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Abstract: The ZK-mZK-BBM equation plays a crucial role
in actually depicting the gravity water waves with the long
wave region. In this article, the bilinear forms of the (2 + 1)-
dimensional ZK-mZK-BBM equation were derived using
variable transformation. Then, the multiple soliton solutions
of the ZK-mZK-BBM equation are obtained by bilinear
forms and symbolic computation. Under complex conjugate
transformations, quasi-soliton solutions and mixed solutions
composed of one-soliton and one-quasi-soliton are derived
from soliton solutions. These solutions are further studied
graphically to observe the propagation characteristics of
gravity water waves. The results enrich the research of
gravity water wave in fluid mechanics.
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1 Introduction

Gravity water waves are known to play a crucial role in
coastal, energy, and hydraulic engineering and attract
much current interest [1-7]. A series of nonlinear partial
differential equations are proposed to analyze the charac-
teristics of gravity water waves [8-12]; a typical example is
the ZK-mZK-BBM equation, which describes gravity water
waves in a fluid [13].

The ZK-mZK-BBM equation is a nonlinear partial
equation, which is a conjunction of the ZK and BBM equa-
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tions, or the mZK and BBM equations, and it is of great
significance to explore its solution for describing the motion
law of water waves [13]. The ZK-mZK-BBM equation [13]
has the following form:

Ue + auy + ﬁ1(u2)x + Bz(ug)x + YU + Uyl =0. (D)

When B, = 0, B, # 0, Eq. (1) is the ZK-BBM equation;
when B, =0, B, #0, Eq. (1) is the mZK-BBM equation.
Here, a, B,, B,, and y are known coefficients, §, and B,
are relative nonlinear coefficients, and y is the dispersion
coefficient.

There are many methods for solving nonlinear equa-
tions, such as the Hirota bilinear method [14-21], dressing
method [22], Riemann-Hilbert method [23], steepest des-
cent method [24], Lie symmetry analysis approach [25],
Ansatz approach [26], auxiliary equation approach [27],
new Kudryashov approach [28], sine-Gordon expansion
approach [29], exp-function approach [30], new general-
ized ¢ 6-model expansion approach [31], new extended
auxiliary equation approach [32], the Darboux transforma-
tions method [33-35], and so on [36-46].

The Hirota bilinear method is used to solve equations
by utilizing bilinear operators, which are simple in form,
easy to operate, and only related to the solved equation.
Many partial differential equations are solved effectively
by the Hirota bilinear method. Zhou et al used the above
method to solve the multiple-soliton and quasi-soliton solutions
of the modified Korteweg—de Vries—Zakharov—-Kuznetsov
equation [47]. Yang et al. used the above method to obtain
solitons and quasi-periodic behaviors in an inhomogeneous
optical fiber [48]. Hong et al. used the above method to solve
the multiple-soliton solution of the Hirota—Satsuma-Ito equa-
tion in shallow water [49-52].

In this article, we use the Hirota method to solve the
soliton, quasi-soliton, and their interaction solutions of the
ZK-mZK-BBM equation for gravity waves. The bilinear
forms are deduced in Section 2. Multiple soliton solutions
are presented in Section 3. Quasi-soliton solutions and
mixed solutions are presented in Section 4. Section 5 con-
cludes the article.
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2 Bilinear forms

Motivated by previous studies [53-57], we suppose

—2a
_ 2
f] @
Eq. (1) becomes
ng'f xg f Dthg f D ng f
of &f & &
ng fDig-f +B —2ay ng'f]2
g & WhE
08 f[ g f] DiDxg - fDxg - f &)
g | & &f &f
Dig fDg-f , DD [Dg f
gf gf g &
B g f V8 f xg f
2 V[ [ g =0,

where g and f are two real functions of x, y, and ¢, and Dy,
Dy, and D; are bilinear operators.
Assuming that

Dyg-f=aDg"f, )
Eq. (3) becomes
Dgf DS DDigf DD S
& & & &

B Dig-f |, DDg-f | yDﬁg'f 5

28, & & g

D.D,g f\D,g -
+ zﬁyéTgf]D:f f =0,

and the bilinear forms of Eq. (1) can be derived as

- ayﬁlz 2
Dilg-f=0, (6)
2B, !

(2D:Dy + Dj + ZﬁDny)g f=0, (7)
Dyg-f=aDg " f. ®)

D; + aDy + yDD; + yDD; +

According to Eq. (2), we can obtain

/
aV’ ayB, < 0
-2ay B, o)
2
ﬁz 2ay i, ayﬁz >0,
B,

where i = +/-1.
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3 Soliton solutions

3.1 N-soliton solutions

Considering the N-soliton solution of Eq. (1), we suppose
that

g=1+eg + g+ g+ egy, (10)

f=1+¢f) + ¥, + &%, +-+ eMfy,

where gys and frs (i=1,2,3,) are real functions. Sub-
stituting Eqgs. (10) and (11) into Eqgs. (6)—(8) and eliminating
the coefficients of all powers of &, we obtain a series of
equations. By solving these equations, the N-soliton solu-
tion can be expressed as

11

-2ay Gy
= |—|In|= (12)
B, Ey )],
where
N N
2 exp Zﬂjej + z(ﬂjHlAﬂ) . ayp, < 0
©=0,1 j=1 j<l
GN =
N in
2 exp Z ] Z(#,ulA,z) ayB, > 0,
u=0,1 j=1 j<l
N
2 exp Zﬂ] (6 + im) + Z(.U,ﬂlAjl) ay, < 0
u=0,1 j=1
FN =
y in
2 exp ZH]’ 6 - o )|, ayB, >0,
1=0,1 j=1

while 3 _,; is the sum of all the permutations of

{.ulﬁ HZ"”’ ‘uN} = O, 1, and
6 = kix + hy + wit, hj = Jak;, wj=-ak, 1<j<N,
k- ky)? . )
Aj = Ek],+k32: 1<j <1< N, kps being the constants.
J

3.2 One-soliton solutions

By taking N =1 in Eqgs. (10)-(12), we have
g§=1+eg,
f=1+¢f,

= —eel_

(13)
(14)

with g, = €%, f;
Then, based on Eq. (9) and Egs. (12)-(14), the one-
soliton solution can be given as
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-2ay

5, 1“[§]L

“2ay Kk _
+ B, sinh(8)’ e=+1, ayf, <0

Wk
B, cosh(6)’

U =

(15)

€==i, ayp, >0,

where 0, is given by Eq. (12), and k; is constant. The figures
of one-soliton can be obtained by selecting the appropriate
parameters, a =1, k=01, y=03, §,=-12, £=1, and
t = 0, as shown in Figure 1(a). Compared with Figure 1(a),
when B, and y, respectively, increase, it can be found that
the amplitudes of one-soliton increase in Figure 1(b) and (c),
but the shapes and widths of one-soliton remain unchanged.

3.3 Two-soliton solutions

By taking N = 2 in Eqgs. (10)-(12), we have

g=1+¢g + €%, (16)
f=1+¢f, + &%, 17
with g =e%+eh g =Apedtt  f =-g =-(eh+

392), fZ =g = A12€91+02.
Then, based on Egs. (9), (12), (16), and (17), the two-
soliton solution can be expressed as
-2ay

7
B |,

. —2ay 2[(1 + 8)81x — &.&l
“\ B (1+g)- glz ’

e=+1, ayf, <0

. [2ay 2[(1 = )85 * 8181
B, - gz)z + glz ’

U = In

(18)

£ = #i,

ayp, > 0,
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whereas 6;, 05, and Ay, are given by Eq. (12). The effect of
parameters 8, and y in a two-soliton solution is the same as
in a one-soliton; when B, and y, respectively, increase, the
amplitudes of two-soliton increase, but the shapes and
widths of two-soliton remain unchanged. The figure of
two-soliton is shown in Figure 2(b); it can be found that
the two-soliton is parallel.

3.4 Three-soliton solutions

By taking N = 3 in Egs. (10)-(12), we have

g=1+¢eg + &g+ €%, 19

f=1+¢f, + €%, + €%, (20)
with

g =el+el+els g = Apeft+ Azefrtfs + Ayefits,
83 = A12A13A23€91+92+93, fi =-g8 = —(991 + et + ees)’

fy = 8§ = Ane®0 + Apge®itts + Ayefrts,

fy = 8 = ~AnhpAypei 0

Then, based on Egs. (9), (12), (19), and (20), the three-
soliton solution can be expressed as

-2
Uz = ,Bjy lnli]x
. -2ay 2[(A+ 8)(81x * &) — 8rx(81 * 8]
N B A+g) - (g +8&) '

e=+#1, ayp, <0

. 2ay 2[A- &)&ix~ &)~ (8,0 ~ &)l
B, (1- g)*+ (g - &)
+, ayp, >0,

@D

, €%

while 6; and A4;(j, [ = 1, 2, 3) are given by Eq. (12). The effect
of parameters f, and y in a three-soliton solution is the same
as in one-soliton; when B, and y, respectively, increase, the

Figure 1: One-soliton solution witha =1,k =01, =1,andt =0.(a) y = 03,5, =-12;(b) y=03,B,=-3;(c) y =12,B, = -12.
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(a)
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(b)

Figure 2: Three-soliton solution witha = 0.1,y =15,8,=-12,e=1,and t = 0. (a) k=15, ky = 17, k3 =1.9; (b) kg =15,k = ks = 1.7;

(C) kl = kz = k3 =17.

amplitudes of two-soliton increase, but the shapes and widths
of two-soliton remain unchanged.

Figure 2(a) presents the figure of the three-soliton. It
can be found that the three-soliton can become two-soliton
when any two of k, k;, and k3 are equal, and three-soliton
can become one-soliton when k; = k; = ks. Figure 2(b) pre-
sents the two-soliton result of k; = k3, and Figure 2(c) pre-
sents the one-soliton results of k; = ky = ks.

4 Quasi-soliton solutions

4.1 One-quasi-soliton solutions

It is known from the study of Zhou et al. [47] that the one-
quasi-soliton solution can be deduced from the two-soliton
solution (18), in which we assume that

ki=s+ci, =k =s- c, (22)

where s and ¢ are constants, and the symbol “*” indicates com-
plex conjugate. By substituting Eq. (22) into Eq. (18), we obtain

02
01!
0.0":

-0}
-0.2!

0.2
01!
0.0}

-01!
-0.2!

Figure 3: One-quasi-soliton solution witha = 4,e=1,s=12,andc =1,

. /3 =ay 2[(1 + Q01 — Q5,01 - 41
- B, A+Q)*- @ -
a <0
W = VBZ ) (23)
T \/E ﬂ 2[(1 - QZ)QLX + QZ,xol] = 4
B, - Qp+Qr 7
ayB, > 0
where
Q, = 2e5*VAV*(Wst cosex + Jacy + (-a)ct],
QZ = _C_282$x+2ﬁsy+(—2a)st_

N

Figure 3 shows one-quasi-soliton wave and exhibits the
quasi-soliton waves affected by B, and y. Compared with
Figure 3(a), when the 8, and y change, the amplitudes of
the one-quasi-solitons are varied in Figure 3(b) and (c), but
the periods and velocities of the one-quasi-solitons remain
unchanged. Figure 4 shows one-quasi-soliton with different
values of the scaled time ¢. It can be found that the posi-
tions of the one-quasi-soliton are varied, but the ampli-
tudes, periods, and velocities of one-quasi-solitons remain
unchanged.

(b)

except that (@) y = 04,5,=5; (b)y =04,8,=20; ()y =1,8, = 5.
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0.1
0.0

-0}
-0.2
-0.3!
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Figure 4: One-quasi-soliton solution witha =4, y=04,5,=5, €=1i, s=12,and c =1, except that (a) ¢ =-16; (b)t=0; ()t = 16.

2(=2510, + 255G + S -
En =

st+ct - 22516 — 25, + sE -

st 4 cf = ¢

Ep =

[(s1+ 8)% + (q + 6)*]

’

2-2816 — 25, + st — sP+ ¢t — cF)(2s10 + 28,6 + st - sE+ct- cd)

4.2 Two-quasi-soliton solutions

For the four-soliton solution, we assume that

ki s1+aqi, k=5 - qi, k3 =S + o,
k4 = S Czi,

(24)

where sy, S5, G, and ¢, are the real constants. By using Eq.
(24) and four-soliton solutions, we obtain two-quasi-soli-
tons as follows:

ﬂ 2[(1 + ’102 + IHI)(’PLX + l1[3,)() - (lpz,x + q{l,x)(lpl + IIIB)]

[(s1+82)% + (q — 6)* ’

) 2, .2
_ 8(s20 — $10)(=S{ + S5 = ¢ +¢3)
A [(s1+ 522 + (a + @)°F
£ = 8(s26 + $16)(=Sf + 87 = ¢ + ¢)
2 =
[(s1+ 8% + (6 - &) ’

>

2 2
-c -c

= —12 (EnEr + ExEp), Y = —12 (ExE1p — EnEp),
2s{ 281

2 2
-c -c

Y = —22 (EnEp — ExEn), Yo = —3 (ExE1 + EnEp),
25, 28,

2 =#]
£ V2 B, (1+ R+ Ry)* = (R + Ry)? » €541 ayf <0 .
u -
Ul g [WHAS B B o) - (BRI W]
B, A- W+ W)+ (- W) ' o

where

¥y = 2[e? cos(Tp) + e?2 cos(T)],
Y, = %% Ey cos(Ty + Tp) + Epp cos(ly - B) + Ey sin(f

2 2
. C1 CZ >
+ TZ) + Ey Sln(Tl - Tz)] = [?82(/’1 + ?ez(pz]
1 2

Vs = e?* % ¥y cos(Ty) + Yip sin(T)] + €77 %2[Ey cos(T)
+ Ep sin(Ty)], ¥ = AeX1*2,
Q1 = SIX + Jasy — asit, ¢, = Sx + JaSy — asyt,

Ti=ax+Jagy - aqgt, T, = ox + Jagy - aat,

_ ninfl(si - s)% + (- )*Pl(si— s2)* + (a + )]
mimi[(s; + )2 + (a = &)*PI(s1 + s2)* + (a + )P

The effect of parameters B, and y in the two-quasi-
soliton solution is the same as in the one-quasi-solitons;
when B, and y change, the amplitudes of the two-quasi-
solitons are varied, but the periods and velocities of the
two-quasi-solitons remain unchanged.

Figure 5 shows the two-quasi-soliton solution with dif-
ferent values of t. Although the positions of the two-quasi-
soliton varied, the amplitudes, periods, and velocities of
the two-quasi-solitons remained unchanged.
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Figure 5: Two-quasi-soliton solution witha =4, y=04,8,=5,5,=04,6=06,5,=04,¢=-0.6 and € = i, except that (a) t=-2;(b)t=0;

(ot=2.

0.4
0.2.‘
0.0
-0.2}
-04

04
0.2
0.0
02!
04|

Figure 6: Mixed solution with a = 0.5,y = 0.4, 8, = 5,53 =12, =1, Ry = 1, and ¢ = {, except that (a) t = -10; (b)t = 0; (c) t = 10.

4.3 Coaction of one-soliton and one-quasi-
soliton wave

For three-soliton solutions (21), let

k=s3+ai k= kl* =83 - Gi, k3 =Ry, (26)

where s3, G, and R, are real constants, we can obtain the
following mixed solutions:

ay
By
2[(1 + Wy)(Wax + Wsx) = Wax(Wh + UR)]
1+ W) = (Wi + WR)?

) ’
¥ i e==i, ayf, >0
V B

2[(1 - VVZ)(Vle - VV3X) + VVZX(VVl - I'VS)]
Q- W)’ - (Wi- Wy)? '

e=41, ayB, <0

27

us =

where

Wi = 2e%1 cos F + e®,
o

W, = -3 + e?* %M, cos F + M, sin F],
3

Ws = Mze2®1 %2,
Dy = $3x + Jasyy - asst, Dy = Rox + ARy - aRot,

F=cx+ Jagy - aqt,

M = 2(s3 = 2Ry + ¢ = R§)(s3 + 2GRy + ¢ = RP)
[(s3 + Rp)? + ci?
_ 8asRo(s3 + ¢i = Ry)
2T [(ss+ R+ IR

_ c?[(s3 - Ry)* + ci?
3 = — .
s3[(ss + Ro)? + ¢5?

The effect of parameters B, and y in the co-actions of
the one-soliton and one-quasi-soliton waves is the same as
in the one-quasi-solitons; when B, and y changed, the
amplitudes of the mixed solutions varied, the periods
and velocities of the mixed solutions remained unchanged.

Figure 6 shows the mixed solution with different
values of scaled time ¢. Although the positions of the mixed
solutions were varied, the amplitudes and velocities of the
mixed solutions remained unvaried.

5 Conclusion

In this study, soliton solutions, quasi-soliton solutions, and
mixed solutions of the ZK-mZK-BBM equation were obtained
using the Hirota method and complex conjugate transforma-
tions. One-soliton figures for solution (15), parallel two-soliton
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figures for solution (18), and parallel three-soliton figures for
solution (21) are shown in Figures 1 and 2. Figure 2 also pre-
sents that three-soliton can become two-soliton when any two
of ky, k;, and ks are equal, and three-soliton become one-
soliton when k = k; = ks. Figures 3 and 4 show one-quasi-
soliton figures of solution (23), while Figure 5 shows parallel
two-quasi-soliton figures of solution (25), and Figure 6 shows
the figures of mixed solutions (27).

We found that the amplitudes of solitons, quasi-soli-
tons, and mixed solutions change when S, and y change,
but the shapes and widths remain unchanged. The posi-
tions of the quasi-soliton solutions and mixed solutions
varied with different values of scaled time ¢, but the ampli-
tudes, periods, and velocities of the mixed solutions remain
unchanged.
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