is a quantum oscillator
(QO) [2]. This model can be applied to a wide range of
objects, e.g., photons, phonons, vibrons, plasmons, elec-
trons in a parabolic potential, a magnetic field, a micro-
mechanical oscillator, and so on. A unique feature of a QO
model is its ability to provide an exact description of its
excitation by external force with any amplitude [3,4].

The QO pulsed excitation has been investigated
by Hassan and co-authors [5–7], who used the solution of
Heisenberg’s equations for the creation and annihilation
operators. They studied time dependences of an average
number of excited quanta and transient spectra of fluores-
cence for different pulse envelopes and initial states of a QO.

In the study by Hassan et al. [7], QO damping is
accounted for by adding a dissipative term to the Hamilto-
nian. This addition results in a complex eigenfrequency,
with an imaginary part equal to the damping constant,
appearing in the Heisenberg equations for the creation
and annihilation operators. Within this framework, a tran-
sient spectrum of the pulsed-driven QO was calculated for
different pulse shapes and damping constants.

Arkhipov et al. considered the USP–QO interaction
using the sudden perturbation approximation [8]. They
represented the probability of the QO excitation through
the electric area of a unipolar subcycle pulse. By using this
approximation, they calculated dependences of the QO
excitation probability between stationary states on the
pulse duration. In particular, it was demonstrated that
with an increase in the electric field strength of the pulse,
the central maximum in these dependences is transformed
into a minimum, with the appearance of two side maxima.
The approximation of the electric pulse area was utilized
by Arkhipov et al. [9] to investigate the population differ-
ence gratings produced on vibrational transitions by sub-
cycle THz pulses. In this article, an analytical approach was
validated by numerical calculations in a nonperturbative
regime for a three-level system.

Makarov [10,11] used a QO model to describe the
quantum entanglement of a coupled harmonic oscillator.
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The corresponding expression for entanglement was derived
and analyzed. In particular, it was established that entangle-
ment depends on a single parameter with a clear physical
meaning, namely, the reflection coefficient.

We analytically and numerically investigated the exci-
tation of an undamped QO by both multicycle and subcycle
EM pulses with different envelopes, after pulse termination
[12,13]. The basic laws of QO excitation were established for
various parameters of exciting pulses in nonperturbative
regime, and the modes of weak and strong excitation were
studied in detail, including the criteria and features of their
manifestation.

This article aims to present a simple model for describing
the pulsed excitation of a QO. This model takes damping into
account and examines how damping affects the spectral and
temporal dependences of the excitation probability.

2 Methods

2.1 Model

To describe the excitation of a QO by an EM pulse, we start
with the Schwinger formula [3]. This formula calculates the
probability of transition between two stationary states n
and m:
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where ( )L ν
n

k is the Laguerre polynomial and ν is a dimen-
sionless parameter, which depends on the EM pulse and
the oscillator characteristics.

In the following, we consider the excitation probability
of a QO after the termination of an EM pulse.

To describe the excitation of a QO by an EM pulse, we
use an approach based on the connection between move-
ments of quantum and classical oscillators [4]. Thus, we
consider a classical oscillator that is associated with a
quantum one. This means it has the same parameters:
eigenfrequency ω0, mass m, charge q, and damping con-
stant γ. Furthermore, it obeys a well-known equation in the
electric field ( )E t :
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As previously shown in the studies by Husimi [4] and
Astapenko and Sakhno [12], the key parameter ν can be
expressed as follows:
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where εΔ clas is the excitation energy of a classical oscillator
that is initially at rest and is associated with a quantum one.

A consistent quantum mechanical derivation of for-
mulas (1) and (3) assumes that there is no damping of the
oscillator (i.e., the damping constant is equal to zero:

=γ 0). In this case, the excitation energy of a classical
oscillator is given by ref. [12]:
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where ( ) ( )
∼ =E ω E ω E/ 0 is the Fourier transform of the elec-

tric field strength, which is normalized by the amplitude of
the field in the EM pulse E0.

The average number of excited quanta n̄ is linked
to the excitation energy of the classical oscillator (4), as
described by relation [4]:
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where n0 is the number of QO initial state.
The main assumption of our model is this: we will

incorporate the excitation energy of the classical oscillator
with nonzero damping into expressions (1) and (3):

( ) ( )= → ≠ε ε γΔ γ 0 Δ 0 .clas clas (6)

Taking into account damping, we have the following
expression for the excitation energy instead of Eq. (4):
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By using formulas (5) and (7), we obtain the average
number of excited quanta for the excitation from ground
state ( =n 00 ):
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is the Rabi frequency, which determines the strength of EM
interaction and in the case of a two-level system (TLS)
describes the frequency of oscillations between energy
levels, where
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is the Fourier transform of the normalized electric field
strength in the pulse, and
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is the “oscillator” shape of a line. Within the limits of small
damping,

≪γ ω .0 (12)

The function ( )G ωosc coincides with the Lorentzian:
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Thus, instead of formula (1), we have the following
expression for the excitation probability of a damped QO:
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Note that for small ( ) ≪n γ¯ 1, we have from (14):

( ) ( )≃→W γ n γ¯ .0 1 (15)

On the other hand, we have the following expression
for the probability of the TLS excitation with eigenfre-
quency ω0 and spectral profile ( )G ω, γ within the frame-
work of the perturbation theory:
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By comparing Eqs. (15) and (16) and taking into account
Eqs. (8) and (13), we conclude that:

( ) ( )≃→W γ W0 1
TLS (17)

if the spectral profile of the TLS is the Lorentzian and the
inequality (12) is met.

Thus, our model corresponds to the description of the
TLS excitation within the framework of the perturbation
theory if the TLS has a Lorentzian spectral profile.

It is interesting to consider two types of EM pulse
envelopes, namely, the exponential pulse (an asymmetrical
in time pulse with a steep front), for which an analytical
description of the QO excitation is possible:

( ) ( ) ( ) ( )= −E E θ t t τ ω tt, ω ,τ exp / cos .exp c 0 c (18)

The double exponential pulse (a symmetrical in time
pulse):

( ) ( | | ) ( )= −E t E t τ ω t,ω ,τ exp / cos .2 exp c 0 c (19)

In formula (18), ( )θ t is the Heaviside step function.
Excitation of the oscillator by pulses (18) and (19) has its
own characteristic features due to their different time sym-
metry, which makes it possible to capture a wider spec-
trum of the oscillator’s response to pulse action.

2.2 Average number of oscillator quanta
after excitation

Analytical results for the average quanta number can be
obtained within the framework of the following approxima-
tions: ≫ω τ 1c (multi-cycle pulse), ≫ω γ0 . The average number
of oscillator quanta excited by exponential pulse is equal to:
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and for the double exponential pulse:
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It is interesting to note that the dependence of the
average number of excited quanta on the carrier fre-
quency in the case of an exponential pulse (20) is described
by the Lorentzian, and the line width is equal to the sum of
the damping constant and the inverse pulse duration.

Within the framework of our model, these average num-
bers should be substituted into expression (14) to calculate the
probability of the QO excitation by exponential and double
exponential pulses, taking damping into account.

In the following, we consider the QO excitation from the
ground state, which simplifies the expression (14) to the form:
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This formula implies that the extrema condition for the
excitation of a → n0 transition in a QO is the following:

( ) =n γ ω τ Ω n¯ , , , .
c 0 (23)

We further use Eq. (23) to determine the extrema of the
excitation probability as a function of pulse parameters
(carrier frequency, duration, and the Rabi frequency) for
different values of the damping constant γ.

2.3 Excitation spectrum of QO with damping

First, we consider the dependence of the QO excitation
spectrum on the damping constant. The excitation spec-
trum is understood as the dependence of the excitation
probability on the carrier frequency of the EM pulse.

As established in the previous studies [12,13], there are
two regimes of the QO excitation, namely, weak and strong
regimes, which depend on the value of the Rabi frequency.
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In the case of the weak regime, there is a single spectral
maximum of the excitation probability when the carrier
frequency of the EM pulse is equal to eigenfrequency of the
QO. With an increase in the Rabi frequency, this maximum
transforms into a minimum, and two side maxima appear.
The positions of these maxima are determined by Eq. (23).
This transformation signifies the transition to the strong
regime of excitation. It is analogous to the saturation effect
in a TLS, we refer to the corresponding value of the Rabi
frequency as the saturation one.

The positions of spectral maxima for the excitation
probability of the → n0 transition in a QO by an exponen-
tial pulse can be calculated from Eq. (23). They are given by
the corresponding detunings Δmax of the carrier pulse fre-
quency from eigenfrequency of a QO:
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From Eq. (24), it follows that the saturation Rabi fre-
quency for the excitation of a QO with damping by an
exponential pulse is given as follows:
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Side maxima in the excitation probability spectrum
appear when the following saturation condition is met:
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For the double exponential pulse, the spectral max-
imum positions are given by the following formula:
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The saturation Rabi frequency corresponds to a zero
value of the expression under the square root in formula
(27). It is equal to:
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3 Results and discussion

The following graphs depict the splitting of spectral maxima
during the excitation of the 0 → 1 transition in the QO (strong
excitation regime) as a function of the pulse duration for
different values of the damping constant. This is when the
QO is excited by an exponential pulse with a low Rabi

frequency (Figure 1) and a double exponential pulse with a
higher Rabi frequency (Figure 2).

In all calculations, we assume that ω0 = 1 in relative
units, and all quantities are measured in relative units.

From Figures 1 and 2, it can be inferred that in the case
of short durations of exciting pulses, the splitting of the
spectral maxima increases with an increase in τ for both
envelopes and all the considered values of the damping
constant. In the case of sufficiently long pulses, the depen-
dence of the spectral splitting on the duration varies for
different envelopes and damping constants. Specifically,
the spectral splitting can either increase or decrease with
an increase in τ.

Figures 3 and 4 demonstrate the evolution of the QO
excitation spectrum for the 0 → 1 transition with a change
in the damping constant for different pulse durations and

Figure 1: Exponential pulse excitation: solid line – γ = 0, dotted line – γ =
0.003, dashed line – γ = 0.01, Ω0 = 0.05.

Figure 2: Double exponential pulse excitation: solid line – γ = 0, dotted
line – γ = 0.001, dashed line – γ = 0.03, Ω0 = 0.5.
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the Rabi frequencies. Thus, in Figure 3, one can observe the
transformation of a strong excitation regime of the QO
with zero damping to a weak excitation regime with an
increase in the damping constant value. Figure 4 shows the
case of strong saturation when the QO is excited by a
double exponential pulse. For the given parameters, the
splitting of spectral maxima increases with an increase
in the damping constant.

3.1 Dependence of excitation probability on
EM pulse duration (τ-dependence)

To determine the extrema of the QO excitation probability
as a function of the pulse duration, Eq. (23) must be

resolved for the τ variable. This implies that in the case
of an exponential pulse, there is a third degree equation,
and in the case of a double exponential pulse, there is a
fifth degree equation. Thus, it is not possible to derive
simple expressions for the extreme values of the exciting
pulse duration for the damped QO. It is possible to obtain a
simple approximate equality for the pulse duration at the
maximum of the function ( )W τn0 only for an exponential
pulse and for a small frequency detuning of the carrier
frequency ωс from the eigenfrequency ω0:

(| | )( ) < ≈
+ −

τ Δ Ω

γ Ω n γ

/2
2

/
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exp
0

2
0

2
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In the limit ≪γ Ω0, the expression (29) coincides with
the corresponding formula obtained in the paper [13] for

Figure 3: Excitation spectra by exponential pulse for τ = 100, Ω0 = 0.03;
solid line – γ = 0, dotted line – γ = 0.01, dashed line – γ = 0.03.

Figure 4: Excitation spectra by double exponential pulse for τ = 50, Ω0 =
0.15; solid line – γ = 0.001, dotted line – γ = 0.01, dashed line – γ = 0.03.

Figure 5: Exponential pulse excitation of QO, near-resonance case ωc =
1.01, Ω0 = 0.1; solid line – γ = 0.001, dotted line – γ = 0.01, dashed line – γ
= 0.03.

Figure 6: Exponential pulse excitation of QO, ωc = 1.03, low Rabi frequency
Ω0 = 0.03; solid line – γ = 0, dotted line – γ = 0.003, dashed line – γ = 0.01.
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the undamped QO in the resonance case ( =ω ωc 0). From
formula (29), it can be seen that the pulse duration at the
maximum of the excitation probability increases monoto-
nically with an increase in the damping constant.

The results of numerical calculations of the QO excita-
tion probability as a function of the pulse duration are
shown in Figures 5–10 for different values of the damping
constant and EM pulse parameters. Figure 5 demonstrates
a slight shift in the maximum of the QO excitation probability
by a near-resonance exponential pulse (| | ≪Δ Ω0) to larger τ
with an increase in the damping constant, according to for-
mula (29).

Figure 6 shows the case | | =Δ Ω0 for the QO excita-
tion by an exponential pulse. One can observe a strong

influence of the damping constant on the ( )W τn0 function.
The monotonically increasing dependence transforms into
a function with a maximum as γ grows. This maximum
shifts into a shorter pulse range with an increase in the
damping constant.

Figure 7 demonstrates that if | |≪γ Ω Δ,0 the maximum
of τ-dependence is not affected by the damping constant γ,
there is a sharper decrease of the function ( )W τn0 in the
long pulse range. For the QO double exponential pulse
excitation and under similar conditions as in Figure 7,
the function ( )W τn0 strongly depends on the value of the
damping constant (Figure 8). Here, the shift of the max-
imum to a smaller τ with an increase in γ contrasts with
the graphs shown in Figure 5.

Figure 9 presents a case of the QO near-resonance
excitation by a double exponential pulse. From Figure 9,

Figure 10: Double exponential pulse excitation of QO, ωc = 1.03, Ω0 = 0.3;
solid line – γ = 0, dotted line – γ = 0.001, dashed line – γ = 0.003.

Figure 7: Exponential pulse excitation of QO, off-resonance case ωc = 1.1,
high Rabi frequency Ω0 = 0.3; solid line – γ = 0.001, dotted line – γ = 0.01,
dashed line – γ = 0.03.

Figure 8: Double exponential pulse excitation of QO, off-resonance case
ωc = 1.1, low Rabi frequency Ω0 = 0.1; solid line – γ = 0.001, dotted line – γ =
0.01, dashed line – γ = 0.03.

Figure 9: Double exponential pulse excitation of QO, ωc = 1.03, Ω0 = 0.1;
solid line – γ = 0, dotted line – γ = 0.001, dashed line – γ = 0.003.
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it can be seen that with an increase in the damping con-
stant, two maxima appear in the τ-dependence of the exci-
tation probability instead of one maximum for γ = 0.
The situation drastically changes with an increase in the
Rabi frequency as shown in Figure 10. Then, the two
maxima in τ-dependence transform into one maximum
with an increase in γ.

3.2 Optimal Rabi frequency

By using Eq. (23), one can derive the expressions for Rabi
frequency, which corresponds to the maximum of the
damped QO excitation probability at the 0 → n transition
for given values of other parameters of an EM pulse. In the
case of an exponential pulse, we have the following expres-
sion for the optimal Rabi frequency:

( )( ) =
+ +

+
Ω n

Δ γ τ

γτ

2
1/

1
.0,max

exp
2 2

(30)

Figure 11 shows the τ-dependence of the optimal Rabi
frequency for an exponential pulse for different values of
the damping constant and a given value of the carrier fre-
quency. It can be observed that the optimalΩ0 value is higher
for a larger damping constant. Calculations show that with an
increase in spectral detuning for sufficiently long pulses, the
situation can be reversed.

For a double exponential pulse, the optimal Rabi fre-
quency is expressed as follows:
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+ + +
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Δ γ τ τ
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γ 1/

τ 2 γ γ 1/
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2 exp
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The results of the calculations using formula (31) are
presented in Figure 12. In this case, the character of τ-depen-
dence is significantly determined by the value of the damping
constant. For zero and small values, the corresponding curve
has aminimum, while for larger γ, it monotonically decreases
with an increase in pulse duration.

4 Conclusions

We proposed a simple model to account for the damping of
a QO during its excitation by an EM pulse. This model
aligns with the exact solution in the case of zero damping
and corresponds to the description of a TLS excitation in
the case of a small EM perturbation.

Within the framework of the proposed model, we con-
ducted both analytical and numerical investigations into
the influence of the damping constant on the spectral and
temporal (pulse duration) dependences of the QO excita-
tion probability. These investigations were carried out
using both the exponential and double exponential pulses
in weak and strong excitation regimes.

We derived an analytical description of the QO exci-
tation spectrum for different values of the EM pulse
parameters, including the positions of spectral maxima,
expressions of the Rabi frequency saturation, and the
optimal Rabi frequency at which the probability has max-
imum. It was shown that in the case of an exponential
pulse, the splitting of spectral maxima increases with an
increase in the pulse duration for all values of the damping
constant. However, for a double exponential pulse, this
dependence alters its character with changes in the value
of γ. As the damping constant increases, the excitation
spectrum characteristic of a strong regimewith twomaxima
is transformed into a weak regime spectrum with a single
spectral maximum.

Figure 11: Exponential pulse excitation of QO, ωc = 1.03; solid line – γ = 0,
dotted line – γ = 0.1, dashed line – γ = 0.3.

Figure 12: Double exponential pulse excitation of QO, ωc = 1.03; solid line
– γ = 0, dotted line – γ = 0.003, dashed line – γ = 0.03.
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We numerically investigated the dependences of the QO
excitation probability on pulse duration (τ-dependence) for
different values of the damping constant. Our results show
that both the carrier frequency of the EM pulse and the Rabi
frequency significantly influence these dependences and their
evolution with the change in the damping constant. In the case
of the QO excitation by an exponential pulse, the maximum of
the τ-dependence shifts with an increase in γ. In addition, the
character of its increase can change from a monotonic rise to
having a maximum at certain relations between the Rabi fre-
quency and the detuning of the pulse’s carrier frequency from
the QO eigenfrequency.

A notable feature of the τ-dependence when a QO is
excited by a double exponential pulse is that its transfor-
mation changes in the nature with an increase in the
damping constant γ for different Rabi frequencies. For
instance, at a relatively low Rabi frequency, the τ-depen-
dence has one maximum for small γ and two maxima for
large γ. Conversely, at a higher Rabi frequency, there are
two clearly expressed maxima in the τ-dependence at
small γ, while at large γ, the second maximum becomes
nearly indistinguishable.

The τ-dependence for the optimal Rabi frequency is
also determined by the EM pulse envelope. In the case of
an exponential pulse, this dependence always decreases
monotonically. However, for a double exponential pulse,
it varies with the damping constant: for small γ, the corre-
sponding curve has a minimum, while for larger γ, it
decreases monotonically.

We believe that the findings of this article significantly
enhance the current knowledge of pulsed excitation of a
damped QO. These results can be applied in various uses of
this fundamental model, especially when a detailed descrip-
tion of EM interaction is required.
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