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Abstract: The heat and mass transportation for nanofluid
across a swirling cylinder under the actions of magnetic
effects and Cattaneo–Christov heat flux is reported in the
current analysis. The objective of this study is to examine
the energy and mass transmissions through hybrid nano-
fluid under the influence of heat source/sink and reactive
species. The hybrid nanoliquid has been prepared by the
dispersion of silver (Ag) and gold (Au) nanoparticles (NPs)
in the base fluid ethylene glycol (C2H6O2). The flow phe-
nomena are expressed in the form of nonlinear partial
differential equations and are converted to a nondimen-
sional form, by employing the similarity substitution. For
the computational estimation of the problem, the para-
metric continuation method is employed. The demonstra-
tion of velocity, mass, and energy outlines versus distinct
physical factors is exposed in the form of figures. It has
been perceived that the axial and swirling velocity outline
drops with the influence of the Reynolds number, magnetic
effect, and the insertion of Au and Ag NPs in C2H6O2.
Furthermore, the hybrid nanofluid energy curve declines

with the effect of the Reynolds number, thermal relaxation
factor, and the volume friction of NPs.

Keywords: MHD, heat source/sink, Cattaneo–Christov heat
flux, spinning cylinder, numerical technique (PCM), hybrid
nanofluid flow

Nomenclature

E uniform rotation
σhnf electrical conductivity
ρ

hnf
density

u v w, ,( ) velocity componenets
Cw surface concentration
khnf thermal conductivity
Q

0
internal heat source

δc solutal relaxation factor
Re Reynolds number
M magnetic parameter
Au gold
NPs nanoparticles
PCM parametric continuation method
a stretching cylinder
R1 cylinder radius
B magnetic field
r radial direction
μ

hnf
dynamic viscosity

Tw surface temperature
DB mass diffusivity
ρCp hnf( ) Specific heat

Rs destructive reactive species
δt thermal relaxation factor
H heat source/sink parameter
C2H6O2 ethylene glycol
Ag silver
MHD magnetohydrodynamics
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1 Introduction

The study of hybrid nanofluid flow along an expanding
cylinder has gained a great deal of recognition because
of its wide range of applications, including glass fiber
manufacturing, channel and flyovers in construction man-
agement, plastic sheets, paper production, blood transpor-
tation, polymer innovation, toxic liquid transport power
plants (nuclear), and carriage of dangerous fluids in equip-
ment and machinery [1–3]. Based on their applications in
several fields of industries and engineering, a number of
researchers have reported on the fluid flow across an elon-
gating cylinder. Bilal et al. [4] explored an unsteady fluid
flow on a straining cylinder with suction effects. Pattnaik
et al. [5] described the free convective flow of gold (Au)-
based water nanoliquid flow through a channel. Kumar
et al. [6] examined the energy transportation in hybrid
fluid flow on a shrinking sheet using an electrostatic
dipole. The results showed that an intensification in the
magnetization interaction diminishes the velocity curve, but
an opposite pattern is observed in the concentration and
energy outlines. Alhowaity et al. [7] numerically reviewed
the Williamson hybrid nanoliquid flow with heat character-
istics across a prolonging surface. Abbasi et al. [8] used Fe3O4

and Cu in blood to explore thermal transportation inside a
curved wavy conduit with slip constraints. Pattnaik et al. [9]
presented the theoretical approach for catalytic aggressive
species propagation in an axisymmetric covering that incor-
porates forced convection flow from a linear fashion elon-
gating perpendicular cylinder dipped in a homogeneous
non-Darcy permeable medium filled with magnetic ferro-
fluid. Ramzan et al. [10] proceeded the detail about the out-
come of the heat generator on the nanocomposite flow over
an extending cylinder and sheet. The Burger nanoliquid
factor and Deborah number were found to lessen nanofluid
velocity in both the shrinking cylinder and sheet. Seid et al.
[11] presented a mathematical framework for analyzing the
slip properties on an electrically charged nanoliquid flow
over an upward swelling surface. Raising the velocity slip
factor accelerates the flow velocity, while enhancing the Soret
influence boosts the concentration of nanomaterials near the
shrinking sheet. Recently, numerous researchers have
presented findings on the fluid flow over an elongated
cylinder [12–15].

Hybrid nanofluids are a novel form of fluids formed
by scattering nanometer-sized components in base fluids
(nanofibers, nanoparticles (NPs), nanowires, nanorods,
nanotubes, droplets, or nanosheets). Nanofluids, in another
phrase, are nanosized colloidal suspensions comprising con-
centrated nanocomposites. When compared with conven-
tional fluids such as water and oil, nanoliquids have improved

thermophysical characteristics such as dissipation factor,
thermal conductivity, convective heat transfer, and viscosity.
It has demonstrated a promising potential in a variety of dis-
ciplines [16–18]. In the current analysis, we are using silver
(Ag) and Au NPs in ethylene glycol. Unique optical character-
istics of nanofluids (nanofluids-basedmicrobial fuel cell, nano-
fluids as vehicular brake fluids, and intensify microreactors),
biomedical applications (nanodrug delivery, antibacterial
activity), mechanical applications (magnetic sealing, friction
reduction, solar absorption, energy storage), and mass and
heat transfer intensification (space and defense, nuclear
systems cooling, heating buildings and reducing pollution,
industrial cooling applications, transportation, and electronic
applications) are some uses and applications of the Au-Ag/
C2H6O2-based nanofluid [19–21]. Bilal et al. [22] used the
bvp4c package and the parametric continuation method
(PCM) technique to numerically simulate carbon nanotubes
and microorganisms’ water-based nanoliquid flow influenced
by a curly fluctuating rotating plate with heat dissemination.
Alharbi et al. [23] revealed the nanofluid flow with energy
transfer containing metallic NPs across an elongated cylinder
with magnetization impacts. It was exposed that the Prandtl
magnetic number upshot drops the flow velocity, while
boosting the energy resume. Zhang et al. [24] explored the
3D flow across a circular cylinder of varying surface area
and the modified Fourier law. The efficiency of the hybrid-
nanoliquid was found to be far superior to that of the conven-
tional ferrofluid. Akram et al. [25] evaluated the peristaltically
controlled electro-osmotic stimulation of Ag–Au/water-based
hybrid nanofluids across a highly permeable inclined nonsym-
metric fluid flow. It was renowned that the hybrid nanoliquid
allows a more efficient heat transmission rate than silver–-
water, and thermodynamic premises are significantly advanced
in the instance of hybrid nanofluids. Sreedevi et al. [26] quanti-
tatively analyzed the Ag- and water-based convective fluid flow
within a square cavity with isothermal and adiabatic condi-
tions, while considering magnetic influence. When 0.05% of
Ag NPs are dissolved in water, the rate of energy transport
increases up to 12.4% from 6.3%. Waqas et al. [27] documented
the significance of Ag–Au NPs submerged in the base fluid
(human blood) and revealed that enhancing the behavior of
the thermal radiation and Biot number increases the energy
transmission rate. Nanda et al. [28] inspected the hybrid nano-
fluidflowand thermal escalation of a nonlinear extended sheet.
When compared to a smooth surface, the curly pivoting sub-
strate enhances heat transfer up to 15%. Studies on the Ag–Au-
based nanofluid and hybrid nanofluid may be found in some
recent literature [21,29–32].

The significance of magnetohydrodynamics (MHD)
can be found in astrophysics, geophysics, engineering,
pointing, and sensing magnetic drug. MHD fluid flow
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overcomplicated geometry, which is engaged in human
body components in addition to commercial applications,
is an attractive and important scientific subject [33–35]. Beja-
wada et al. [36] offered a computational examination of
MHD nanofluid flow through a nonlinear slanted extending
surface. Kodi and Mopuri [37] used a Soret-aligned chemical
reaction and a magnetic field to simulate the volumetric
flow on an elevated sheet. The existence of an aligned mag-
netic field and Casson fluid characteristics are said to have a
velocity detrimental influence. Mahabaleshwar et al. [38]
scrutinized the MHD nanofluid flow in the context of mass
dissipation and heat conduction. It was discovered that the
induced magnetic field improves skin surface friction and
decreases surface mass transport, and this was documented
in the literature [31,39–45].

The determination in the present research is to examine
the heat and mass transport through hybrid nanoliquid
across a swirling cylinder under the impact of magnetic
effects and Cattaneo–Christov heat flux. The energy and
mass communications are also calculated under the effects
of heat source/sink and reactive species. The nanoliquid has
been produced by the dispersion of Ag and Au-NPs in the
base fluid (C2H6O2). For the numerical estimation of the
problem, the PCM approach is used.

2 Mathematical formulation of the
problem

The developed axisymmetric 3D mathematical model under
the flow assumptions on a stretching cylinder is deliberated
(Figure 1). The flow is produced due to the uniform
stretching and rotation of the cylinder with radius R1, which
is immersed in a hybrid nanofluid containing Ag and Au
solid NPs. Here, z direction is along the axis of the cylinder,
where r is the radial direction. The magnetic effect B = (0, 0,
B0) is functional perpendicular to the cylinder. Tw, Cw are
surface and T∞, C∞ are temperature and concentration at
free stream, where Tw, T∞, Cw > C∞ By using the aforemen-
tioned presumptions, the modeled equations are expressed
as follows [46,47]:
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The constraints at boundary are as follows:
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Here, (u,v,w) denote velocity componenets. Dynamic
viscosity of nanoliquid µhnf, density ρhnf, electrical conduc-
tivity σhnf, thermal conductivity khnf, specific heat (ρCp)hnf,
magnetic field strength B0, energy and mass relaxation
time conveyance, respectively, are (λt, λc), mass diffusivity
DB, and internal heat source Q0.

The attributes of nondimensional terms are as follows:
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When Eq. (7) is applied on Eqs. (1)–(6), we obtain
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= aR vRe /21
2 is the Reynolds number, =M σ B ρ a/bf 0

2

bf

indicates the magnetic parameter, = ν αPr / bf indicates
the Prandtl number, =H Q a ρC/

0 p bf( ) indicates the heat

source/sink parameter, =Le
α

DB

1 is the Lewis number,

=δ aλt t represents the thermal relaxation factor, =δ aλc c

represents the solutal relaxation factor, and =R k a/s c point
out destructive reactive species.

Now for the nanofluids [48], let us present the fol-
lowing expression for μ ρ ρC k, ,

hnf, hnf p hnf hnf( ) , and σhnf

as follows:

Figure 1: Flow configuration model.
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The nanofluid constants can be stated as follows:
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The thermophysical features of nanoliquid are presented in Table 1.
Eqs. (8)–(11) are valid only for values >0( ) of Re and slow convergence as disclosed by Fang and Yao [49]. So, further

transformations =η e
x is used to quicken the approach of the solutions, which lead to the following equations:
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Along with transformed boundary conditions
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The physical quantities local surface friction Cf , Nusselt
numberNux , and Sherwood number Shx are mathematically
given as follows:
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3 Numerical solution

The detailed description regarding the PCMmethodology is
as follows [50–53]:

Step 1: Generalization to first-order ordinary differen-
tial equation
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By setting Eq. (23) in Eqs. (15)–(18) and (19), we obtain:
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Along with transformed boundary conditions
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Step 2: Introducing parameter p in Eqs. (24)–(27)
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Step 3: Solving the Cauchy problems
By using implicit numerical scheme:

Table 1: Following [48], thermo-physical properties of nanoparticulates
with base fluid

Properties Base fluid NPs

C H O2 6 2 (ethylene glycol) Ag Au

ρ Kg m‒3( ) 1,115 10,500 19,300

c J Km mp

‒1 ‒1( ) 2,430 235 129.1

k W m K‒1 ‒1( ) 0.253 429 318

×β 10 K‒5 ‒1( ) 5.7 1.89 1.4

σ S m‒1( ) 10.7 × 10‒5 6.30 × 107 4.25 × 107
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The final iterative form is attained as follows:
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3.1 Validation of the results

For the validity of the present results, the obtained numerical
results for skin friction are related to the published work as
shown in Table 2. It can be observed that the present results
have greater similarity with the published studies.

4 Results and discussion

This section revealed the physics behind the graphical results.
For the velocity energy and mass outlines, we have used the
following default values of parameters:

=Re 1, =M 2, =Pr 6.2, = =ϕ ϕ 0.02,
1 2

= = = = =H R δ δLe 1, 1.5, 1.5, 0.1, 0.1.s t c

4.1 Velocity interpretations

Figures 2–4 exhibit the appearance of the axial velocity
curve ′f η( ) against the Reynolds number Re, magnetic effect
M and NPs. Figure 2 testifies that the velocity panel drops

Table 2: The comparison of the present results versus the existing study for h′ 1( ) and f ″ 1( ) by taking = =M H 0.

Fang and Yao [49] Jawad et al. [47] Present study Fang and Yao [49] Jawad et al. [47] Present study
Re (( ))f ″ 1 (( ))f ″ 1 (( ))f ″ 1 (( ))h′ 1 (( ))h′ 1 (( ))h′ 1

0.1 −0.48170 −0.48950 −0.489523 −0.51018 −0.51022 −0.510242
0.2 −0.61738 −0.61415 −0.614163 −0.52604 −0.52740 −0.527463
0.5 −0.88210 −0.88602 −0.886048 −0.58487 −0.58561 −0.585634
1.0 −1.17765 −1.17940 −1.179428 −0.68771 −0.687933 −0.687947
2.0 −1.59379 −1.59600 −1.596023 −0.87262 −0.87263 −0.872662
5.0 −2.41733 −2.41788 −2.417967 −1.29787 −1.29787 −1.297972
10 −3.34436 −3.34444 −3.344673 −1.81005 −1.81006 −1.810281

Figure 2: Performance of axial velocity curve f η′( ) versus the Reynolds
number Re.

Figure 4: Performance of axial velocity curve f η′( ) versus NPs volume
friction.

Figure 3: Performance of axial velocity curve f η′( ) versus the magnetic
effect M.
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with the influence of the Reynolds number. Physically, iner-
tial forces enhance the consequences of Re and cause the
lessening of the velocity curve. Figure 3 shows that the

nanofluid velocity diminishes with the intensifying values
of the magnetic factor, as the opposing force, that provides
resistance in the flow direction generated due to themagnetic
influence. That is why, the fluid velocity drops with the mag-
netic upshot as demonstrated in Figure 3. Figure 4 shows that
the insertion of NPs in C2H6O2 reduces the fluid velocity in the
axial direction. Physically, the density of NPs is higher than
C2H6O2, and hence their dispersion makes the fluid density
denser; as a result, fluid velocity drops as shown in Figure 4.

Figures 5–7 present the presentation of swirling curve
h η( ) versus the Re, magnetic effect M, and NP volume fric-
tion, respectively. Figure 5 describes that the velocity dis-
tribution decays with the impact of the Reynolds number.
Physically, the inertial forces enhance with the effect of Re,
which results in the decrease of the momentum boundary
layer. Figure 6 shows that the nanofluid velocity diminishes
with the growing values of the magnetic factor because the
resistive force provides resistance in the flow direction gen-
erated due to magnetic influence. Hence, the fluid velocity

Figure 5: Performance of swirling curve h η( ) versus the Reynolds
number Re.

Figure 7: Performance of swirling curve h η( ) versus the NPs volume friction.

Figure 6: Performance of swirling curve h η( ) versus the magnetic effect M.

Figure 8: Performance of energy curve θ η( ) versus the Reynolds
number Re.

Figure 9: Performanceof energy curveθ η( ) versus the thermal relaxation factorδt.
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drops with the magnetic upshot as demonstrated in Figure 6.
Figure 7 shows that the inclusion of NPs in ethylene glycol
reduces the fluid velocity in the radial direction. Physically,
the density of Ag and Au NPs is higher than C2H6O2, and
hence, their scattering makes the fluid density denser and
fluid velocity degenerates as shown in Figure 7.

4.2 Energy interpretation

Figures 8–12 illustrate the presentation of energy curve θ η( )

versus the Re, thermal relaxation factor δt, NPs volume fric-
tion, heat source H, and magnetic effect M, respectively.
Figures 8 and 9 express that the nanofluid energy outlines
decrease with the influence of Reynolds number Re and
thermal relaxation factor δt. As we have discussed ealier,
interial forces boosts with the upshot of Re, which declines
the energy curve as shown in Figure 8. Thermal relaxation
time is the duration that it takes for an object to restore to its
initial temperature after being heated. Hence, the rising

values of δt drops the nanofluid energy curve δt as shown
in Figure 9. Figure 10 demonstrates that the temperature out-
lines also drop with the increasing numbers of Ag and Au NPs
in the ethylene gylcol. Physcally, the thermal conductivity and

Figure 12: Performance of energy curve θ η( ) versus the magnetic effect M.Figure 10: Performance of energy curve θ η( ) versus the NPs volume
friction.

Figure 11: Performance of energy curve θ η( ) versus the heat source H.

Figure 13: Performanceofmass outlineφ η( ) versus the solutal relaxation factorδc.

Figure 14: Performance of mass outline φ η( ) versus the NPs volume
friction.
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the density of nanoliquid increase with the addition of nano
composities, which augments the energy-absorbing capability
of the base fluid, as a result of a decrease in the fluid tem-
perature δt. Figures 11 and 12 reveal that the nanofluid tem-
perature outlines upsurges with the flourshing upshots of H
(heat source) and magnetic field. During the chemical reac-
tion, the atoms release some energy, which when added to
the total energy of the fluid, causes inclination in the thermal
profile as indicated in Figure 11. However, the resistive force
that opposes the flow field also produces heat and ultimately
the energy curve boosts as shown in Figure 12.

4.3 Mass interpretations

Figures 13–15 illustrate the presentation of mass outline
φ η( ) versus the solutal relaxation factor δc, NPs volume

friction, and Lewis number Le, respectively. Figures 13–15
demonstrate that the mass outlines decline with the influence
of parametersδc,ϕ, and Le. Relaxation time is the period when
a system relieves in response to external conditions that
change. Hence, the action of the solutal relaxation factor des-
cents themass diffusion rate of nanofluid as shown in Figure 13.
Likewise, the addition of Ag and Au NPs to base fluid makes
the fluid atom denser, which causes the reduction of mole-
cular diffusion rate, and thus, mass panel declines as shown
in Figure 14. Figure 15 expresses that the mass distribution
also weakens with the upsurge in the Lewis number. Table 3
reveals the statistical value for the Sherwood number, skin
friction, and Nusselt number. Also, the skin friction
enhances with the result of magnetic factor, while the
energy transference rate declines.

5 Conclusions

This study examined the heat and mass conveyance
through the fluid flow across a swirling cylinder under
the impact of magnetic effects and Cattaneo–Christov
heat flux, heat source/sink, and reactive species. The
hybrid nanoliquid has been produced by the dispersion
of Ag and Au NPs in C2H6O2 (pure fluid). The modeled
equations are reduced to the dimensionless system of
ODEs by employing the similarity substitution. For the
numerical estimation of the problem, PCM methodology
is used. The main findings are as follows:
• The axial velocity distribution drops with the impact of
the Reynolds number, magnetic effect, and the inclusion
of Ag and Au NPs in C2H6O2.

• Nanofluid energy outlines decrease with upsurge
Reynolds number Re, thermal relaxation factor δt, and
the rising number of Ag and Au NPs.

• Swirling velocity outline also diminishes due to the
effects of NPs volume friction, Reynolds number, and
magnetic factor.

• Mass outlines dropwith theflourishing values of solutal relaxa-
tion factor δc, NPs volume friction, and Lewis number Le.

• The temperature field upsurges for flourshing effects of
heat source H and magnetic field.

• The present mathematical model can be modified to
other types of fluid models and can also be numerically
and analytically solved.

Acknowledgments: The authors acknowledge support
from the Deanship of Scientific Research, the Vice
Presidency for Graduate Studies and Scientific Research,
King Faisal University, Saudi Arabia (Grant No. 5783).

Figure 15: Performance of mass outlineφ η( ) versus the Lewis number Le.

Table 3: The statistical outputs for Sherwood number, skin friction, and
Nusselt number

M Re ==ϕ ϕ
1 2

δt (( ))f ″ 1 (( ))g ′ 1 (( ))θ‒ ′ 1 (( ))φ‒ ′ 1

0.1 0.5 0.01 0.2 0.01382 3.66511 1.05166 0.83201
0.3 0.02744 3.89473 1.04799 0.83258
0.5 0.03924 4.10009 1.04508 0.83303
0.7 0.05090 1.75129 1.05648 0.83127

0.5 0.05592 1.86606 1.17839 0.88044
1.0 0.06103 1.98190 1.29760 1.01614
1.5 0.06623 1.09873 1.41310 1.05927
2.0 0.08745 3.40207 1.51518 1.70389

0.01 0.08732 3.40205 1.36499 0.67873
0.02 0.08723 3.40196 1.41399 0.65379
0.03 0.08654 3.40178 1.50938 0.62171
0.04 0.08645 3.40107 1.03834 0.58124

0.2 0.08645 3.40206 1.03215 0.84004
0.4 0.08542 3.40204 1.13743 0.88745
0.6 0.08454 3.40123 1.27348 0.71823
0.8 0.08245 3.40007 1.45929 0.70920
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